A Novel Rotor Topology for High-Performance Fractional Slot Concentrated Winding Interior Permanent Magnet Machine
This article presents a finite-element-based, multiobjective design optimization study of the fractional-slot, concentrated wound, permanent magnet synchronous machine (FSCW PMSM). Design objectives included maximization of efficiency, minimization of cost and low ripple without sacrificing torque d...
Saved in:
Published in | IEEE transactions on energy conversion Vol. 36; no. 2; pp. 658 - 670 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article presents a finite-element-based, multiobjective design optimization study of the fractional-slot, concentrated wound, permanent magnet synchronous machine (FSCW PMSM). Design objectives included maximization of efficiency, minimization of cost and low ripple without sacrificing torque density and wide constant power speed range. A large-scale optimization study revealed that while a V-type rotor provides high torque density, a spoke-type rotor has the benefit of low torque ripple. Quest for a design that can combine the goodness of both V- and spoke type rotors for an FSCW stator has led to a novel interior permanent magnet rotor topology referred here as Y-type. The goals of achieving maximum efficiency, minimum cost and wide CPSR were also accomplished in the proposed Y-type FSCW IPMSM. For experimental verification purpose, three fully optimized rotors - V-, spoke- and Y-type were constructed for a 12-slot/10-pole FSCW stator. Extensive experimental tests were conducted on three machines for a detailed comparison study. It will be shown that the proposed Y-type FSCW IPMSM outperforms both V and spoke-type configurations. A scaled-up version of the Y-type FSCW IPMSM shown to have satisfied many of the Freeedomcar 2020 targets, which is promising for application in electric vehicles. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0885-8969 1558-0059 |
DOI: | 10.1109/TEC.2020.3030302 |