Dynamic interaction of bridge-train system under non-uniform seismic ground motion

The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analys...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 41; no. 1; pp. 139 - 157
Main Authors Du, X. T., Xu, Y. L., Xia, H.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.01.2012
Wiley
Subjects
Online AccessGet full text
ISSN0098-8847
1096-9845
DOI10.1002/eqe.1122

Cover

Loading…
Abstract The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd.
Author Xu, Y. L.
Xia, H.
Du, X. T.
Author_xml – sequence: 1
  givenname: X. T.
  surname: Du
  fullname: Du, X. T.
  organization: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
– sequence: 2
  givenname: Y. L.
  surname: Xu
  fullname: Xu, Y. L.
  email: ceylxu@polyu.edu.hk
  organization: Department of Civil & Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
– sequence: 3
  givenname: H.
  surname: Xia
  fullname: Xia, H.
  organization: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25305546$$DView record in Pascal Francis
BookMark eNp1kF1LwzAUhoNMcJuCPyE3gjed-Wia7lK2OYWhbiqCNyFNkxFt05l0aP-9LVNB0atzcZ7nfLwD0HOV0wAcYzTCCJEz_apHGBOyB_oYjZNonMasB_oIjdMoTWN-AAYhPCOEaIJ4H6ymjZOlVdC6Wnupals5WBmYeZuvdVR7aR0MTah1Cbcu1x62-6Kts6byJQzahk5e-6ptwrLq9EOwb2QR9NFnHYKHi9n95DJa3MyvJueLSFFKSSRlznVGKJU8RzHLeJIaTQljSmWYqyTDLKEZJSQ1cUxYyknOGTEcxyozqUJ0CE52czcyKFkYL52yQWy8LaVvBGEUMRYnLTfaccpXIXhthLK17C7tvisERqJLTrTJiS65Vjj9JXzN_AONduibLXTzLydmy9lP3raJvn_z0r-IhFPOxOP1XKym87un2-mtWNIPZHaOhQ
CODEN IJEEBG
CitedBy_id crossref_primary_10_1016_j_jsv_2015_01_004
crossref_primary_10_1007_s11803_012_0144_y
crossref_primary_10_1108_RS_04_2022_0021
crossref_primary_10_1177_13694332231175230
crossref_primary_10_1007_s10518_021_01125_w
crossref_primary_10_1142_S0219455423500669
crossref_primary_10_1016_j_engstruct_2015_11_055
crossref_primary_10_1142_S0219455420500546
crossref_primary_10_1260_1369_4332_16_1_87
crossref_primary_10_1007_s10518_022_01532_7
crossref_primary_10_1177_10775463241232024
crossref_primary_10_1007_s10518_022_01438_4
crossref_primary_10_1007_s00707_023_03533_2
crossref_primary_10_1007_s10518_018_0326_8
crossref_primary_10_1080_15397734_2020_1803753
crossref_primary_10_1016_j_soildyn_2021_106718
crossref_primary_10_1142_S0219455423400229
crossref_primary_10_1007_s10518_016_9954_z
crossref_primary_10_1016_j_soildyn_2016_08_017
crossref_primary_10_3390_app122412684
crossref_primary_10_1142_S0219455420400131
crossref_primary_10_1007_s11771_021_4657_2
crossref_primary_10_1016_j_engstruct_2021_112425
crossref_primary_10_1142_S0219455421501662
crossref_primary_10_1080_15732479_2022_2058562
crossref_primary_10_1007_s43452_022_00451_3
crossref_primary_10_1016_j_engstruct_2013_05_035
crossref_primary_10_1016_j_soildyn_2013_05_001
crossref_primary_10_1155_2019_5308209
crossref_primary_10_1061__ASCE_BE_1943_5592_0001226
crossref_primary_10_1115_1_4031196
crossref_primary_10_1155_2015_436567
crossref_primary_10_1002_eqe_3763
crossref_primary_10_1016_j_engstruct_2024_118072
crossref_primary_10_1177_1369433217726894
crossref_primary_10_1016_j_engstruct_2017_08_057
crossref_primary_10_1016_j_istruc_2022_12_105
crossref_primary_10_1002_eqe_3814
crossref_primary_10_1088_1755_1315_153_4_042007
crossref_primary_10_1016_j_jsv_2017_12_038
crossref_primary_10_1007_s12517_021_06834_9
crossref_primary_10_1061__ASCE_BE_1943_5592_0001041
crossref_primary_10_1016_j_proeng_2017_09_391
crossref_primary_10_4028_www_scientific_net_AMM_80_81_566
crossref_primary_10_1016_j_compstruc_2024_107429
crossref_primary_10_1016_j_ymssp_2023_110305
crossref_primary_10_1016_j_engstruct_2023_116187
crossref_primary_10_1155_2020_8714174
crossref_primary_10_1016_J_ENG_2016_04_012
crossref_primary_10_1155_2016_9027054
crossref_primary_10_1142_S0219455423500013
crossref_primary_10_1002_eqe_2699
crossref_primary_10_1007_s10518_022_01343_w
crossref_primary_10_1016_j_engstruct_2012_12_021
crossref_primary_10_1016_j_engfailanal_2020_105133
crossref_primary_10_1016_j_soildyn_2022_107324
crossref_primary_10_1061__ASCE_EM_1943_7889_0000923
crossref_primary_10_1142_S0219455415500054
crossref_primary_10_1080_15732479_2019_1594314
crossref_primary_10_1186_s43065_023_00074_9
crossref_primary_10_1016_j_istruc_2020_01_003
crossref_primary_10_1142_S0219455422410085
crossref_primary_10_1016_j_istruc_2020_10_022
crossref_primary_10_32604_sdhm_2024_051125
crossref_primary_10_1061__ASCE_BE_1943_5592_0001563
crossref_primary_10_1002_eqe_4196
crossref_primary_10_1002_eqe_2770
crossref_primary_10_1177_1369433217691775
crossref_primary_10_1016_j_sna_2024_115422
crossref_primary_10_1002_cepa_2076
crossref_primary_10_1007_s11071_018_4327_6
Cites_doi 10.1080/00423110412331315178
10.1002/eqe.580
10.1002/eqe.594
10.1006/jsvi.2002.5089
10.1002/eqe.997
10.1201/9781420009910
10.1016/j.jsv.2008.05.012
10.1016/0266‐8920(96)00007‐0
10.1016/j.engstruct.2007.10.001
10.1016/S0045-7949(97)00108-9
10.1016/j.engstruct.2004.05.005
10.1002/eqe.4290140606
10.1016/j.jsv.2009.04.013
10.1016/j.compstruc.2007.05.035
10.1177/1077546309341603
10.1002/eqe.4290210101
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/eqe.1122
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 157
ExternalDocumentID 25305546
10_1002_eqe_1122
EQE1122
ark_67375_WNG_RDGSZPDP_Q
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
ID FETCH-LOGICAL-c3332-aad7eb233a7d045b768fe3255ccb17c6b1563b3228f4425872d752f714cbf8c03
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Mon Jul 21 09:14:02 EDT 2025
Tue Jul 01 02:21:54 EDT 2025
Thu Apr 24 22:56:05 EDT 2025
Wed Jan 22 16:24:31 EST 2025
Wed Oct 30 10:01:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords steel
dynamic interaction
probability
wheel-rail separation
decomposition
case studies
ground motion
bridges
non-uniform
finite element analysis
earthquakes
trains
acceleration
seismic response
solution
displacement seismic ground motion
separation
displacements
spatial variations
bridge
earthquake engineering
coordinate systems
frame structure
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3332-aad7eb233a7d045b768fe3255ccb17c6b1563b3228f4425872d752f714cbf8c03
Notes ark:/67375/WNG-RDGSZPDP-Q
istex:037CAFDCCE7E31C8905BCD5FA2CD8E84A8D03140
ArticleID:EQE1122
Professor.
Chair Professor.
PageCount 19
ParticipantIDs pascalfrancis_primary_25305546
crossref_citationtrail_10_1002_eqe_1122
crossref_primary_10_1002_eqe_1122
wiley_primary_10_1002_eqe_1122_EQE1122
istex_primary_ark_67375_WNG_RDGSZPDP_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01
January 2012
2012-01-00
2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Earthquake engineering & structural dynamics
PublicationTitleAlternate Earthquake Engng. Struct. Dyn
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Li Q, Xu YL, Xu DJ, Chen ZW. Computer-aided nonlinear vehicle-bridge interaction analysis. Journal of Vibration and Control 2010; 1-26. DOI: 10.1177/1077546309341603.
Xia H, Han Y, Zhang N, Guo W. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations. Earthquake Engineering and Structural Dynamics 2006; 35:1563-1579. DOI: 10.1002/eqe.594.
Fryba L, Yau JD. Suspended bridges subjected to moving loads and support motions due to earthquake. Journal of Sound and Vibration 2009; 319:218-227. DOI: 10.1016/j.jsv.2008.05.012.
Tsai HC. Modal superposition method for dynamic analysis of structures excited by prescribed support displacements. Computers & Structures 1998; 66(5):675-683.
Chen G, Zhai WM. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics 2004; 41(4):301-332. DOI: 10.1080/00423110412331315178.
Kim CW, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion. Earthquake Engineering and Structural Dynamics 2006; 35:1225-1245. DOI: 10.1002/eqe.580.
Zhai WM. Vehicle-track Coupling Dynamics. Science Press: Beijing, 2007.
Xu YL, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures 2004; 26:1389-14061. DOI: 10.1016/j.engstruct.2004.05.005.
Luco J, Wong H. Response of a rigid foundation to a spatially random ground motion. Earthquake Engineering and Structural Dynamics 1986; 14:99-111.
Zerva A. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications. Taylor & Francis Group LLC: Boca Raton, 2009.
Yang YB, Wu YS. Dynamic stability of trains moving over bridges shaken by earthquakes. Journal of Sound and Vibration 2002; 258(1):65-94. DOI: 10.1006/jsvi.2002.5089.
Rezaeian SS, Kiureghian AD. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering and Structural Dynamics 2010; 39(10):1155-1180. DOI: 10.1002/eqe.997.
Yau JD, Fryba L. Response of suspended beams due to moving loads and vertical seismic ground excitations. Engineering Structures 2007; 29:3255-3262. DOI: 10.1016/j.engstruct.2007.10.001.
Nazmy AS, Abdel-Ghaffar AM. Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering and Structural Dynamics 1992; 21:1-20. DOI: 10.1002/eqe.4290210101.
Deodatis G. Non-stationary stochastic vector process: seismic ground motion applications. Probabilistic Engineering Mechanics 1996; 11:149-168. DOI: 10.1016/0266-8920(96)00007-0.
Yau JD. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations. Journal of Sound and Vibration 2009; 325:907-922. DOI: 10.1016/j.jsv.2009.04.013.
Alexander NA. Multi-support excitation of single span bridges, using real seismic ground motion recorded at the SMART-1 array. Computers and Structures 2008; 86:88-103. DOI: 10.1016/j.compstruc.2007.05.035.
2007; 29
2004; 41
2006; 35
2010
2010; 39
2004; 26
1986; 14
2009
2002; 258
2007
2008; 86
2002
1992; 21
2009; 319
1998; 66
2009; 325
1996; 11
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
Wilson EL (e_1_2_7_11_2) 2002
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
Luco J (e_1_2_7_19_2) 1986; 14
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
Zhai WM (e_1_2_7_15_2) 2007
e_1_2_7_10_2
References_xml – reference: Xia H, Han Y, Zhang N, Guo W. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations. Earthquake Engineering and Structural Dynamics 2006; 35:1563-1579. DOI: 10.1002/eqe.594.
– reference: Chen G, Zhai WM. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics 2004; 41(4):301-332. DOI: 10.1080/00423110412331315178.
– reference: Yau JD. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations. Journal of Sound and Vibration 2009; 325:907-922. DOI: 10.1016/j.jsv.2009.04.013.
– reference: Zhai WM. Vehicle-track Coupling Dynamics. Science Press: Beijing, 2007.
– reference: Rezaeian SS, Kiureghian AD. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering and Structural Dynamics 2010; 39(10):1155-1180. DOI: 10.1002/eqe.997.
– reference: Luco J, Wong H. Response of a rigid foundation to a spatially random ground motion. Earthquake Engineering and Structural Dynamics 1986; 14:99-111.
– reference: Zerva A. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications. Taylor & Francis Group LLC: Boca Raton, 2009.
– reference: Kim CW, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion. Earthquake Engineering and Structural Dynamics 2006; 35:1225-1245. DOI: 10.1002/eqe.580.
– reference: Tsai HC. Modal superposition method for dynamic analysis of structures excited by prescribed support displacements. Computers & Structures 1998; 66(5):675-683.
– reference: Nazmy AS, Abdel-Ghaffar AM. Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering and Structural Dynamics 1992; 21:1-20. DOI: 10.1002/eqe.4290210101.
– reference: Fryba L, Yau JD. Suspended bridges subjected to moving loads and support motions due to earthquake. Journal of Sound and Vibration 2009; 319:218-227. DOI: 10.1016/j.jsv.2008.05.012.
– reference: Yau JD, Fryba L. Response of suspended beams due to moving loads and vertical seismic ground excitations. Engineering Structures 2007; 29:3255-3262. DOI: 10.1016/j.engstruct.2007.10.001.
– reference: Alexander NA. Multi-support excitation of single span bridges, using real seismic ground motion recorded at the SMART-1 array. Computers and Structures 2008; 86:88-103. DOI: 10.1016/j.compstruc.2007.05.035.
– reference: Yang YB, Wu YS. Dynamic stability of trains moving over bridges shaken by earthquakes. Journal of Sound and Vibration 2002; 258(1):65-94. DOI: 10.1006/jsvi.2002.5089.
– reference: Deodatis G. Non-stationary stochastic vector process: seismic ground motion applications. Probabilistic Engineering Mechanics 1996; 11:149-168. DOI: 10.1016/0266-8920(96)00007-0.
– reference: Xu YL, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures 2004; 26:1389-14061. DOI: 10.1016/j.engstruct.2004.05.005.
– reference: Li Q, Xu YL, Xu DJ, Chen ZW. Computer-aided nonlinear vehicle-bridge interaction analysis. Journal of Vibration and Control 2010; 1-26. DOI: 10.1177/1077546309341603.
– year: 2009
– volume: 21
  start-page: 1
  year: 1992
  end-page: 20
  article-title: Effects of ground motion spatial variability on the response of cable‐stayed bridges
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 35
  start-page: 1563
  year: 2006
  end-page: 1579
  article-title: Dynamic analysis of train–bridge system subjected to non‐uniform seismic excitations
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 11
  start-page: 149
  year: 1996
  end-page: 168
  article-title: Non‐stationary stochastic vector process: seismic ground motion applications
  publication-title: Probabilistic Engineering Mechanics
– volume: 26
  start-page: 1389
  year: 2004
  end-page: 14061
  article-title: Vibration of coupled train and cable‐stayed bridge systems in cross winds
  publication-title: Engineering Structures
– volume: 66
  start-page: 675
  issue: 5
  year: 1998
  end-page: 683
  article-title: Modal superposition method for dynamic analysis of structures excited by prescribed support displacements
  publication-title: Computers & Structures
– volume: 35
  start-page: 1225
  year: 2006
  end-page: 1245
  article-title: Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 319
  start-page: 218
  year: 2009
  end-page: 227
  article-title: Suspended bridges subjected to moving loads and support motions due to earthquake
  publication-title: Journal of Sound and Vibration
– year: 2002
– year: 2007
– volume: 325
  start-page: 907
  year: 2009
  end-page: 922
  article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations
  publication-title: Journal of Sound and Vibration
– volume: 39
  start-page: 1155
  issue: 10
  year: 2010
  end-page: 1180
  article-title: Simulation of synthetic ground motions for specified earthquake and site characteristics
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 14
  start-page: 99
  year: 1986
  end-page: 111
  article-title: Response of a rigid foundation to a spatially random ground motion
  publication-title: Earthquake Engineering and Structural Dynamics
– volume: 29
  start-page: 3255
  year: 2007
  end-page: 3262
  article-title: Response of suspended beams due to moving loads and vertical seismic ground excitations
  publication-title: Engineering Structures
– volume: 86
  start-page: 88
  year: 2008
  end-page: 103
  article-title: Multi‐support excitation of single span bridges, using real seismic ground motion recorded at the SMART‐1 array
  publication-title: Computers and Structures
– volume: 41
  start-page: 301
  issue: 4
  year: 2004
  end-page: 332
  article-title: A new wheel/rail spatially dynamic coupling model and its verification
  publication-title: Vehicle System Dynamics
– volume: 258
  start-page: 65
  issue: 1
  year: 2002
  end-page: 94
  article-title: Dynamic stability of trains moving over bridges shaken by earthquakes
  publication-title: Journal of Sound and Vibration
– start-page: 1
  year: 2010
  end-page: 26
  article-title: Computer‐aided nonlinear vehicle–bridge interaction analysis
  publication-title: Journal of Vibration and Control
– ident: e_1_2_7_14_2
  doi: 10.1080/00423110412331315178
– ident: e_1_2_7_3_2
  doi: 10.1002/eqe.580
– volume-title: Vehicle‐track Coupling Dynamics
  year: 2007
  ident: e_1_2_7_15_2
– ident: e_1_2_7_6_2
  doi: 10.1002/eqe.594
– volume-title: Three‐dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering
  year: 2002
  ident: e_1_2_7_11_2
– ident: e_1_2_7_2_2
  doi: 10.1006/jsvi.2002.5089
– ident: e_1_2_7_18_2
  doi: 10.1002/eqe.997
– ident: e_1_2_7_17_2
  doi: 10.1201/9781420009910
– ident: e_1_2_7_8_2
  doi: 10.1016/j.jsv.2008.05.012
– ident: e_1_2_7_10_2
  doi: 10.1016/0266‐8920(96)00007‐0
– ident: e_1_2_7_7_2
  doi: 10.1016/j.engstruct.2007.10.001
– ident: e_1_2_7_12_2
  doi: 10.1016/S0045-7949(97)00108-9
– ident: e_1_2_7_16_2
  doi: 10.1016/j.engstruct.2004.05.005
– volume: 14
  start-page: 99
  year: 1986
  ident: e_1_2_7_19_2
  article-title: Response of a rigid foundation to a spatially random ground motion
  publication-title: Earthquake Engineering and Structural Dynamics
  doi: 10.1002/eqe.4290140606
– ident: e_1_2_7_9_2
  doi: 10.1016/j.jsv.2009.04.013
– ident: e_1_2_7_5_2
  doi: 10.1016/j.compstruc.2007.05.035
– ident: e_1_2_7_13_2
  doi: 10.1177/1077546309341603
– ident: e_1_2_7_4_2
  doi: 10.1002/eqe.4290210101
SSID ssj0003607
Score 2.3123124
Snippet The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 139
SubjectTerms bridge
displacement seismic ground motion
dynamic interaction
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Internal geophysics
non-uniform
trains
wheel-rail separation
Title Dynamic interaction of bridge-train system under non-uniform seismic ground motion
URI https://api.istex.fr/ark:/67375/WNG-RDGSZPDP-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.1122
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz34FuujRBA9rW6T7GZ7FFsVQdH6RA9Lkk1AqlvtA8RTf4LgP-wvMbNpt1YUxNNe8tjMJJOZMN83CG2GomR8X0JahQk9xonxokQqj2pOlGJRojI6hpPT8OiKHd8Gt_2sSsDCOH6I_MENTkZmr-GAC9naHZKG6hcN-Bcwv5CqBf5QbcgcRUM_p8uMrAUe8M76ZHfQceQmmgChvkJmpGhZ4RhX1WLUY82unIMZdD_4WZdpUt_ptOWOevvG4_i_1cyi6b4nivfc1plDYzqdR1Nf-AkX0HXF1avHQCrRdBAI3DDYobx63Y-swAR2bNAY4GhNnDbSXve9kwLi6wm39EMLBgDwSJpgVzNoEV0dVC_3j7x-IQZPUUqJJ0TCbQROqeCJdQGlDVGMpjYYUUqWuAqlDQKptKYhMszagIiThAfE8BJT0kTKp0to3M6ulxGmIdNaAD6XlhnlgRBRmSXMhujWk0yYLqDtgVJi1Wcph7U8xo5fmcRWUjFIqoA28pbPjpnjhzZbmV7zBqJZh0w2HsQ3p4dxrXJ4cXdWOYvPC6g4ovi8AwmAEo2FdqRMfb9OFVfPq_Bd-WvDVTRpnS_innPW0Hi72dHr1sFpy2K2lT8BkJb5VQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE4lLe6PIqREJzSZm0nTsUJsdsu0K7a0kKFkCzbsSVUSNt9SIhTfwIS_7C_hJl4k7IIJMQpl7Ede-zxjDXfNwBPctMNaWoprSLkiVQ8JEVpXSK84s7JonQ1HcPOMB8cytdH2dECPG-wMJEfon1wo5NR22s64PQgvX7JGurPPAFg0P4uUUHvOp7av-SOEnnaEmYWaIMb5tmUrzct5-6iJVrWr5Qbaca4PCHWtZj3WetLZ_M6fGx-N-aaHK9NJ3bNffuNyfE_53MDlmfOKHsRd89NWPDVLbj2C0XhbXjXiyXrGfFKjCIKgp0EFoFeF-c_6hoTLBJCM0KkjVh1Ul2cf59WBPr6wsb-05g6IPxIVbJYNugOHG72D14OklkthsQJIXhiTKkwCBfCqBK9QItRSvAC4xHnbFe53GIcKCxahyJINAOF4qXKeFBd6WwoXCruwiKO7leAiVx6bwiiKzakUJkxxYYsJUbp6EyW0nfgWaMV7WZE5TSXzzpSLHONK6VppTrwuJU8jeQcf5B5Wiu2FTCjY0pmU5l-P9zS-72ttx92e7t6rwOrc5pvG_CMWNFkjj3V-vvrULq_16fvvX8VfARXBgc723r71fDNfbiKvhiPrzsPYHEymvqH6O9M7Gq9r38CFQb9cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEO4QSIweAFHDgmCTGD0NzHb3TA9H4uwCPjYLihI9dPqZGGTAfSTEEz_BxH_IL7FqendwjSbG01z6MV3VXV3Vqe8rQp7muh3S1GBaRcgTIVlICmdswr1k1orC2ZqO4U0vPzgRL0-z00lWJWJhIj9E8-CGJ6O213jAL13YuSUN9V894l_A_C6IPC1wR5fHt9RRPE8bvswCTPCUeDZlO9OeM1fRAkr1ClMj9RCkE2JZi1mXtb5zukvk0_RvY6rJ2fZ4ZLbtt9-IHP9vOctkceKK0r24d-6TOV-tkHu_EBQ-IO_LWLCeIqvEIGIg6EWgEeZ1c_2jrjBBIx00RTzagFYX1c3193GFkK9zOvSfhzgAokcqR2PRoIfkpNt59-IgmVRiSCznnCVaOwkhOOdaOvABDcQowXOIRqw1bWlzA1EgN2AbiiDACBSSOZmxINvCmlDYlD8i8zC7XyWU58J7jQBdviu4zLQudoUTEKODK-mEb5HnU6UoO6Epx7V8UZFgmSmQlEJJtchW0_IyUnP8oc2zWq9NAz04w1Q2makPvX11XO6__dgv--qoRTZnFN90YBlyookcRqrV99epVOeog9-1f234hNzpl131-rD3ap3cBUeMxaedx2R-NBj7DXB2Rmaz3tU_AUYE_Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+interaction+of+bridge%E2%80%94train+system+under+non-uniform+seismic+ground+motion&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=DU%2C+X.+T&rft.au=XU%2C+Y.+L&rft.au=XIA%2C+H&rft.date=2012&rft.pub=Wiley&rft.issn=0098-8847&rft.volume=41&rft.issue=1&rft.spage=139&rft.epage=157&rft_id=info:doi/10.1002%2Feqe.1122&rft.externalDBID=n%2Fa&rft.externalDocID=25305546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon