On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes
SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 69; no. 6; pp. 1045 - 1064 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.06.2012
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd. SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd. |
Author | Wollner, Winnifried Besier, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Besier fullname: Besier, Michael email: michael.besier@iwr.uni-heidelberg.de, Michael Besier, Department of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 293/294, 69120 Heidelberg, Germany., michael.besier@iwr.uni-heidelberg.de organization: Department of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 293/294, 69120, Heidelberg, Germany – sequence: 2 givenname: Winnifried surname: Wollner fullname: Wollner, Winnifried organization: Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146, Hamburg, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25940239$$DView record in Pascal Francis |
BookMark | eNp1kE1LAzEQhoNUsK2CPyEXwcvWfHST3aO0topFDyoeQ7qb2Gj2g2Rru__etCsFRU_DzDzvy8w7AL2yKhUA5xiNMELkStt8RBiJj0Afo5RHiDLaA31EOI4ISvEJGHj_jhBKSUL7oHksYbNSsHbK-7VTUNa1q7amkI2pSmhKGPx9s--ka8Mgq4o9bJZWQW2rDfSmWNs94WHQ5G0pC5NJa1v4GTSmfIO-DntpYaH8SvlTcKyl9ersuw7By-zmeXIbLR7nd5PrRZRRSuNoqVh4JE4TlDBKWMJykuJxSjhNaBiRmC055yrXTMXZOGNLlXCtdY5pnuQaSzoEF51vLX24RztZZsaL2oX3XCtInI4RoWngLjsuc5X3TukDgpHYpSpCqmKXakBHv9DMdOk0Thr7lyDqBBtjVfuvsZgtpj954xu1PfDSfQjGKY_F68NcPLH5PcZTKmL6BcSzm58 |
CODEN | IJNFDW |
CitedBy_id | crossref_primary_10_1093_imanum_drad105 crossref_primary_10_1093_imanum_drab044 crossref_primary_10_1007_s00211_021_01264_x crossref_primary_10_1016_j_cma_2012_08_006 crossref_primary_10_1093_imanum_drv035 crossref_primary_10_1002_fld_4701 crossref_primary_10_1007_s10444_019_09716_7 crossref_primary_10_1093_imanum_drw019 crossref_primary_10_1002_fld_2735 crossref_primary_10_1515_cmam_2022_0200 crossref_primary_10_1051_m2an_2019072 crossref_primary_10_1007_s10092_018_0259_2 crossref_primary_10_1093_imanum_dry014 crossref_primary_10_1016_j_jcp_2016_11_043 crossref_primary_10_1016_j_jcp_2023_112457 |
Cites_doi | 10.1016/0167-7977(87)90011-6 10.1016/0022-1236(76)90035-5 10.1007/978-3-642-61623-5 10.1007/s10092-001-8180-4 10.1137/0719018 10.1137/0731068 10.1007/978-3-642-18775-9_9 10.1007/978-3-662-03359-3 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7 10.1007/978-3-322-89849-4_39 10.1090/chel/343 10.1002/fld.679 10.1016/0377-0427(91)90224-8 10.1007/978-3-642-58393-3 10.1016/S1570-8659(03)09003-3 10.1017/S0962492900002531 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y 10.1137/0520006 10.1007/978-1-4612-3172-1 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/fld.2625 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1097-0363 |
EndPage | 1064 |
ExternalDocumentID | 25940239 10_1002_fld_2625 FLD2625 ark_67375_WNG_S6GK11D3_5 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION 31~ 6TJ AAMMB ABEML ACSCC AEFGJ AGHNM AGXDD AI. AIDQK AIDYY AMVHM IQODW M6O PALCI RIWAO RJQFR SAMSI TUS VH1 VOH ZY4 ~A~ |
ID | FETCH-LOGICAL-c3335-be662559808632686d2914927383086256b777edf6e5c4c6be87fffd13d8df1a3 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Mon Jul 21 09:16:44 EDT 2025 Thu Apr 24 23:13:26 EDT 2025 Tue Jul 01 02:08:35 EDT 2025 Wed Jan 22 16:26:53 EST 2025 Wed Oct 30 09:55:21 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Computational fluid dynamics space-time finite elements Digital simulation Unsteady flow Finite element method incompressible Navier―Stokes equations DG method in time dynamically changing meshes Modelling backward Euler scheme Incompressible fluid pressure approximation Mesh generation Navier-Stokes equations |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3335-be662559808632686d2914927383086256b777edf6e5c4c6be87fffd13d8df1a3 |
Notes | ark:/67375/WNG-S6GK11D3-5 ArticleID:FLD2625 istex:469D0C1135C561C4B818D678B4F6D387C1A02502 |
PageCount | 20 |
ParticipantIDs | pascalfrancis_primary_25940239 crossref_primary_10_1002_fld_2625 crossref_citationtrail_10_1002_fld_2625 wiley_primary_10_1002_fld_2625_FLD2625 istex_primary_ark_67375_WNG_S6GK11D3_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 June 2012 |
PublicationDateYYYYMMDD | 2012-06-30 |
PublicationDate_xml | – month: 06 year: 2012 text: 30 June 2012 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in fluids |
PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing: Providence, Rhode Island, 2001. Thomée V. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Vol. 25. Springer-Verlag: Berlin Heidelberg, 1997. Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. Journal of Functional Analysis 1976; 21(4): 397-431. Klouček P, Rys FS. Stability of the fractional step θ-scheme for the nonstationary Navier-Stokes equations. SIAM Journal on Numerical Analysis 1994; 31(5): 1312-1335. Dauge M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM Journal on Mathematical Analysis 1989; 20(1): 74-97. Turek S. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach (Lecture Notes in Computational Science and Engineering), Vol. 6. Springer-Verlag: Berlin Heidelberg, 1999. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Vol. 15. Springer-Verlag: New York Berlin Heidelberg, 1991. Becker R, Braack M. A modification of the least-squares stabilization for the Stokes equations. Calcolo 2001; 38(4): 173-199. Heywood JG, Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1996; 22(5): 325-352. Bristeau MO, Glowinski R, Periaux J. Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows. Computer Physics Reports 1987; 6(1-6): 73-187. Turek S.A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods in Fluids 1996; 22(10): 987-1011. Bänsch E. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations. Journal of Computational and Applied Mathematics 1991; 36(1): 3-28. Girault V, Raviart P-A. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag: Berlin Heidelberg New York Tokyo, 1986. Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner: New York Stuttgart, 1996. Ciarlet PG. The Finite Element Method for Elliptic Problems, First edn, North-Holland Publishing Company: Amsterdam New York Oxford, 1987. Heywood JG, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM Journal on Numerical Analysis 1982; 19(2): 275-311. John V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids 2004; 44(7): 777-788. 1976; 21 2004; 44 1991; 36 1989; 20 1991; 15 1982; 19 2010 1997; 25 1987; 6 2009 1998 1996; 52 1996 1974 2004 1995; 4 1999; 6 2001 1986; 5 2003; 9 1987 2003; 25 2001; 38 1996; 22 1994; 31 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Ciarlet PG (e_1_2_8_11_1) 1987 e_1_2_8_3_1 Hoffman J (e_1_2_8_6_1) 2003 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 Hood P (e_1_2_8_13_1) 1974 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Verfürth R (e_1_2_8_5_1) 1996 e_1_2_8_10_1 e_1_2_8_12_1 |
References_xml | – reference: Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Vol. 15. Springer-Verlag: New York Berlin Heidelberg, 1991. – reference: Bristeau MO, Glowinski R, Periaux J. Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows. Computer Physics Reports 1987; 6(1-6): 73-187. – reference: Dauge M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM Journal on Mathematical Analysis 1989; 20(1): 74-97. – reference: Heywood JG, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM Journal on Numerical Analysis 1982; 19(2): 275-311. – reference: John V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids 2004; 44(7): 777-788. – reference: Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner: New York Stuttgart, 1996. – reference: Klouček P, Rys FS. Stability of the fractional step θ-scheme for the nonstationary Navier-Stokes equations. SIAM Journal on Numerical Analysis 1994; 31(5): 1312-1335. – reference: Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing: Providence, Rhode Island, 2001. – reference: Thomée V. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Vol. 25. Springer-Verlag: Berlin Heidelberg, 1997. – reference: Bänsch E. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations. Journal of Computational and Applied Mathematics 1991; 36(1): 3-28. – reference: Girault V, Raviart P-A. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag: Berlin Heidelberg New York Tokyo, 1986. – reference: Ciarlet PG. The Finite Element Method for Elliptic Problems, First edn, North-Holland Publishing Company: Amsterdam New York Oxford, 1987. – reference: Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. Journal of Functional Analysis 1976; 21(4): 397-431. – reference: Becker R, Braack M. A modification of the least-squares stabilization for the Stokes equations. Calcolo 2001; 38(4): 173-199. – reference: Heywood JG, Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1996; 22(5): 325-352. – reference: Turek S. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach (Lecture Notes in Computational Science and Engineering), Vol. 6. Springer-Verlag: Berlin Heidelberg, 1999. – reference: Turek S.A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods in Fluids 1996; 22(10): 987-1011. – start-page: 121 year: 1974 end-page: 132 – year: 2009 – volume: 44 start-page: 777 issue: 7 year: 2004 end-page: 788 article-title: Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder publication-title: International Journal for Numerical Methods in Fluids – volume: 38 start-page: 173 issue: 4 year: 2001 end-page: 199 article-title: A modification of the least‐squares stabilization for the Stokes equations publication-title: Calcolo – volume: 22 start-page: 987 issue: 10 year: 1996 end-page: 1011 article-title: A comparative study of time‐stepping techniques for the incompressible Navier–Stokes equations: From fully implicit non‐linear schemes to semi‐implicit projection methods publication-title: International Journal for Numerical Methods in Fluids – volume: 4 start-page: 105 year: 1995 end-page: 158 – year: 2001 – year: 1987 – volume: 22 start-page: 325 issue: 5 year: 1996 end-page: 352 article-title: Artificial boundaries and flux and pressure conditions for the incompressible Navier‐Stokes equations publication-title: International Journal for Numerical Methods in Fluids – year: 1996 – volume: 25 start-page: 97 year: 2003 end-page: 158 – volume: 19 start-page: 275 issue: 2 year: 1982 end-page: 311 article-title: Finite element approximation of the nonstationary Navier‐Stokes problem. Part I: Regularity of solutions and second‐order error estimates for spatial discretization publication-title: SIAM Journal on Numerical Analysis – volume: 15 year: 1991 – volume: 6 start-page: 73 issue: 1–6 year: 1987 end-page: 187 article-title: Numerical methods for the Navier‐Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows publication-title: Computer Physics Reports – year: 2010 – year: 1998 – volume: 25 year: 1997 – volume: 52 start-page: 547 year: 1996 end-page: 566 – volume: 20 start-page: 74 issue: 1 year: 1989 end-page: 97 article-title: Stationary Stokes and Navier‐Stokes systems on two‐ or three‐dimensional domains with corners. Part I: Linearized equations publication-title: SIAM Journal on Mathematical Analysis – volume: 36 start-page: 3 issue: 1 year: 1991 end-page: 28 article-title: An adaptive finite‐element strategy for the three‐dimensional time‐dependent Navier‐Stokes equations publication-title: Journal of Computational and Applied Mathematics – volume: 5 year: 1986 – volume: 9 start-page: 3 year: 2003 end-page: 1776 – volume: 21 start-page: 397 issue: 4 year: 1976 end-page: 431 article-title: A regularity result for the Stokes problem in a convex polygon publication-title: Journal of Functional Analysis – start-page: 123 year: 2004 end-page: 130 – volume: 6 year: 1999 – volume: 31 start-page: 1312 issue: 5 year: 1994 end-page: 1335 article-title: Stability of the fractional step ‐scheme for the nonstationary Navier‐Stokes equations publication-title: SIAM Journal on Numerical Analysis – start-page: 121 volume-title: Finite Element Methods in Flow Problems year: 1974 ident: e_1_2_8_13_1 – volume-title: The Finite Element Method for Elliptic Problems year: 1987 ident: e_1_2_8_11_1 – ident: e_1_2_8_22_1 doi: 10.1016/0167-7977(87)90011-6 – ident: e_1_2_8_20_1 – ident: e_1_2_8_27_1 doi: 10.1016/0022-1236(76)90035-5 – ident: e_1_2_8_17_1 – ident: e_1_2_8_12_1 doi: 10.1007/978-3-642-61623-5 – ident: e_1_2_8_15_1 doi: 10.1007/s10092-001-8180-4 – ident: e_1_2_8_21_1 doi: 10.1137/0719018 – ident: e_1_2_8_24_1 doi: 10.1137/0731068 – ident: e_1_2_8_16_1 doi: 10.1007/978-3-642-18775-9_9 – ident: e_1_2_8_10_1 doi: 10.1007/978-3-662-03359-3 – ident: e_1_2_8_7_1 – start-page: 97 volume-title: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Lecture Notes in Computational Science and Engineering year: 2003 ident: e_1_2_8_6_1 – ident: e_1_2_8_25_1 doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7 – ident: e_1_2_8_2_1 doi: 10.1007/978-3-322-89849-4_39 – ident: e_1_2_8_9_1 doi: 10.1090/chel/343 – ident: e_1_2_8_29_1 doi: 10.1002/fld.679 – ident: e_1_2_8_4_1 doi: 10.1016/0377-0427(91)90224-8 – ident: e_1_2_8_26_1 doi: 10.1007/978-3-642-58393-3 – ident: e_1_2_8_8_1 – ident: e_1_2_8_18_1 – ident: e_1_2_8_23_1 doi: 10.1016/S1570-8659(03)09003-3 – ident: e_1_2_8_3_1 doi: 10.1017/S0962492900002531 – volume-title: A Review of A Posteriori Error Estimation and Adaptive Mesh‐Refinement Techniques year: 1996 ident: e_1_2_8_5_1 – ident: e_1_2_8_19_1 doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y – ident: e_1_2_8_28_1 doi: 10.1137/0520006 – ident: e_1_2_8_14_1 doi: 10.1007/978-1-4612-3172-1 |
SSID | ssj0009283 |
Score | 2.161968 |
Snippet | SUMMARY
The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary... The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1045 |
SubjectTerms | backward Euler scheme Computational methods in fluid dynamics DG method in time dynamically changing meshes Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) incompressible Navier-Stokes equations Physics pressure approximation space-time finite elements |
Title | On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes |
URI | https://api.istex.fr/ark:/67375/WNG-S6GK11D3-5/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2625 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQvMADMC6iY0NGQvCUQuLEaR6ndQVxmzRAIPEQ-Soq0gw17dbu1-8cOy3rBBLiKS_HsXN8nPPZ-vwdQva4Co1iggcqVlkQG5YEKKoeJKHUrSMJKdPVOry45Cc38eldclezKvEujNeHmB644cpw_2tc4EJWh8-iobbQzQjQO_x-kaqFeOjHs3JUFnkFzigNIRCycKI7exQdThrOZKIFdOoImZGiAudYX9ViFrG6lNNZIfeTwXqmyWNzOJBN9ec_Hcf3fc0qWa6RKP3iQ-cDmTPlGlmpUSmt13y1Rpb-kSxcJ4PvJQXMSB1_dtg31ImSj7r-BiTtlrR0iNMdMfbHFMUfep5sKwtDbfHzN626vbpoWEWhjR6XwokWFGP6C9pAP7RCojeMrmeqB1NtkJvOt-uvJ0FduSFQjMF0S8O5k36HDRPgwxbXUQZbMbwGxHAPlXCZpqnRlpsEgoRL00qttTpkuqVtKNgmmYfRmi1ClUgMM5BqOUtjLVQmosymkENjy5VVvEEOJrOYq1rWHKtrFLkXZI5ycG2Orm2Q3anlk5fyeMFm3wXC1ED0H5H6lib57eVxfsWPz8KwzXIw3JmJlGkD2E7GeGEY3uTm-9Wu8s55G58f32q4TRYBrUWerPiJzA_6Q_MZENFA7rjY_wv51gmR |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_x8QB7gI0PjbGBJ03wlJbEidNoT9NY6UYpEgONByQr8YeoSMPUtED31-9sJ2WdmDTxlJe72LHvcr-zzr8D-MCErwRNmSdCkXihopFnSNW9yM9k6yDDkGl7HZ70WOci_HYZXc7Bx_oujOOHmB64Gc-w_2vj4OZAuvnIGqpz2QgQvs_DomnobfOps0fuqCRwHJxB7KMpJH7NPHsQNGvNmVi0aJb1wdRGpiUuj3Z9LWYxqw067VW4qqfrak1uGuNR1hC__mJyfOb3vISVCoyST856XsGcKtZgtQKmpHL7cg1e_MFauA6j04IgbCS2hHY8VMTykj_03SVI0i9IYUGnPWUcTojhfxi4etssV0Tnt_ek7A-qvmElQR05KVLLW5BPyB3q4DikNLXeOLuBKq9VuQEX7S_nnzte1bzBE5TijmeKMcv-jjkTQsQWk0GC2Zi5CURNGhWxLI5jJTVTEdoJy1Qr1lpLn8qW1H5KN2EBZ6teAxFppKjCaMtoHMpUJGmQ6BjDaKiZ0IJtwX69jVxUzOamwUbOHSdzwHFpuVnaLXg_lfzp2DyekNmzljAVSIc3pvotjviP3hH_zo6Off-QchTcmTGVqQJmlKG5M4xvshv-z6F4u3tonm_-V3AXljrnJ13e_do73oZlBG-Bq118Cwuj4Vi9Q4A0ynasI_wGeKMNrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NkCZ4GBsMwWDMSNN4StvEiZM8TnQFBusmGBoSD1biH1pFmqGmZZS_nrOdlhUxCfGUl7vYOZ9z31nn7wA-MuErQTPmiVCkXqho5BlSdS_yc5m0cgyZttfhty47OAu_nkfndVWluQvj-CGmB25mZ9j_tdngV1I370lDdSEbAaL3OVgIWSsxHt0-uaeOSgNHwRnEPnpC6k-IZ1tBc6I5E4oWjFVvTGlkVqF1tGtrMQtZbczpLMPFZLau1OSyMRrmDXH7gMjxeZ_zGl7VUJR8dr7zBl6ocgWWa1hK6k1frcDSP5yFqzD8XhIEjcQW0I4GilhW8pueuwJJeiUpLeS0Z4yDMTHsD31XbZsXiujiz19S9fp117CKoI4cl5llLSjG5Bp1cBxSmUpvnF1fVb9V9RbOOl9-7h14desGT1CK650rxiz3O2ZMCBATJoMUczFzD4iaJCpieRzHSmqmIvQSlqsk1lpLn8pEaj-jazCPs1XrQEQWKaow1jIahzITaRakOsYgGmomtGAbsDtZRS5qXnPTXqPgjpE54Ghabky7ATtTySvH5fGIzCfrCFOBbHBpat_iiP_q7vNTtn_k-23KUXB7xlOmCphPhubGML7Jrvd_h-Kd47Z5vnuq4Ad4-aPd4ceH3aNNWETkFrjCxS2YHw5G6j2io2G-bbfBHW2RDGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+pressure+approximation+in+nonstationary+incompressible+flow+simulations+on+dynamically+varying+spatial+meshes&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Besier%2C+Michael&rft.au=Wollner%2C+Winnifried&rft.date=2012-06-30&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=69&rft.issue=6&rft.spage=1045&rft.epage=1064&rft_id=info:doi/10.1002%2Ffld.2625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_fld_2625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |