On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes

SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 69; no. 6; pp. 1045 - 1064
Main Authors Besier, Michael, Wollner, Winnifried
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.06.2012
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd.
SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary incompressible flows. The observed behavior is due to the fact that discrete solenoidal fields lose this property under changes of the spatial discretization. This phenomenon is analyzed for DG finite element discretizations in time, and possible ways are considered to circumvent this problem. Copyright © 2011 John Wiley & Sons, Ltd.
Author Wollner, Winnifried
Besier, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Besier
  fullname: Besier, Michael
  email: michael.besier@iwr.uni-heidelberg.de, Michael Besier, Department of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 293/294, 69120 Heidelberg, Germany., michael.besier@iwr.uni-heidelberg.de
  organization: Department of Applied Mathematics, University of Heidelberg, Im Neuenheimer Feld 293/294, 69120, Heidelberg, Germany
– sequence: 2
  givenname: Winnifried
  surname: Wollner
  fullname: Wollner, Winnifried
  organization: Department of Mathematics, University of Hamburg, Bundesstr. 55, 20146, Hamburg, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25940239$$DView record in Pascal Francis
BookMark eNp1kE1LAzEQhoNUsK2CPyEXwcvWfHST3aO0topFDyoeQ7qb2Gj2g2Rru__etCsFRU_DzDzvy8w7AL2yKhUA5xiNMELkStt8RBiJj0Afo5RHiDLaA31EOI4ISvEJGHj_jhBKSUL7oHksYbNSsHbK-7VTUNa1q7amkI2pSmhKGPx9s--ka8Mgq4o9bJZWQW2rDfSmWNs94WHQ5G0pC5NJa1v4GTSmfIO-DntpYaH8SvlTcKyl9ersuw7By-zmeXIbLR7nd5PrRZRRSuNoqVh4JE4TlDBKWMJykuJxSjhNaBiRmC055yrXTMXZOGNLlXCtdY5pnuQaSzoEF51vLX24RztZZsaL2oX3XCtInI4RoWngLjsuc5X3TukDgpHYpSpCqmKXakBHv9DMdOk0Thr7lyDqBBtjVfuvsZgtpj954xu1PfDSfQjGKY_F68NcPLH5PcZTKmL6BcSzm58
CODEN IJNFDW
CitedBy_id crossref_primary_10_1093_imanum_drad105
crossref_primary_10_1093_imanum_drab044
crossref_primary_10_1007_s00211_021_01264_x
crossref_primary_10_1016_j_cma_2012_08_006
crossref_primary_10_1093_imanum_drv035
crossref_primary_10_1002_fld_4701
crossref_primary_10_1007_s10444_019_09716_7
crossref_primary_10_1093_imanum_drw019
crossref_primary_10_1002_fld_2735
crossref_primary_10_1515_cmam_2022_0200
crossref_primary_10_1051_m2an_2019072
crossref_primary_10_1007_s10092_018_0259_2
crossref_primary_10_1093_imanum_dry014
crossref_primary_10_1016_j_jcp_2016_11_043
crossref_primary_10_1016_j_jcp_2023_112457
Cites_doi 10.1016/0167-7977(87)90011-6
10.1016/0022-1236(76)90035-5
10.1007/978-3-642-61623-5
10.1007/s10092-001-8180-4
10.1137/0719018
10.1137/0731068
10.1007/978-3-642-18775-9_9
10.1007/978-3-662-03359-3
10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
10.1007/978-3-322-89849-4_39
10.1090/chel/343
10.1002/fld.679
10.1016/0377-0427(91)90224-8
10.1007/978-3-642-58393-3
10.1016/S1570-8659(03)09003-3
10.1017/S0962492900002531
10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
10.1137/0520006
10.1007/978-1-4612-3172-1
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/fld.2625
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1064
ExternalDocumentID 25940239
10_1002_fld_2625
FLD2625
ark_67375_WNG_S6GK11D3_5
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
31~
6TJ
AAMMB
ABEML
ACSCC
AEFGJ
AGHNM
AGXDD
AI.
AIDQK
AIDYY
AMVHM
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
TUS
VH1
VOH
ZY4
~A~
ID FETCH-LOGICAL-c3335-be662559808632686d2914927383086256b777edf6e5c4c6be87fffd13d8df1a3
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Mon Jul 21 09:16:44 EDT 2025
Thu Apr 24 23:13:26 EDT 2025
Tue Jul 01 02:08:35 EDT 2025
Wed Jan 22 16:26:53 EST 2025
Wed Oct 30 09:55:21 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computational fluid dynamics
space-time finite elements
Digital simulation
Unsteady flow
Finite element method
incompressible Navier―Stokes equations
DG method in time
dynamically changing meshes
Modelling
backward Euler scheme
Incompressible fluid
pressure approximation
Mesh generation
Navier-Stokes equations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3335-be662559808632686d2914927383086256b777edf6e5c4c6be87fffd13d8df1a3
Notes ark:/67375/WNG-S6GK11D3-5
ArticleID:FLD2625
istex:469D0C1135C561C4B818D678B4F6D387C1A02502
PageCount 20
ParticipantIDs pascalfrancis_primary_25940239
crossref_primary_10_1002_fld_2625
crossref_citationtrail_10_1002_fld_2625
wiley_primary_10_1002_fld_2625_FLD2625
istex_primary_ark_67375_WNG_S6GK11D3_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 June 2012
PublicationDateYYYYMMDD 2012-06-30
PublicationDate_xml – month: 06
  year: 2012
  text: 30 June 2012
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing: Providence, Rhode Island, 2001.
Thomée V. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Vol. 25. Springer-Verlag: Berlin Heidelberg, 1997.
Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. Journal of Functional Analysis 1976; 21(4): 397-431.
Klouček P, Rys FS. Stability of the fractional step θ-scheme for the nonstationary Navier-Stokes equations. SIAM Journal on Numerical Analysis 1994; 31(5): 1312-1335.
Dauge M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM Journal on Mathematical Analysis 1989; 20(1): 74-97.
Turek S. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach (Lecture Notes in Computational Science and Engineering), Vol. 6. Springer-Verlag: Berlin Heidelberg, 1999.
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Vol. 15. Springer-Verlag: New York Berlin Heidelberg, 1991.
Becker R, Braack M. A modification of the least-squares stabilization for the Stokes equations. Calcolo 2001; 38(4): 173-199.
Heywood JG, Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1996; 22(5): 325-352.
Bristeau MO, Glowinski R, Periaux J. Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows. Computer Physics Reports 1987; 6(1-6): 73-187.
Turek S.A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods in Fluids 1996; 22(10): 987-1011.
Bänsch E. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations. Journal of Computational and Applied Mathematics 1991; 36(1): 3-28.
Girault V, Raviart P-A. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag: Berlin Heidelberg New York Tokyo, 1986.
Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner: New York Stuttgart, 1996.
Ciarlet PG. The Finite Element Method for Elliptic Problems, First edn, North-Holland Publishing Company: Amsterdam New York Oxford, 1987.
Heywood JG, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM Journal on Numerical Analysis 1982; 19(2): 275-311.
John V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids 2004; 44(7): 777-788.
1976; 21
2004; 44
1991; 36
1989; 20
1991; 15
1982; 19
2010
1997; 25
1987; 6
2009
1998
1996; 52
1996
1974
2004
1995; 4
1999; 6
2001
1986; 5
2003; 9
1987
2003; 25
2001; 38
1996; 22
1994; 31
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Ciarlet PG (e_1_2_8_11_1) 1987
e_1_2_8_3_1
Hoffman J (e_1_2_8_6_1) 2003
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
Hood P (e_1_2_8_13_1) 1974
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Verfürth R (e_1_2_8_5_1) 1996
e_1_2_8_10_1
e_1_2_8_12_1
References_xml – reference: Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Vol. 15. Springer-Verlag: New York Berlin Heidelberg, 1991.
– reference: Bristeau MO, Glowinski R, Periaux J. Numerical methods for the Navier-Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows. Computer Physics Reports 1987; 6(1-6): 73-187.
– reference: Dauge M. Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM Journal on Mathematical Analysis 1989; 20(1): 74-97.
– reference: Heywood JG, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM Journal on Numerical Analysis 1982; 19(2): 275-311.
– reference: John V. Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder. International Journal for Numerical Methods in Fluids 2004; 44(7): 777-788.
– reference: Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner: New York Stuttgart, 1996.
– reference: Klouček P, Rys FS. Stability of the fractional step θ-scheme for the nonstationary Navier-Stokes equations. SIAM Journal on Numerical Analysis 1994; 31(5): 1312-1335.
– reference: Temam R. Navier-Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing: Providence, Rhode Island, 2001.
– reference: Thomée V. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, Vol. 25. Springer-Verlag: Berlin Heidelberg, 1997.
– reference: Bänsch E. An adaptive finite-element strategy for the three-dimensional time-dependent Navier-Stokes equations. Journal of Computational and Applied Mathematics 1991; 36(1): 3-28.
– reference: Girault V, Raviart P-A. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag: Berlin Heidelberg New York Tokyo, 1986.
– reference: Ciarlet PG. The Finite Element Method for Elliptic Problems, First edn, North-Holland Publishing Company: Amsterdam New York Oxford, 1987.
– reference: Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. Journal of Functional Analysis 1976; 21(4): 397-431.
– reference: Becker R, Braack M. A modification of the least-squares stabilization for the Stokes equations. Calcolo 2001; 38(4): 173-199.
– reference: Heywood JG, Rannacher R, Turek S. Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids 1996; 22(5): 325-352.
– reference: Turek S. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach (Lecture Notes in Computational Science and Engineering), Vol. 6. Springer-Verlag: Berlin Heidelberg, 1999.
– reference: Turek S.A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods in Fluids 1996; 22(10): 987-1011.
– start-page: 121
  year: 1974
  end-page: 132
– year: 2009
– volume: 44
  start-page: 777
  issue: 7
  year: 2004
  end-page: 788
  article-title: Reference values for drag and lift of a two‐dimensional time‐dependent flow around a cylinder
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 38
  start-page: 173
  issue: 4
  year: 2001
  end-page: 199
  article-title: A modification of the least‐squares stabilization for the Stokes equations
  publication-title: Calcolo
– volume: 22
  start-page: 987
  issue: 10
  year: 1996
  end-page: 1011
  article-title: A comparative study of time‐stepping techniques for the incompressible Navier–Stokes equations: From fully implicit non‐linear schemes to semi‐implicit projection methods
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 4
  start-page: 105
  year: 1995
  end-page: 158
– year: 2001
– year: 1987
– volume: 22
  start-page: 325
  issue: 5
  year: 1996
  end-page: 352
  article-title: Artificial boundaries and flux and pressure conditions for the incompressible Navier‐Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1996
– volume: 25
  start-page: 97
  year: 2003
  end-page: 158
– volume: 19
  start-page: 275
  issue: 2
  year: 1982
  end-page: 311
  article-title: Finite element approximation of the nonstationary Navier‐Stokes problem. Part I: Regularity of solutions and second‐order error estimates for spatial discretization
  publication-title: SIAM Journal on Numerical Analysis
– volume: 15
  year: 1991
– volume: 6
  start-page: 73
  issue: 1–6
  year: 1987
  end-page: 187
  article-title: Numerical methods for the Navier‐Stokes equations. Applications to the simulation of compressible and incomp ressible viscous flows
  publication-title: Computer Physics Reports
– year: 2010
– year: 1998
– volume: 25
  year: 1997
– volume: 52
  start-page: 547
  year: 1996
  end-page: 566
– volume: 20
  start-page: 74
  issue: 1
  year: 1989
  end-page: 97
  article-title: Stationary Stokes and Navier‐Stokes systems on two‐ or three‐dimensional domains with corners. Part I: Linearized equations
  publication-title: SIAM Journal on Mathematical Analysis
– volume: 36
  start-page: 3
  issue: 1
  year: 1991
  end-page: 28
  article-title: An adaptive finite‐element strategy for the three‐dimensional time‐dependent Navier‐Stokes equations
  publication-title: Journal of Computational and Applied Mathematics
– volume: 5
  year: 1986
– volume: 9
  start-page: 3
  year: 2003
  end-page: 1776
– volume: 21
  start-page: 397
  issue: 4
  year: 1976
  end-page: 431
  article-title: A regularity result for the Stokes problem in a convex polygon
  publication-title: Journal of Functional Analysis
– start-page: 123
  year: 2004
  end-page: 130
– volume: 6
  year: 1999
– volume: 31
  start-page: 1312
  issue: 5
  year: 1994
  end-page: 1335
  article-title: Stability of the fractional step ‐scheme for the nonstationary Navier‐Stokes equations
  publication-title: SIAM Journal on Numerical Analysis
– start-page: 121
  volume-title: Finite Element Methods in Flow Problems
  year: 1974
  ident: e_1_2_8_13_1
– volume-title: The Finite Element Method for Elliptic Problems
  year: 1987
  ident: e_1_2_8_11_1
– ident: e_1_2_8_22_1
  doi: 10.1016/0167-7977(87)90011-6
– ident: e_1_2_8_20_1
– ident: e_1_2_8_27_1
  doi: 10.1016/0022-1236(76)90035-5
– ident: e_1_2_8_17_1
– ident: e_1_2_8_12_1
  doi: 10.1007/978-3-642-61623-5
– ident: e_1_2_8_15_1
  doi: 10.1007/s10092-001-8180-4
– ident: e_1_2_8_21_1
  doi: 10.1137/0719018
– ident: e_1_2_8_24_1
  doi: 10.1137/0731068
– ident: e_1_2_8_16_1
  doi: 10.1007/978-3-642-18775-9_9
– ident: e_1_2_8_10_1
  doi: 10.1007/978-3-662-03359-3
– ident: e_1_2_8_7_1
– start-page: 97
  volume-title: Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics, Lecture Notes in Computational Science and Engineering
  year: 2003
  ident: e_1_2_8_6_1
– ident: e_1_2_8_25_1
  doi: 10.1002/(SICI)1097-0363(19960530)22:10<987::AID-FLD394>3.0.CO;2-7
– ident: e_1_2_8_2_1
  doi: 10.1007/978-3-322-89849-4_39
– ident: e_1_2_8_9_1
  doi: 10.1090/chel/343
– ident: e_1_2_8_29_1
  doi: 10.1002/fld.679
– ident: e_1_2_8_4_1
  doi: 10.1016/0377-0427(91)90224-8
– ident: e_1_2_8_26_1
  doi: 10.1007/978-3-642-58393-3
– ident: e_1_2_8_8_1
– ident: e_1_2_8_18_1
– ident: e_1_2_8_23_1
  doi: 10.1016/S1570-8659(03)09003-3
– ident: e_1_2_8_3_1
  doi: 10.1017/S0962492900002531
– volume-title: A Review of A Posteriori Error Estimation and Adaptive Mesh‐Refinement Techniques
  year: 1996
  ident: e_1_2_8_5_1
– ident: e_1_2_8_19_1
  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
– ident: e_1_2_8_28_1
  doi: 10.1137/0520006
– ident: e_1_2_8_14_1
  doi: 10.1007/978-1-4612-3172-1
SSID ssj0009283
Score 2.161968
Snippet SUMMARY The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary...
The subject of this paper is a defect in the approximation of the pressure on dynamically changing spatial meshes in the computation of nonstationary...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1045
SubjectTerms backward Euler scheme
Computational methods in fluid dynamics
DG method in time
dynamically changing meshes
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
incompressible Navier-Stokes equations
Physics
pressure approximation
space-time finite elements
Title On the pressure approximation in nonstationary incompressible flow simulations on dynamically varying spatial meshes
URI https://api.istex.fr/ark:/67375/WNG-S6GK11D3-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2625
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLYQvMADMC6iY0NGQvCUQuLEaR6ndQVxmzRAIPEQ-Soq0gw17dbu1-8cOy3rBBLiKS_HsXN8nPPZ-vwdQva4Co1iggcqVlkQG5YEKKoeJKHUrSMJKdPVOry45Cc38eldclezKvEujNeHmB644cpw_2tc4EJWh8-iobbQzQjQO_x-kaqFeOjHs3JUFnkFzigNIRCycKI7exQdThrOZKIFdOoImZGiAudYX9ViFrG6lNNZIfeTwXqmyWNzOJBN9ec_Hcf3fc0qWa6RKP3iQ-cDmTPlGlmpUSmt13y1Rpb-kSxcJ4PvJQXMSB1_dtg31ImSj7r-BiTtlrR0iNMdMfbHFMUfep5sKwtDbfHzN626vbpoWEWhjR6XwokWFGP6C9pAP7RCojeMrmeqB1NtkJvOt-uvJ0FduSFQjMF0S8O5k36HDRPgwxbXUQZbMbwGxHAPlXCZpqnRlpsEgoRL00qttTpkuqVtKNgmmYfRmi1ClUgMM5BqOUtjLVQmosymkENjy5VVvEEOJrOYq1rWHKtrFLkXZI5ycG2Orm2Q3anlk5fyeMFm3wXC1ED0H5H6lib57eVxfsWPz8KwzXIw3JmJlGkD2E7GeGEY3uTm-9Wu8s55G58f32q4TRYBrUWerPiJzA_6Q_MZENFA7rjY_wv51gmR
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED_x8QB7gI0PjbGBJ03wlJbEidNoT9NY6UYpEgONByQr8YeoSMPUtED31-9sJ2WdmDTxlJe72LHvcr-zzr8D-MCErwRNmSdCkXihopFnSNW9yM9k6yDDkGl7HZ70WOci_HYZXc7Bx_oujOOHmB64Gc-w_2vj4OZAuvnIGqpz2QgQvs_DomnobfOps0fuqCRwHJxB7KMpJH7NPHsQNGvNmVi0aJb1wdRGpiUuj3Z9LWYxqw067VW4qqfrak1uGuNR1hC__mJyfOb3vISVCoyST856XsGcKtZgtQKmpHL7cg1e_MFauA6j04IgbCS2hHY8VMTykj_03SVI0i9IYUGnPWUcTojhfxi4etssV0Tnt_ek7A-qvmElQR05KVLLW5BPyB3q4DikNLXeOLuBKq9VuQEX7S_nnzte1bzBE5TijmeKMcv-jjkTQsQWk0GC2Zi5CURNGhWxLI5jJTVTEdoJy1Qr1lpLn8qW1H5KN2EBZ6teAxFppKjCaMtoHMpUJGmQ6BjDaKiZ0IJtwX69jVxUzOamwUbOHSdzwHFpuVnaLXg_lfzp2DyekNmzljAVSIc3pvotjviP3hH_zo6Off-QchTcmTGVqQJmlKG5M4xvshv-z6F4u3tonm_-V3AXljrnJ13e_do73oZlBG-Bq118Cwuj4Vi9Q4A0ynasI_wGeKMNrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NkCZ4GBsMwWDMSNN4StvEiZM8TnQFBusmGBoSD1biH1pFmqGmZZS_nrOdlhUxCfGUl7vYOZ9z31nn7wA-MuErQTPmiVCkXqho5BlSdS_yc5m0cgyZttfhty47OAu_nkfndVWluQvj-CGmB25mZ9j_tdngV1I370lDdSEbAaL3OVgIWSsxHt0-uaeOSgNHwRnEPnpC6k-IZ1tBc6I5E4oWjFVvTGlkVqF1tGtrMQtZbczpLMPFZLau1OSyMRrmDXH7gMjxeZ_zGl7VUJR8dr7zBl6ocgWWa1hK6k1frcDSP5yFqzD8XhIEjcQW0I4GilhW8pueuwJJeiUpLeS0Z4yDMTHsD31XbZsXiujiz19S9fp117CKoI4cl5llLSjG5Bp1cBxSmUpvnF1fVb9V9RbOOl9-7h14desGT1CK650rxiz3O2ZMCBATJoMUczFzD4iaJCpieRzHSmqmIvQSlqsk1lpLn8pEaj-jazCPs1XrQEQWKaow1jIahzITaRakOsYgGmomtGAbsDtZRS5qXnPTXqPgjpE54Ghabky7ATtTySvH5fGIzCfrCFOBbHBpat_iiP_q7vNTtn_k-23KUXB7xlOmCphPhubGML7Jrvd_h-Kd47Z5vnuq4Ad4-aPd4ceH3aNNWETkFrjCxS2YHw5G6j2io2G-bbfBHW2RDGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+pressure+approximation+in+nonstationary+incompressible+flow+simulations+on+dynamically+varying+spatial+meshes&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Besier%2C+Michael&rft.au=Wollner%2C+Winnifried&rft.date=2012-06-30&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=69&rft.issue=6&rft.spage=1045&rft.epage=1064&rft_id=info:doi/10.1002%2Ffld.2625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_fld_2625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon