Using artificial intelligence to identify emergency messages on social media during a natural disaster: A deep learning approach

•Curates a geographical-based dataset of tweets sent during Hurricane Harvey.•Presents a labeling scheme for relevance and urgency of tweets during a disaster.•Uses artificial intelligence and deep learning to identify calls for help on Twitter.•Develops machine-learning classifiers for signaling fi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of information management data insights Vol. 3; no. 1; p. 100164
Main Authors Powers, Courtney J., Devaraj, Ashwin, Ashqeen, Kaab, Dontula, Aman, Joshi, Amit, Shenoy, Jayanth, Murthy, Dhiraj
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Curates a geographical-based dataset of tweets sent during Hurricane Harvey.•Presents a labeling scheme for relevance and urgency of tweets during a disaster.•Uses artificial intelligence and deep learning to identify calls for help on Twitter.•Develops machine-learning classifiers for signaling first responders of urgent tweets.•Shows effectiveness of using pre-trained language models such as BERT and XLNet. During natural disasters, emergency communication systems become overloaded, and people are forced to turn to social media to make requests for help. This study employs machine learning and artificial intelligence to automatically detect, identify, and categorize tweets relevant to first responders during Hurricane Harvey. We curate a dataset of tweets, present a labeling scheme based on relevance and urgency, and develop neural and non-neural machine learning models to automatically categorize tweets. Our best relevance classifiers, language models BERT and XLNet, perform significantly better than non-neural models and the deep convolutional neural network (CNN) and achieve comparable F1 scores. Ultimately, this study furthers machine learning and crisis communication research by developing methods to automatically categorize tweets that can signal to first responders of individuals’ requests for help in urgent, life-threatening disasters. Our work also finds large pretrained language models promising for the development of well-performing disaster tweet classifiers in future work.
AbstractList •Curates a geographical-based dataset of tweets sent during Hurricane Harvey.•Presents a labeling scheme for relevance and urgency of tweets during a disaster.•Uses artificial intelligence and deep learning to identify calls for help on Twitter.•Develops machine-learning classifiers for signaling first responders of urgent tweets.•Shows effectiveness of using pre-trained language models such as BERT and XLNet. During natural disasters, emergency communication systems become overloaded, and people are forced to turn to social media to make requests for help. This study employs machine learning and artificial intelligence to automatically detect, identify, and categorize tweets relevant to first responders during Hurricane Harvey. We curate a dataset of tweets, present a labeling scheme based on relevance and urgency, and develop neural and non-neural machine learning models to automatically categorize tweets. Our best relevance classifiers, language models BERT and XLNet, perform significantly better than non-neural models and the deep convolutional neural network (CNN) and achieve comparable F1 scores. Ultimately, this study furthers machine learning and crisis communication research by developing methods to automatically categorize tweets that can signal to first responders of individuals’ requests for help in urgent, life-threatening disasters. Our work also finds large pretrained language models promising for the development of well-performing disaster tweet classifiers in future work.
During natural disasters, emergency communication systems become overloaded, and people are forced to turn to social media to make requests for help. This study employs machine learning and artificial intelligence to automatically detect, identify, and categorize tweets relevant to first responders during Hurricane Harvey. We curate a dataset of tweets, present a labeling scheme based on relevance and urgency, and develop neural and non-neural machine learning models to automatically categorize tweets. Our best relevance classifiers, language models BERT and XLNet, perform significantly better than non-neural models and the deep convolutional neural network (CNN) and achieve comparable F1 scores. Ultimately, this study furthers machine learning and crisis communication research by developing methods to automatically categorize tweets that can signal to first responders of individuals’ requests for help in urgent, life-threatening disasters. Our work also finds large pretrained language models promising for the development of well-performing disaster tweet classifiers in future work.
ArticleNumber 100164
Author Shenoy, Jayanth
Devaraj, Ashwin
Murthy, Dhiraj
Powers, Courtney J.
Ashqeen, Kaab
Joshi, Amit
Dontula, Aman
Author_xml – sequence: 1
  givenname: Courtney J.
  orcidid: 0000-0002-2657-2432
  surname: Powers
  fullname: Powers, Courtney J.
  email: powersc@uww.edu
  organization: Department of Communication, College of Arts, and Communication, The University of Wisconsin-Whitewater, 180 North Prairie Street, Whitewater, WI 53190, United States
– sequence: 2
  givenname: Ashwin
  surname: Devaraj
  fullname: Devaraj, Ashwin
  organization: Department of Computer Science, The University of Texas at Austin, United States
– sequence: 3
  givenname: Kaab
  surname: Ashqeen
  fullname: Ashqeen, Kaab
  organization: Department of Mathematics, The University of Texas at Austin, United States
– sequence: 4
  givenname: Aman
  surname: Dontula
  fullname: Dontula, Aman
  organization: Department of Computer Science, The University of Texas at Austin, United States
– sequence: 5
  givenname: Amit
  surname: Joshi
  fullname: Joshi, Amit
  organization: Department of Computer Science, The University of Texas at Austin, United States
– sequence: 6
  givenname: Jayanth
  surname: Shenoy
  fullname: Shenoy, Jayanth
  organization: Department of Electrical and Computer Engineering, The University of Texas at Austin, United States
– sequence: 7
  givenname: Dhiraj
  surname: Murthy
  fullname: Murthy, Dhiraj
  organization: School of Journalism and Media, The University of Texas at Austin, United States
BookMark eNqFkV1rHCEUhqWk0DTNP-iFf2C3fq2juSiE0I9AIDfJtbh6ZnuGGV3UFPauP70zOy2UXrRXyqPvi57nLblIOQEh7znbcsb1h2E7DDgBbgUTckYzU6_IpdC62zCrzcUf-zfkutaBMSYM50LzS_LjuWI6UF8a9hjQjxRTg3HEA6QAtGWKEdJ8eKIwQVnoiU5Qqz9ApTnRms-pCSJ6Gl_KuY0m317KjCNWXxuUG3pLI8CRjuBLOt85Hkv24ds78rr3Y4XrX-sVef786enu6-bh8cv93e3DJkgp1Uaqvdkza9XOmF7YLtid2HEBSnbWRKa90RKk9BY6HoPt1T5I2wvTx14L0UV5Re7X3pj94I4FJ19OLnt0Z5DLwS1DCCM4JhRjsLMgI1fMciONDspLvueB607NXTdrVyi51gK9C9h8w5xa8Tg6ztyixg1uVeMWNW5VM4fVX-Hfj_lP7OMag3lI3xGKqwEXRxELhDb_Av9d8BNCjKxk
CitedBy_id crossref_primary_10_1007_s11069_025_07120_7
crossref_primary_10_1080_20964471_2025_2454526
crossref_primary_10_1051_itmconf_20246503016
crossref_primary_10_32953_abad_1539736
crossref_primary_10_1007_s41976_024_00139_7
crossref_primary_10_3233_JIFS_241271
crossref_primary_10_7717_peerj_cs_1859
crossref_primary_10_3389_fenvs_2023_1194918
crossref_primary_10_1016_j_ijdrr_2024_105092
crossref_primary_10_1016_j_heliyon_2024_e36862
crossref_primary_10_1016_j_jjimei_2024_100227
crossref_primary_10_1007_s10661_024_12745_5
crossref_primary_10_1080_15228835_2025_2470150
Cites_doi 10.1016/S0033-3549(04)50146-2
10.1175/JCLI-D-15-0129.1
10.1016/j.jjimei.2022.100120
10.1177/2050157919846522
10.1080/1369118X.2012.696123
10.1080/17538947.2018.1545878
10.1016/j.jjimei.2021.100033
10.1016/j.im.2020.103286
10.1080/01463373.2015.1012219
10.1080/01639260903280888
10.1006/jcss.1997.1504
10.1287/deca.2017.0355
10.1016/j.ijinfomgt.2017.08.003
10.1016/j.jjimei.2022.100063
10.1016/j.jjimei.2021.100019
10.1016/j.jjimei.2021.100008
10.1613/jair.953
10.1371/journal.pone.0150190
10.1007/BF00994018
10.3115/v1/W14-2509
10.2328/jnds.34.3
10.1016/j.jjimei.2022.100095
10.1016/j.pdisas.2019.100030
10.18653/v1/2020.acl-main.703
10.1016/j.jjimei.2023.100154
10.1016/j.ijdrr.2020.101757
10.1111/isj.12114
10.3115/v1/D14-1181
10.1109/72.159058
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jjimei.2023.100164
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2667-0968
ExternalDocumentID oai_doaj_org_article_02400e59e3d140918386c4a31b1c1674
10_1016_j_jjimei_2023_100164
S2667096823000113
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3334-34b8b0994588f297c952512e43798d06a863e33a9e71dc9f4bc39f28fdf6227d3
IEDL.DBID DOA
ISSN 2667-0968
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Apr 24 22:54:20 EDT 2025
Tue Jul 01 01:06:13 EDT 2025
Fri Feb 23 02:37:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computational methods
Supervised learning
Machine learning
Twitter
Disaster
Artificial intelligence
Crisis communication
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3334-34b8b0994588f297c952512e43798d06a863e33a9e71dc9f4bc39f28fdf6227d3
ORCID 0000-0002-2657-2432
OpenAccessLink https://doaj.org/article/02400e59e3d140918386c4a31b1c1674
ParticipantIDs doaj_primary_oai_doaj_org_article_02400e59e3d140918386c4a31b1c1674
crossref_citationtrail_10_1016_j_jjimei_2023_100164
crossref_primary_10_1016_j_jjimei_2023_100164
elsevier_sciencedirect_doi_10_1016_j_jjimei_2023_100164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle International journal of information management data insights
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References 1-4.
Rachunok, B., Fan, C., Lee, R., Nateghi, R., & Mostafavi, N. (2022). Is the data suitable? The comparison of keyword versus location filters in crisis informatics using Twitter data. International Journal of Information Management Data Insights, 2.
(Vol. 39, pp. 195–198).
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal (bib0008) 2020; 33
Yang, Nguyen, Stuve, Cao, Jin (bib0089) 2017
Murthy, D., & Longwell, S. (2013). Twitter and disasters: The uses of Twitter during the 2010 Pakistan floods. Information Communication & Society, 16(6), 837–855.
Little, Chilton, Goldman, Miller (bib0045) 2009
Paul, A. (2015). Identifying relevant information for emergency services from twitter in response to natural disaster. Retrieved from
Bengio, Ducharme, Vincent, Jauvin (bib0005) 2003; 3
Robertson, Johnson, Murthy, Smith, Stephens (bib0079) 2019; 2
Imran, M., Castillo, C., Lucas, J., Meier, P., & Rogstadius, J. (2014, May). Coordinating human and machine intelligence to classify microblog communications in crises. In ISCRAM.
Pal, S.K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, classification.
Kumar, Kar, Ilavarasan (bib0038) 2021; 1
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Lempitsky (bib92) 2016; 17
Imran, M., Mitra, P., & Castillo, C. (2016). Twitter as a lifeline: Human-annotated twitter corpora for NLP of crisis-related messages.
Burel, Alani (bib0009) 2018
Peary, Shaw, Takeuchi (bib0067) 2012; 34
Kim, Hastak (bib0035) 2018; 38
Berardelli, J. (2019). How climate change is making hurricanes more dangerous. Yale Climate Connections.
Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
Retrieved from
Carter, L. (2018, July 31). Timeline: Hurricane Harvey brings catastrophic rain, flooding to Gulf Coast. Retrieved from
He, Bai, Garcia, Li (bib0028) 2008
.
Pew Research Center (2018, March 1).
Stephens, Li, Robertson, Smith, Murthy (bib0084) 2018
Tikhonov, A.N. (1943). On the stability of inverse problems. In
Li, H., Guevara, N., Herndon, N., Caragea, D., Neppalli, K., Caragea, C. et al. (2015, May). Twitter mining for disaster response: A domain adaptation approach. In ISCRAM.
Mammothb. (2018, August 13). SymSpell (Version 6.3) [Computer software].
NLTK. (2014). Accessing text corpora and lexical resources. Retrieved from
NOAA. (2018, January 26). Costliest U.S. tropical cyclones tables updated. Retrieved from
Zou, Lam, Shams, Cai, Meyer, Yang (bib0090) 2019; 12
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Stephens, Robertson, Murthy (bib0083) 2019; 8
Rathore, Kar, Ilavarasan (bib0075) 2017; 14
Tim, Pan, Ractham, Kaewkitipong (bib0086) 2017; 27
Garbe, W. (2014, March 25). SymSpell (Version 6.3) [Computer software]. Retrieved April 15, 2019, from
Accessed January 29, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu
Phillips, M.E. (2017). Hurricane Harvey Twitter dataset, dataset, 2017-08-18/2017-09-22
(Thesis, Georgetown University).
Ovadia (bib0061) 2009; 28
David, Ong, Legara (bib0012) 2016; 11
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (bib0068) 2011; 12
Spence, Lachlan, Lin, del Greco (bib0082) 2015; 63
Pennington, Socher, Manning (bib0069) 2014
Guo, Liu, Wu, Zhang (bib0025) 2021; 58
Smith, Stephens, Robertson, Li, Murthy (bib0081) 2018
Wadud, Kabir, Mridha, Ali, Hamid, Monowar (bib0087) 2022; 2
Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., & Meier, P. (2013, May). Extracting information nuggets from disaster-Related messages in social media. In
Glass (bib0023) 2001; 116
Palen, Hughes (bib0064) 2010
Wu, M. (2017, February 20). Preprocess-twitter.py [Computer software].
Murthy (bib0050) 2018
Freund, Schapire (bib0020) 1997; 55
Ashktorab, Z., Brown, C., Nandi, M., & Culotta, A. (2014, May). Tweedr: Mining Twitter to inform disaster response. In ISCRAM. (pp. 269–272).
O'Neal, Rodgers, Segler, Murthy, Lakuduva, Johnson (bib0060) 2018
Gallagher (bib0021)
Devaraj, Murthy, Dontula (bib0018) 2020; 51
Jorgensen (bib0033) 2017
Appling, Briscoe, Ediger, Poovey, McColl (bib0003) 2014
Glorot, Bordes, Bengio (bib0024) 2011
Kumar, Singh, Dwivedi, Rana (bib0039) 2020
Rish (bib0078) 2001; 3
Ahn, Son, Chung (bib0002) 2021; 1
Cortes, Vapnik (bib0017) 1995; 20
Kim, Y. (2014). Convolutional neural networks for sentence classification.
Han, Wang, Mao (bib0027) 2005
Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Darrell (bib93) 2018
Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: Extreme gradient boosting.
Nguyen, Cooper, Kamei (bib0055) 2009
Lindsay, B.R. (2011). Social media and disasters: Current uses, future options, and policy considerations. CRS Report for Congress.
Prasad, Udeme, Misra, Bisallah (bib0072) 2023; 3
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Polosukhin (bib91) 2017
Knutson, Sirutis, Zhao, Tuleya, Bender, Vecchi (bib0037) 2015; 28
Morales, X.Y.Z.G. (2010).
Nguyen, D.T., Joty, S., Imran, M., Sajjad, H., & Mitra, P. (2016). Applications of online deep learning for crisis response using social media information.
Ives, M., & Yoon, J. (2022, September 29). Ian strains emergency services in Southwest Florida. New York Times. Retrieved October 12, 2022, from
Chawla, Bowyer, Hall, Kegelmeyer (bib0016) 2002; 16
Neogi, Garg, Mishra, Dwivedi (bib0053) 2021; 1
Derczynski, L., Meesters, K., Bontcheva, K., & Maynard, D. (2018). Helping crisis responders find the informative needle in the tweet haystack. ArXiv preprint
Akter, Wamba (bib0001) 2017; 283
Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O. et al. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.
Khanday, Rabani, Khan, Malik (bib0034) 2022; 2
Rhodan (bib0077) 2017
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D. et al. (2019). Roberta: A robustly optimized bert pretraining approach.
Olteanu, Castillo, Diaz, Vieweg (bib0059) 2014
Blake, Zelinsky (bib0007)
Morstatter, F., Lubold, N., Pon-Barry, H., Pfeffer, J., & Liu, H. (2014). Finding eyewitness tweets during crises. arXiv preprint
10.1016/j.jjimei.2023.100164_bib0010
10.1016/j.jjimei.2023.100164_bib0054
10.1016/j.jjimei.2023.100164_bib0052
10.1016/j.jjimei.2023.100164_bib0015
10.1016/j.jjimei.2023.100164_bib0058
10.1016/j.jjimei.2023.100164_bib0013
O'Neal (10.1016/j.jjimei.2023.100164_bib0060) 2018
10.1016/j.jjimei.2023.100164_bib0057
10.1016/j.jjimei.2023.100164_bib0019
Freund (10.1016/j.jjimei.2023.100164_bib0020) 1997; 55
Kim (10.1016/j.jjimei.2023.100164_bib0035) 2018; 38
Devaraj (10.1016/j.jjimei.2023.100164_bib0018) 2020; 51
Rathore (10.1016/j.jjimei.2023.100164_bib0075) 2017; 14
Vaswani (10.1016/j.jjimei.2023.100164_bib91) 2017
Nguyen (10.1016/j.jjimei.2023.100164_bib0055) 2009
Appling (10.1016/j.jjimei.2023.100164_bib0003) 2014
Kumar (10.1016/j.jjimei.2023.100164_bib0038) 2021; 1
Stephens (10.1016/j.jjimei.2023.100164_bib0083) 2019; 8
Ovadia (10.1016/j.jjimei.2023.100164_bib0061) 2009; 28
Glass (10.1016/j.jjimei.2023.100164_bib0023) 2001; 116
Pennington (10.1016/j.jjimei.2023.100164_bib0069) 2014
Blake (10.1016/j.jjimei.2023.100164_bib0007)
10.1016/j.jjimei.2023.100164_bib0022
10.1016/j.jjimei.2023.100164_bib0066
Bengio (10.1016/j.jjimei.2023.100164_bib0005) 2003; 3
10.1016/j.jjimei.2023.100164_bib0063
Guo (10.1016/j.jjimei.2023.100164_bib0025) 2021; 58
10.1016/j.jjimei.2023.100164_bib0029
Murthy (10.1016/j.jjimei.2023.100164_bib0050) 2018
Zou (10.1016/j.jjimei.2023.100164_bib0090) 2019; 12
Akter (10.1016/j.jjimei.2023.100164_bib0001) 2017; 283
Spence (10.1016/j.jjimei.2023.100164_bib0082) 2015; 63
10.1016/j.jjimei.2023.100164_bib0073
Brown (10.1016/j.jjimei.2023.100164_bib0008) 2020; 33
Tim (10.1016/j.jjimei.2023.100164_bib0086) 2017; 27
10.1016/j.jjimei.2023.100164_bib0071
10.1016/j.jjimei.2023.100164_bib0070
Ahn (10.1016/j.jjimei.2023.100164_bib0002) 2021; 1
10.1016/j.jjimei.2023.100164_bib0032
10.1016/j.jjimei.2023.100164_bib0031
10.1016/j.jjimei.2023.100164_bib0030
10.1016/j.jjimei.2023.100164_bib0074
Rhodan (10.1016/j.jjimei.2023.100164_bib0077) 2017
10.1016/j.jjimei.2023.100164_bib0036
Knutson (10.1016/j.jjimei.2023.100164_bib0037) 2015; 28
Stephens (10.1016/j.jjimei.2023.100164_bib0084) 2018
Neogi (10.1016/j.jjimei.2023.100164_bib0053) 2021; 1
He (10.1016/j.jjimei.2023.100164_bib0028) 2008
David (10.1016/j.jjimei.2023.100164_bib0012) 2016; 11
Robertson (10.1016/j.jjimei.2023.100164_bib0079) 2019; 2
Pedregosa (10.1016/j.jjimei.2023.100164_bib0068) 2011; 12
Hoffman (10.1016/j.jjimei.2023.100164_bib93) 2018
Cortes (10.1016/j.jjimei.2023.100164_bib0017) 1995; 20
Rish (10.1016/j.jjimei.2023.100164_bib0078) 2001; 3
Jorgensen (10.1016/j.jjimei.2023.100164_bib0033) 2017
10.1016/j.jjimei.2023.100164_bib0044
10.1016/j.jjimei.2023.100164_bib0088
Ganin (10.1016/j.jjimei.2023.100164_bib92) 2016; 17
10.1016/j.jjimei.2023.100164_bib0043
10.1016/j.jjimei.2023.100164_bib0042
Olteanu (10.1016/j.jjimei.2023.100164_bib0059) 2014
Smith (10.1016/j.jjimei.2023.100164_bib0081) 2018
10.1016/j.jjimei.2023.100164_bib0041
10.1016/j.jjimei.2023.100164_bib0085
10.1016/j.jjimei.2023.100164_bib0004
10.1016/j.jjimei.2023.100164_bib0048
10.1016/j.jjimei.2023.100164_bib0047
Prasad (10.1016/j.jjimei.2023.100164_bib0072) 2023; 3
10.1016/j.jjimei.2023.100164_bib0046
Palen (10.1016/j.jjimei.2023.100164_bib0064) 2010
Peary (10.1016/j.jjimei.2023.100164_bib0067) 2012; 34
10.1016/j.jjimei.2023.100164_bib0006
Yang (10.1016/j.jjimei.2023.100164_bib0089) 2017
Chawla (10.1016/j.jjimei.2023.100164_bib0016) 2002; 16
Gallagher (10.1016/j.jjimei.2023.100164_bib0021)
Little (10.1016/j.jjimei.2023.100164_bib0045) 2009
Glorot (10.1016/j.jjimei.2023.100164_bib0024) 2011
Khanday (10.1016/j.jjimei.2023.100164_bib0034) 2022; 2
Wadud (10.1016/j.jjimei.2023.100164_bib0087) 2022; 2
Burel (10.1016/j.jjimei.2023.100164_bib0009) 2018
Han (10.1016/j.jjimei.2023.100164_bib0027) 2005
Kumar (10.1016/j.jjimei.2023.100164_bib0039) 2020
References_xml – reference: Morstatter, F., Lubold, N., Pon-Barry, H., Pfeffer, J., & Liu, H. (2014). Finding eyewitness tweets during crises. arXiv preprint
– volume: 1
  start-page: 100008
  year: 2021
  ident: bib0038
  article-title: Applications of text mining in services management: A systematic literature review
  publication-title: International Journal of Information Management Data Insights
– start-page: 1989
  year: 2018
  end-page: 1998
  ident: bib93
  article-title: Cycada: Cycle-consistent adversarial domain adaptation
– reference: Li, H., Guevara, N., Herndon, N., Caragea, D., Neppalli, K., Caragea, C. et al. (2015, May). Twitter mining for disaster response: A domain adaptation approach. In ISCRAM.
– reference: Chen, T., He, T., Benesty, M., Khotilovich, V., & Tang, Y. (2015). Xgboost: Extreme gradient boosting.
– start-page: 1322
  year: 2008
  end-page: 1328
  ident: bib0028
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: Proceedings of the IEEE international joint conference on neural networks
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0017
  article-title: Support-vector networks
  publication-title: Machine Learning
– volume: 58
  start-page: 103286
  year: 2021
  ident: bib0025
  article-title: Why do citizens participate on government social media accounts during crises? A civic voluntarism perspective
  publication-title: Information & Management
– reference: Murthy, D., & Longwell, S. (2013). Twitter and disasters: The uses of Twitter during the 2010 Pakistan floods. Information Communication & Society, 16(6), 837–855.
– start-page: 16
  year: 2014
  end-page: 22
  ident: bib0003
  article-title: Deriving disaster-related information from social media
  publication-title: 1st KDD Workshop on Learning about Emergencies from Social Information
– ident: bib0007
  article-title: National hurricane center tropical cyclone report: Hurricane Harvey
– year: 2018
  ident: bib0084
  article-title: Citizens communicating health information: Urging others in their community to seek help during a flood
  publication-title: Proceedings of the 15th international ISCRAM conference
– start-page: 2177
  year: 2017
  end-page: 2185
  ident: bib0089
  article-title: Harvey flooding rescue in social media
  publication-title: Proceedings of the IEEE international conference on big data (Big Data)
– start-page: 751
  year: 2018
  end-page: 756
  ident: bib0060
  article-title: Training an Emergency-Response Image Classifier on Signal Data
  publication-title: Proceedings of the 17th IEEE international conference on machine learning and applications (ICMLA)
– volume: 2
  start-page: 100030
  year: 2019
  ident: bib0079
  article-title: Using a combination of human insights and ‘deep learning’ for real-time disaster communication
  publication-title: Progress in Disaster Science
– reference: Garbe, W. (2014, March 25). SymSpell (Version 6.3) [Computer software]. Retrieved April 15, 2019, from
– volume: 63
  start-page: 171
  year: 2015
  end-page: 186
  ident: bib0082
  article-title: Variability in Twitter content across the stages of a natural disaster: Implications for crisis communication
  publication-title: Communication Quarterly
– volume: 2
  start-page: 100095
  year: 2022
  ident: bib0087
  article-title: How can we manage offensive text in social media-a text classification approach using LSTM-BOOST
  publication-title: International Journal of Information Management Data Insights
– reference: . Retrieved from
– reference: Paul, A. (2015). Identifying relevant information for emergency services from twitter in response to natural disaster. Retrieved from
– reference: Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
– volume: 283
  start-page: 939
  year: 2017
  end-page: 959
  ident: bib0001
  article-title: Big data and disaster management: A systematic review and agenda for future research
  publication-title: Annals of Operations Research
– volume: 51
  year: 2020
  ident: bib0018
  article-title: Machine-learning methods for identifying social media-based requests for urgent help during hurricanes
  publication-title: International Journal of Disaster Risk Reduction
– ident: bib0021
  article-title: 01). Hurricane Harvey wreaks historic devastation: By the numbers
– reference: NOAA. (2018, January 26). Costliest U.S. tropical cyclones tables updated. Retrieved from
– year: 2011
  ident: bib0024
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proceedings of the ICML
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib0020
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
– reference: Phillips, M.E. (2017). Hurricane Harvey Twitter dataset, dataset, 2017-08-18/2017-09-22; (
– reference: Wu, M. (2017, February 20). Preprocess-twitter.py [Computer software].
– volume: 14
  start-page: 229
  year: 2017
  end-page: 249
  ident: bib0075
  article-title: Social media analytics: Literature review and directions for future research
  publication-title: Decision Analysis
– start-page: 878
  year: 2005
  end-page: 887
  ident: bib0027
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Proceedings of the international conference on intelligent computing
– reference: Rachunok, B., Fan, C., Lee, R., Nateghi, R., & Mostafavi, N. (2022). Is the data suitable? The comparison of keyword versus location filters in crisis informatics using Twitter data. International Journal of Information Management Data Insights, 2.
– volume: 1
  year: 2021
  ident: bib0002
  article-title: Understanding public engagement on Twitter using topic modeling: The 2019 Ridgecrest earthquake case
  publication-title: International Journal of Information Management Data Insights
– volume: 3
  start-page: 1137
  year: 2003
  end-page: 1155
  ident: bib0005
  article-title: A neural probabilistic language model
  publication-title: Journal of Machine Learning Research
– year: 2017
  ident: bib0077
  article-title: Please send help: Hurricane harvey victims turn to twitter and facebook
  publication-title: Time
– reference: Derczynski, L., Meesters, K., Bontcheva, K., & Maynard, D. (2018). Helping crisis responders find the informative needle in the tweet haystack. ArXiv preprint
– reference: Ashktorab, Z., Brown, C., Nandi, M., & Culotta, A. (2014, May). Tweedr: Mining Twitter to inform disaster response. In ISCRAM. (pp. 269–272).
– reference: Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., & Meier, P. (2013, May). Extracting information nuggets from disaster-Related messages in social media. In
– year: 2017
  ident: bib0033
  article-title: 911 centers overwhelmed during disasters
– volume: 2
  start-page: 100120
  year: 2022
  ident: bib0034
  article-title: Detecting twitter hate speech in COVID-19 era using machine learning and ensemble learning techniques
  publication-title: International Journal of Information Management Data Insights
– reference: /: Accessed January 29, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu
– volume: 8
  start-page: 149
  year: 2019
  end-page: 169
  ident: bib0083
  article-title: Throw me a lifeline: Articulating mobile social network dispersion and the social construction of risk in rescue communication
  publication-title: Mobile Media & Communication
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: bib0008
  article-title: Language models are few-shot learners
  publication-title: Advances in Neural Information Processing Systems
– reference: Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
– volume: 1
  year: 2021
  ident: bib0053
  article-title: Sentiment analysis and classification of Indian farmers’ protest using Twitter data
  publication-title: International Journal of Information Management Data Insights
– volume: 3
  start-page: 41
  year: 2001
  end-page: 46
  ident: bib0078
  article-title: An empirical study of the naive Bayes classifier
  publication-title: Proceedings of the
– reference: Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O. et al. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension.
– start-page: 1
  year: 2020
  end-page: 32
  ident: bib0039
  article-title: A deep multi-modal neural network for informative Twitter content classification during emergencies
  publication-title: Annals of Operations Research
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0016
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
– volume: 12
  start-page: 1300
  year: 2019
  end-page: 1318
  ident: bib0090
  article-title: Social and geographical disparities in Twitter use during hurricane Harvey
  publication-title: International Journal of Digital Earth
– reference: Ives, M., & Yoon, J. (2022, September 29). Ian strains emergency services in Southwest Florida. New York Times. Retrieved October 12, 2022, from
– reference: Pew Research Center (2018, March 1).
– volume: 27
  start-page: 197
  year: 2017
  end-page: 232
  ident: bib0086
  article-title: Digitally enabled disaster response: The emergence of social media as boundary objects in a flooding disaster
  publication-title: Information Systems Journal
– volume: 28
  start-page: 202
  year: 2009
  end-page: 205
  ident: bib0061
  article-title: Exploring the potential of Twitter as a research tool
  publication-title: Behavioral & Social Sciences Librarian
– year: 2018
  ident: bib0009
  article-title: Crisis event extraction service (CREES): Automatic detection and classification of crisis-related
– start-page: 24
  year: 2009
  end-page: 29
  ident: bib0055
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Proceedings of the fifth international workshop on computational intelligence & applications
– volume: 11
  year: 2016
  ident: bib0012
  article-title: Tweeting Supertyphoon Haiyan: Evolving functions of Twitter during and after a disaster event
  publication-title: PloS one
– reference: Morales, X.Y.Z.G. (2010).
– reference: (Thesis, Georgetown University).
– volume: 17
  year: 2016
  ident: bib92
  article-title: Domain-adversarial training of neural networks
  publication-title: The Journal of Machine Learning Research
– start-page: 29
  year: 2009
  end-page: 30
  ident: bib0045
  article-title: Turkit: Tools for iterative tasks on Mechanical Turk
  publication-title: Proceedings of the ACM SIGKDD workshop on human computation
– start-page: 497
  year: 2010
  end-page: 520
  ident: bib0064
  article-title: Social media in disaster communication
  publication-title: Handbook of disaster research –2nd edition
– reference: Nguyen, D.T., Joty, S., Imran, M., Sajjad, H., & Mitra, P. (2016). Applications of online deep learning for crisis response using social media information.
– volume: 3
  start-page: 100154
  year: 2023
  ident: bib0072
  article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers
  publication-title: International Journal of Information Management Data Insights
– reference: Imran, M., Castillo, C., Lucas, J., Meier, P., & Rogstadius, J. (2014, May). Coordinating human and machine intelligence to classify microblog communications in crises. In ISCRAM.
– start-page: 639
  year: 2018
  end-page: 648
  ident: bib0081
  article-title: Social media in citizen-led disaster response: Rescuer roles, coordination challenges, and untapped potential
  publication-title: Proceedings of the 15th international ISCRAM conference
– reference: Lindsay, B.R. (2011). Social media and disasters: Current uses, future options, and policy considerations. CRS Report for Congress.
– reference: Kim, Y. (2014). Convolutional neural networks for sentence classification.
– volume: 38
  start-page: 86
  year: 2018
  end-page: 96
  ident: bib0035
  article-title: Social network analysis: Characteristics of online social networks after a disaster
  publication-title: International Journal of Information Management
– reference: NLTK. (2014). Accessing text corpora and lexical resources. Retrieved from
– reference: Imran, M., Mitra, P., & Castillo, C. (2016). Twitter as a lifeline: Human-annotated twitter corpora for NLP of crisis-related messages.
– year: 2014
  ident: bib0059
  article-title: Crisislex: A lexicon for collecting and filtering microblogged communications in crises
  publication-title: Proceedings of the 8th international AAAI conference on weblogs and social media
– volume: 116
  start-page: 69
  year: 2001
  ident: bib0023
  article-title: Understanding public response to disasters
  publication-title: Public Health Reports
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0068
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 34
  start-page: 3
  year: 2012
  end-page: 18
  ident: bib0067
  article-title: Utilization of social media in the east Japan earthquake and tsunami and its effectiveness
  publication-title: Journal of Natural Disaster Science
– reference: Tikhonov, A.N. (1943). On the stability of inverse problems. In
– reference: .
– reference: Pal, S.K., & Mitra, S. (1992). Multilayer perceptron, fuzzy sets, classification.
– year: 2017
  ident: bib91
  publication-title: Attention is all you need.
– reference: , 1-4.
– reference: Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D. et al. (2019). Roberta: A robustly optimized bert pretraining approach.
– reference: Carter, L. (2018, July 31). Timeline: Hurricane Harvey brings catastrophic rain, flooding to Gulf Coast. Retrieved from
– reference: Berardelli, J. (2019). How climate change is making hurricanes more dangerous. Yale Climate Connections.
– start-page: 1532
  year: 2014
  end-page: 1543
  ident: bib0069
  article-title: Glove: Global vectors for word representation
  publication-title: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)
– volume: 28
  start-page: 7203
  year: 2015
  end-page: 7224
  ident: bib0037
  article-title: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios
  publication-title: Journal of Climate
– year: 2018
  ident: bib0050
  article-title: Twitter: Social communication in the twitter age
– reference: Mammothb. (2018, August 13). SymSpell (Version 6.3) [Computer software].
– reference: (Vol. 39, pp. 195–198).
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.jjimei.2023.100164_bib92
  article-title: Domain-adversarial training of neural networks
  publication-title: The Journal of Machine Learning Research
– volume: 116
  start-page: 69
  year: 2001
  ident: 10.1016/j.jjimei.2023.100164_bib0023
  article-title: Understanding public response to disasters
  publication-title: Public Health Reports
  doi: 10.1016/S0033-3549(04)50146-2
– ident: 10.1016/j.jjimei.2023.100164_bib0007
– volume: 28
  start-page: 7203
  issue: 18
  year: 2015
  ident: 10.1016/j.jjimei.2023.100164_bib0037
  article-title: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4. 5 scenarios
  publication-title: Journal of Climate
  doi: 10.1175/JCLI-D-15-0129.1
– volume: 2
  start-page: 100120
  issue: 2
  year: 2022
  ident: 10.1016/j.jjimei.2023.100164_bib0034
  article-title: Detecting twitter hate speech in COVID-19 era using machine learning and ensemble learning techniques
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2022.100120
– ident: 10.1016/j.jjimei.2023.100164_bib0046
– start-page: 1532
  year: 2014
  ident: 10.1016/j.jjimei.2023.100164_bib0069
  article-title: Glove: Global vectors for word representation
– ident: 10.1016/j.jjimei.2023.100164_bib0042
– ident: 10.1016/j.jjimei.2023.100164_bib0004
– start-page: 1322
  year: 2008
  ident: 10.1016/j.jjimei.2023.100164_bib0028
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
– volume: 8
  start-page: 149
  issue: 2
  year: 2019
  ident: 10.1016/j.jjimei.2023.100164_bib0083
  article-title: Throw me a lifeline: Articulating mobile social network dispersion and the social construction of risk in rescue communication
  publication-title: Mobile Media & Communication
  doi: 10.1177/2050157919846522
– start-page: 751
  year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0060
  article-title: Training an Emergency-Response Image Classifier on Signal Data
– ident: 10.1016/j.jjimei.2023.100164_bib0052
  doi: 10.1080/1369118X.2012.696123
– start-page: 24
  year: 2009
  ident: 10.1016/j.jjimei.2023.100164_bib0055
  article-title: Borderline over-sampling for imbalanced data classification
– ident: 10.1016/j.jjimei.2023.100164_bib0066
– ident: 10.1016/j.jjimei.2023.100164_bib0085
– volume: 12
  start-page: 2825
  issue: Oct
  year: 2011
  ident: 10.1016/j.jjimei.2023.100164_bib0068
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– start-page: 639
  year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0081
  article-title: Social media in citizen-led disaster response: Rescuer roles, coordination challenges, and untapped potential
– volume: 12
  start-page: 1300
  issue: 11
  year: 2019
  ident: 10.1016/j.jjimei.2023.100164_bib0090
  article-title: Social and geographical disparities in Twitter use during hurricane Harvey
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2018.1545878
– ident: 10.1016/j.jjimei.2023.100164_bib0071
– year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0050
– ident: 10.1016/j.jjimei.2023.100164_bib0010
– year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0077
  article-title: Please send help: Hurricane harvey victims turn to twitter and facebook
  publication-title: Time
– ident: 10.1016/j.jjimei.2023.100164_bib0074
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2023.100164_bib0002
  article-title: Understanding public engagement on Twitter using topic modeling: The 2019 Ridgecrest earthquake case
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100033
– year: 2014
  ident: 10.1016/j.jjimei.2023.100164_bib0059
  article-title: Crisislex: A lexicon for collecting and filtering microblogged communications in crises
– ident: 10.1016/j.jjimei.2023.100164_bib0047
– ident: 10.1016/j.jjimei.2023.100164_bib0043
– ident: 10.1016/j.jjimei.2023.100164_bib0021
– volume: 3
  start-page: 41
  year: 2001
  ident: 10.1016/j.jjimei.2023.100164_bib0078
  article-title: An empirical study of the naive Bayes classifier
– ident: 10.1016/j.jjimei.2023.100164_bib0022
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.jjimei.2023.100164_bib0008
  article-title: Language models are few-shot learners
  publication-title: Advances in Neural Information Processing Systems
– start-page: 878
  year: 2005
  ident: 10.1016/j.jjimei.2023.100164_bib0027
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
– start-page: 16
  year: 2014
  ident: 10.1016/j.jjimei.2023.100164_bib0003
  article-title: Deriving disaster-related information from social media
– volume: 58
  start-page: 103286
  issue: 1
  year: 2021
  ident: 10.1016/j.jjimei.2023.100164_bib0025
  article-title: Why do citizens participate on government social media accounts during crises? A civic voluntarism perspective
  publication-title: Information & Management
  doi: 10.1016/j.im.2020.103286
– ident: 10.1016/j.jjimei.2023.100164_bib0088
– ident: 10.1016/j.jjimei.2023.100164_bib0019
– ident: 10.1016/j.jjimei.2023.100164_bib0032
– ident: 10.1016/j.jjimei.2023.100164_bib0057
– year: 2011
  ident: 10.1016/j.jjimei.2023.100164_bib0024
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
– ident: 10.1016/j.jjimei.2023.100164_bib0070
– volume: 63
  start-page: 171
  year: 2015
  ident: 10.1016/j.jjimei.2023.100164_bib0082
  article-title: Variability in Twitter content across the stages of a natural disaster: Implications for crisis communication
  publication-title: Communication Quarterly
  doi: 10.1080/01463373.2015.1012219
– ident: 10.1016/j.jjimei.2023.100164_bib0015
– volume: 28
  start-page: 202
  issue: 4
  year: 2009
  ident: 10.1016/j.jjimei.2023.100164_bib0061
  article-title: Exploring the potential of Twitter as a research tool
  publication-title: Behavioral & Social Sciences Librarian
  doi: 10.1080/01639260903280888
– volume: 55
  start-page: 119
  issue: 1
  year: 1997
  ident: 10.1016/j.jjimei.2023.100164_bib0020
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: Journal of Computer and System Sciences
  doi: 10.1006/jcss.1997.1504
– volume: 14
  start-page: 229
  issue: 4
  year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0075
  article-title: Social media analytics: Literature review and directions for future research
  publication-title: Decision Analysis
  doi: 10.1287/deca.2017.0355
– volume: 38
  start-page: 86
  issue: 1
  year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0035
  article-title: Social network analysis: Characteristics of online social networks after a disaster
  publication-title: International Journal of Information Management
  doi: 10.1016/j.ijinfomgt.2017.08.003
– start-page: 29
  year: 2009
  ident: 10.1016/j.jjimei.2023.100164_bib0045
  article-title: Turkit: Tools for iterative tasks on Mechanical Turk
– ident: 10.1016/j.jjimei.2023.100164_bib0073
  doi: 10.1016/j.jjimei.2022.100063
– ident: 10.1016/j.jjimei.2023.100164_bib0044
– ident: 10.1016/j.jjimei.2023.100164_bib0029
– start-page: 497
  year: 2010
  ident: 10.1016/j.jjimei.2023.100164_bib0064
  article-title: Social media in disaster communication
– ident: 10.1016/j.jjimei.2023.100164_bib0006
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2023.100164_bib0053
  article-title: Sentiment analysis and classification of Indian farmers’ protest using Twitter data
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100019
– volume: 3
  start-page: 1137
  year: 2003
  ident: 10.1016/j.jjimei.2023.100164_bib0005
  article-title: A neural probabilistic language model
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 100008
  issue: 1
  year: 2021
  ident: 10.1016/j.jjimei.2023.100164_bib0038
  article-title: Applications of text mining in services management: A systematic literature review
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100008
– year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0033
– ident: 10.1016/j.jjimei.2023.100164_bib0058
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.jjimei.2023.100164_bib0016
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.953
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.jjimei.2023.100164_bib0012
  article-title: Tweeting Supertyphoon Haiyan: Evolving functions of Twitter during and after a disaster event
  publication-title: PloS one
  doi: 10.1371/journal.pone.0150190
– ident: 10.1016/j.jjimei.2023.100164_bib0054
– volume: 283
  start-page: 939
  issue: 1–2
  year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0001
  article-title: Big data and disaster management: A systematic review and agenda for future research
  publication-title: Annals of Operations Research
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.jjimei.2023.100164_bib0017
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.jjimei.2023.100164_bib0031
– ident: 10.1016/j.jjimei.2023.100164_bib0048
  doi: 10.3115/v1/W14-2509
– year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib91
– year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0009
– volume: 34
  start-page: 3
  issue: 1
  year: 2012
  ident: 10.1016/j.jjimei.2023.100164_bib0067
  article-title: Utilization of social media in the east Japan earthquake and tsunami and its effectiveness
  publication-title: Journal of Natural Disaster Science
  doi: 10.2328/jnds.34.3
– volume: 2
  start-page: 100095
  issue: 2
  year: 2022
  ident: 10.1016/j.jjimei.2023.100164_bib0087
  article-title: How can we manage offensive text in social media-a text classification approach using LSTM-BOOST
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2022.100095
– start-page: 1989
  year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib93
  article-title: Cycada: Cycle-consistent adversarial domain adaptation
– volume: 2
  start-page: 100030
  year: 2019
  ident: 10.1016/j.jjimei.2023.100164_bib0079
  article-title: Using a combination of human insights and ‘deep learning’ for real-time disaster communication
  publication-title: Progress in Disaster Science
  doi: 10.1016/j.pdisas.2019.100030
– start-page: 2177
  year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0089
  article-title: Harvey flooding rescue in social media
– ident: 10.1016/j.jjimei.2023.100164_bib0041
  doi: 10.18653/v1/2020.acl-main.703
– volume: 3
  start-page: 100154
  issue: 1
  year: 2023
  ident: 10.1016/j.jjimei.2023.100164_bib0072
  article-title: Identification and classification of transportation disaster tweets using improved bidirectional encoder representations from transformers
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2023.100154
– year: 2018
  ident: 10.1016/j.jjimei.2023.100164_bib0084
  article-title: Citizens communicating health information: Urging others in their community to seek help during a flood
– volume: 51
  year: 2020
  ident: 10.1016/j.jjimei.2023.100164_bib0018
  article-title: Machine-learning methods for identifying social media-based requests for urgent help during hurricanes
  publication-title: International Journal of Disaster Risk Reduction
  doi: 10.1016/j.ijdrr.2020.101757
– volume: 27
  start-page: 197
  issue: 2
  year: 2017
  ident: 10.1016/j.jjimei.2023.100164_bib0086
  article-title: Digitally enabled disaster response: The emergence of social media as boundary objects in a flooding disaster
  publication-title: Information Systems Journal
  doi: 10.1111/isj.12114
– ident: 10.1016/j.jjimei.2023.100164_bib0036
  doi: 10.3115/v1/D14-1181
– start-page: 1
  year: 2020
  ident: 10.1016/j.jjimei.2023.100164_bib0039
  article-title: A deep multi-modal neural network for informative Twitter content classification during emergencies
  publication-title: Annals of Operations Research
– ident: 10.1016/j.jjimei.2023.100164_bib0063
  doi: 10.1109/72.159058
– ident: 10.1016/j.jjimei.2023.100164_bib0013
– ident: 10.1016/j.jjimei.2023.100164_bib0030
SSID ssj0002811261
Score 2.3744802
Snippet •Curates a geographical-based dataset of tweets sent during Hurricane Harvey.•Presents a labeling scheme for relevance and urgency of tweets during a...
During natural disasters, emergency communication systems become overloaded, and people are forced to turn to social media to make requests for help. This...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100164
SubjectTerms Artificial intelligence
Computational methods
Crisis communication
Disaster
Machine learning
Supervised learning
Twitter
Title Using artificial intelligence to identify emergency messages on social media during a natural disaster: A deep learning approach
URI https://dx.doi.org/10.1016/j.jjimei.2023.100164
https://doaj.org/article/02400e59e3d140918386c4a31b1c1674
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELXQVjSIU4RLU1BAEUjiXKZbEAghQQUSXeQTJYLdFbsUNIhPx2M7KDTQ0KSwHDvxTDLP1rw3hBxW1AhhlIwTLnmc1wmPRYmZAJUo88JGCGaQ4Hx7V14_5DePxeOg1BfmhHl5YL9wp6jBleiCaapQm8l6YF3KnNNUpBIz6PHva5sHm6nOHRkhNQZ3WzYAVbHF6XXPm3PJXV3Xvuj2BGuHOxWiMv8Rl5x8_yA8DULO1SpZCVgRxv4Z18iSnqyTyBNqIXyUczgKytHHG-TTJQAAvpQXhoB2oLgJiym0jpdr3kH3tEt4wSIoT3ag6QT8CTo4Ogl4BiNwcOKftlm1c466CmcwBqX1DELJCdsnKJNvkoery_uL6ziUWIglpTSPaS5qYUEi8lVNxirJCgQ8GlUKa5WUvC6pppQzXaVKMpMLSZnJaqNMmWWVoltkNJlO9DYBZlIpmYVsqbB_hYLxKtNGJaKoOZXWeBGh_QI3MuiPYxmM56ZPNOsab5YGzdJ4s0Qk_r5r5vU3_uh_jrb77ovq2a7B-lQTfKr5y6ciUvWWbwIQ8QDDDtX-Ov3Of0y_S5ZxSJ8ftEdGi9c3vW-hz0IcOC-319uPyy_aTv6o
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+artificial+intelligence+to+identify+emergency+messages+on+social+media+during+a+natural+disaster%3A+A+deep+learning+approach&rft.jtitle=International+journal+of+information+management+data+insights&rft.au=Powers%2C+Courtney+J.&rft.au=Devaraj%2C+Ashwin&rft.au=Ashqeen%2C+Kaab&rft.au=Dontula%2C+Aman&rft.date=2023-04-01&rft.issn=2667-0968&rft.eissn=2667-0968&rft.volume=3&rft.issue=1&rft.spage=100164&rft_id=info:doi/10.1016%2Fj.jjimei.2023.100164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jjimei_2023_100164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0968&client=summon