Dynamic interaction of bridge-train system under non-uniform seismic ground motion
The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analys...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 41; no. 1; pp. 139 - 157 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.01.2012
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0098-8847 1096-9845 |
DOI | 10.1002/eqe.1122 |
Cover
Loading…
Abstract | The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
AbstractList | The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway lines are rapidly developed to connect major cities worldwide. This paper presents a finite element method‐based framework for dynamic analysis of coupled bridge–train systems under non‐uniform seismic ground motion, in which rail–wheel interactions and possible separations between wheels and rails are taken into consideration. The governing equations of motion of the coupled bridge–train system are established in an absolute coordinate system. Without considering the decomposition of seismic responses into pseudo‐static and inertia‐dynamic components, the equations of motion of the coupled system are formed in terms of displacement seismic ground motions. The mode superposition method is applied to the bridge structure to make the problem manageable while the Newmark‐β method with an iterative computation scheme is used to find the best solution for the problem concerned. Eight high‐speed trains running over a multi‐span steel truss‐arch bridge subject to earthquakes are taken as a case study. The results from the case study demonstrate that the spatial variation of seismic ground motion affects dynamic responses of the bridge–train system. The ignorance of pseudo‐static component when using acceleration seismic ground motions as input may underestimate seismic responses of the bridge–train system. The probability of separation between wheels and rails becomes higher with increasing train speed. Copyright © 2011 John Wiley & Sons, Ltd. |
Author | Xu, Y. L. Xia, H. Du, X. T. |
Author_xml | – sequence: 1 givenname: X. T. surname: Du fullname: Du, X. T. organization: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China – sequence: 2 givenname: Y. L. surname: Xu fullname: Xu, Y. L. email: ceylxu@polyu.edu.hk organization: Department of Civil & Structural Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong – sequence: 3 givenname: H. surname: Xia fullname: Xia, H. organization: School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, People's Republic of China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25305546$$DView record in Pascal Francis |
BookMark | eNp1kF1LwzAUhoNMcJuCPyE3gjed-Wia7lK2OYWhbiqCNyFNkxFt05l0aP-9LVNB0atzcZ7nfLwD0HOV0wAcYzTCCJEz_apHGBOyB_oYjZNonMasB_oIjdMoTWN-AAYhPCOEaIJ4H6ymjZOlVdC6Wnupals5WBmYeZuvdVR7aR0MTah1Cbcu1x62-6Kts6byJQzahk5e-6ptwrLq9EOwb2QR9NFnHYKHi9n95DJa3MyvJueLSFFKSSRlznVGKJU8RzHLeJIaTQljSmWYqyTDLKEZJSQ1cUxYyknOGTEcxyozqUJ0CE52czcyKFkYL52yQWy8LaVvBGEUMRYnLTfaccpXIXhthLK17C7tvisERqJLTrTJiS65Vjj9JXzN_AONduibLXTzLydmy9lP3raJvn_z0r-IhFPOxOP1XKym87un2-mtWNIPZHaOhQ |
CODEN | IJEEBG |
CitedBy_id | crossref_primary_10_1016_j_jsv_2015_01_004 crossref_primary_10_1007_s11803_012_0144_y crossref_primary_10_1108_RS_04_2022_0021 crossref_primary_10_1177_13694332231175230 crossref_primary_10_1007_s10518_021_01125_w crossref_primary_10_1142_S0219455423500669 crossref_primary_10_1016_j_engstruct_2015_11_055 crossref_primary_10_1142_S0219455420500546 crossref_primary_10_1260_1369_4332_16_1_87 crossref_primary_10_1007_s10518_022_01532_7 crossref_primary_10_1177_10775463241232024 crossref_primary_10_1007_s10518_022_01438_4 crossref_primary_10_1007_s00707_023_03533_2 crossref_primary_10_1007_s10518_018_0326_8 crossref_primary_10_1080_15397734_2020_1803753 crossref_primary_10_1016_j_soildyn_2021_106718 crossref_primary_10_1142_S0219455423400229 crossref_primary_10_1007_s10518_016_9954_z crossref_primary_10_1016_j_soildyn_2016_08_017 crossref_primary_10_3390_app122412684 crossref_primary_10_1142_S0219455420400131 crossref_primary_10_1007_s11771_021_4657_2 crossref_primary_10_1016_j_engstruct_2021_112425 crossref_primary_10_1142_S0219455421501662 crossref_primary_10_1080_15732479_2022_2058562 crossref_primary_10_1007_s43452_022_00451_3 crossref_primary_10_1016_j_engstruct_2013_05_035 crossref_primary_10_1016_j_soildyn_2013_05_001 crossref_primary_10_1155_2019_5308209 crossref_primary_10_1061__ASCE_BE_1943_5592_0001226 crossref_primary_10_1115_1_4031196 crossref_primary_10_1155_2015_436567 crossref_primary_10_1002_eqe_3763 crossref_primary_10_1016_j_engstruct_2024_118072 crossref_primary_10_1177_1369433217726894 crossref_primary_10_1016_j_engstruct_2017_08_057 crossref_primary_10_1016_j_istruc_2022_12_105 crossref_primary_10_1002_eqe_3814 crossref_primary_10_1088_1755_1315_153_4_042007 crossref_primary_10_1016_j_jsv_2017_12_038 crossref_primary_10_1007_s12517_021_06834_9 crossref_primary_10_1061__ASCE_BE_1943_5592_0001041 crossref_primary_10_1016_j_proeng_2017_09_391 crossref_primary_10_4028_www_scientific_net_AMM_80_81_566 crossref_primary_10_1016_j_compstruc_2024_107429 crossref_primary_10_1016_j_ymssp_2023_110305 crossref_primary_10_1016_j_engstruct_2023_116187 crossref_primary_10_1155_2020_8714174 crossref_primary_10_1016_J_ENG_2016_04_012 crossref_primary_10_1155_2016_9027054 crossref_primary_10_1142_S0219455423500013 crossref_primary_10_1002_eqe_2699 crossref_primary_10_1007_s10518_022_01343_w crossref_primary_10_1016_j_engstruct_2012_12_021 crossref_primary_10_1016_j_engfailanal_2020_105133 crossref_primary_10_1016_j_soildyn_2022_107324 crossref_primary_10_1061__ASCE_EM_1943_7889_0000923 crossref_primary_10_1142_S0219455415500054 crossref_primary_10_1080_15732479_2019_1594314 crossref_primary_10_1186_s43065_023_00074_9 crossref_primary_10_1016_j_istruc_2020_01_003 crossref_primary_10_1142_S0219455422410085 crossref_primary_10_1016_j_istruc_2020_10_022 crossref_primary_10_32604_sdhm_2024_051125 crossref_primary_10_1061__ASCE_BE_1943_5592_0001563 crossref_primary_10_1002_eqe_4196 crossref_primary_10_1002_eqe_2770 crossref_primary_10_1177_1369433217691775 crossref_primary_10_1016_j_sna_2024_115422 crossref_primary_10_1002_cepa_2076 crossref_primary_10_1007_s11071_018_4327_6 |
Cites_doi | 10.1080/00423110412331315178 10.1002/eqe.580 10.1002/eqe.594 10.1006/jsvi.2002.5089 10.1002/eqe.997 10.1201/9781420009910 10.1016/j.jsv.2008.05.012 10.1016/0266‐8920(96)00007‐0 10.1016/j.engstruct.2007.10.001 10.1016/S0045-7949(97)00108-9 10.1016/j.engstruct.2004.05.005 10.1002/eqe.4290140606 10.1016/j.jsv.2009.04.013 10.1016/j.compstruc.2007.05.035 10.1177/1077546309341603 10.1002/eqe.4290210101 |
ContentType | Journal Article |
Copyright | Copyright © 2011 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1002/eqe.1122 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-9845 |
EndPage | 157 |
ExternalDocumentID | 25305546 10_1002_eqe_1122 EQE1122 ark_67375_WNG_RDGSZPDP_Q |
Genre | article |
GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AABCJ AAESR AAEVG AAHHS AAIKC AAMNW AANLZ AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACKIV ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CKXBT CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M58 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WRC WWC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW |
ID | FETCH-LOGICAL-c3332-aad7eb233a7d045b768fe3255ccb17c6b1563b3228f4425872d752f714cbf8c03 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Mon Jul 21 09:14:02 EDT 2025 Tue Jul 01 02:21:54 EDT 2025 Thu Apr 24 22:56:05 EDT 2025 Wed Jan 22 16:24:31 EST 2025 Wed Oct 30 10:01:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | steel dynamic interaction probability wheel-rail separation decomposition case studies ground motion bridges non-uniform finite element analysis earthquakes trains acceleration seismic response solution displacement seismic ground motion separation displacements spatial variations bridge earthquake engineering coordinate systems frame structure |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3332-aad7eb233a7d045b768fe3255ccb17c6b1563b3228f4425872d752f714cbf8c03 |
Notes | ark:/67375/WNG-RDGSZPDP-Q istex:037CAFDCCE7E31C8905BCD5FA2CD8E84A8D03140 ArticleID:EQE1122 Professor. Chair Professor. |
PageCount | 19 |
ParticipantIDs | pascalfrancis_primary_25305546 crossref_citationtrail_10_1002_eqe_1122 crossref_primary_10_1002_eqe_1122 wiley_primary_10_1002_eqe_1122_EQE1122 istex_primary_ark_67375_WNG_RDGSZPDP_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01 January 2012 2012-01-00 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationTitleAlternate | Earthquake Engng. Struct. Dyn |
PublicationYear | 2012 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Li Q, Xu YL, Xu DJ, Chen ZW. Computer-aided nonlinear vehicle-bridge interaction analysis. Journal of Vibration and Control 2010; 1-26. DOI: 10.1177/1077546309341603. Xia H, Han Y, Zhang N, Guo W. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations. Earthquake Engineering and Structural Dynamics 2006; 35:1563-1579. DOI: 10.1002/eqe.594. Fryba L, Yau JD. Suspended bridges subjected to moving loads and support motions due to earthquake. Journal of Sound and Vibration 2009; 319:218-227. DOI: 10.1016/j.jsv.2008.05.012. Tsai HC. Modal superposition method for dynamic analysis of structures excited by prescribed support displacements. Computers & Structures 1998; 66(5):675-683. Chen G, Zhai WM. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics 2004; 41(4):301-332. DOI: 10.1080/00423110412331315178. Kim CW, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion. Earthquake Engineering and Structural Dynamics 2006; 35:1225-1245. DOI: 10.1002/eqe.580. Zhai WM. Vehicle-track Coupling Dynamics. Science Press: Beijing, 2007. Xu YL, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures 2004; 26:1389-14061. DOI: 10.1016/j.engstruct.2004.05.005. Luco J, Wong H. Response of a rigid foundation to a spatially random ground motion. Earthquake Engineering and Structural Dynamics 1986; 14:99-111. Zerva A. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications. Taylor & Francis Group LLC: Boca Raton, 2009. Yang YB, Wu YS. Dynamic stability of trains moving over bridges shaken by earthquakes. Journal of Sound and Vibration 2002; 258(1):65-94. DOI: 10.1006/jsvi.2002.5089. Rezaeian SS, Kiureghian AD. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering and Structural Dynamics 2010; 39(10):1155-1180. DOI: 10.1002/eqe.997. Yau JD, Fryba L. Response of suspended beams due to moving loads and vertical seismic ground excitations. Engineering Structures 2007; 29:3255-3262. DOI: 10.1016/j.engstruct.2007.10.001. Nazmy AS, Abdel-Ghaffar AM. Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering and Structural Dynamics 1992; 21:1-20. DOI: 10.1002/eqe.4290210101. Deodatis G. Non-stationary stochastic vector process: seismic ground motion applications. Probabilistic Engineering Mechanics 1996; 11:149-168. DOI: 10.1016/0266-8920(96)00007-0. Yau JD. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations. Journal of Sound and Vibration 2009; 325:907-922. DOI: 10.1016/j.jsv.2009.04.013. Alexander NA. Multi-support excitation of single span bridges, using real seismic ground motion recorded at the SMART-1 array. Computers and Structures 2008; 86:88-103. DOI: 10.1016/j.compstruc.2007.05.035. 2007; 29 2004; 41 2006; 35 2010 2010; 39 2004; 26 1986; 14 2009 2002; 258 2007 2008; 86 2002 1992; 21 2009; 319 1998; 66 2009; 325 1996; 11 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 Wilson EL (e_1_2_7_11_2) 2002 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 Luco J (e_1_2_7_19_2) 1986; 14 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 Zhai WM (e_1_2_7_15_2) 2007 e_1_2_7_10_2 |
References_xml | – reference: Xia H, Han Y, Zhang N, Guo W. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations. Earthquake Engineering and Structural Dynamics 2006; 35:1563-1579. DOI: 10.1002/eqe.594. – reference: Chen G, Zhai WM. A new wheel/rail spatially dynamic coupling model and its verification. Vehicle System Dynamics 2004; 41(4):301-332. DOI: 10.1080/00423110412331315178. – reference: Yau JD. Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations. Journal of Sound and Vibration 2009; 325:907-922. DOI: 10.1016/j.jsv.2009.04.013. – reference: Zhai WM. Vehicle-track Coupling Dynamics. Science Press: Beijing, 2007. – reference: Rezaeian SS, Kiureghian AD. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering and Structural Dynamics 2010; 39(10):1155-1180. DOI: 10.1002/eqe.997. – reference: Luco J, Wong H. Response of a rigid foundation to a spatially random ground motion. Earthquake Engineering and Structural Dynamics 1986; 14:99-111. – reference: Zerva A. Spatial Variation of Seismic Ground Motions: Modeling and Engineering Applications. Taylor & Francis Group LLC: Boca Raton, 2009. – reference: Kim CW, Kawatani M. Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion. Earthquake Engineering and Structural Dynamics 2006; 35:1225-1245. DOI: 10.1002/eqe.580. – reference: Tsai HC. Modal superposition method for dynamic analysis of structures excited by prescribed support displacements. Computers & Structures 1998; 66(5):675-683. – reference: Nazmy AS, Abdel-Ghaffar AM. Effects of ground motion spatial variability on the response of cable-stayed bridges. Earthquake Engineering and Structural Dynamics 1992; 21:1-20. DOI: 10.1002/eqe.4290210101. – reference: Fryba L, Yau JD. Suspended bridges subjected to moving loads and support motions due to earthquake. Journal of Sound and Vibration 2009; 319:218-227. DOI: 10.1016/j.jsv.2008.05.012. – reference: Yau JD, Fryba L. Response of suspended beams due to moving loads and vertical seismic ground excitations. Engineering Structures 2007; 29:3255-3262. DOI: 10.1016/j.engstruct.2007.10.001. – reference: Alexander NA. Multi-support excitation of single span bridges, using real seismic ground motion recorded at the SMART-1 array. Computers and Structures 2008; 86:88-103. DOI: 10.1016/j.compstruc.2007.05.035. – reference: Yang YB, Wu YS. Dynamic stability of trains moving over bridges shaken by earthquakes. Journal of Sound and Vibration 2002; 258(1):65-94. DOI: 10.1006/jsvi.2002.5089. – reference: Deodatis G. Non-stationary stochastic vector process: seismic ground motion applications. Probabilistic Engineering Mechanics 1996; 11:149-168. DOI: 10.1016/0266-8920(96)00007-0. – reference: Xu YL, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds. Engineering Structures 2004; 26:1389-14061. DOI: 10.1016/j.engstruct.2004.05.005. – reference: Li Q, Xu YL, Xu DJ, Chen ZW. Computer-aided nonlinear vehicle-bridge interaction analysis. Journal of Vibration and Control 2010; 1-26. DOI: 10.1177/1077546309341603. – year: 2009 – volume: 21 start-page: 1 year: 1992 end-page: 20 article-title: Effects of ground motion spatial variability on the response of cable‐stayed bridges publication-title: Earthquake Engineering and Structural Dynamics – volume: 35 start-page: 1563 year: 2006 end-page: 1579 article-title: Dynamic analysis of train–bridge system subjected to non‐uniform seismic excitations publication-title: Earthquake Engineering and Structural Dynamics – volume: 11 start-page: 149 year: 1996 end-page: 168 article-title: Non‐stationary stochastic vector process: seismic ground motion applications publication-title: Probabilistic Engineering Mechanics – volume: 26 start-page: 1389 year: 2004 end-page: 14061 article-title: Vibration of coupled train and cable‐stayed bridge systems in cross winds publication-title: Engineering Structures – volume: 66 start-page: 675 issue: 5 year: 1998 end-page: 683 article-title: Modal superposition method for dynamic analysis of structures excited by prescribed support displacements publication-title: Computers & Structures – volume: 35 start-page: 1225 year: 2006 end-page: 1245 article-title: Effect of train dynamics on seismic response of steel monorail bridges under moderate ground motion publication-title: Earthquake Engineering and Structural Dynamics – volume: 319 start-page: 218 year: 2009 end-page: 227 article-title: Suspended bridges subjected to moving loads and support motions due to earthquake publication-title: Journal of Sound and Vibration – year: 2002 – year: 2007 – volume: 325 start-page: 907 year: 2009 end-page: 922 article-title: Dynamic response analysis of suspended beams subjected to moving vehicles and multiple support excitations publication-title: Journal of Sound and Vibration – volume: 39 start-page: 1155 issue: 10 year: 2010 end-page: 1180 article-title: Simulation of synthetic ground motions for specified earthquake and site characteristics publication-title: Earthquake Engineering and Structural Dynamics – volume: 14 start-page: 99 year: 1986 end-page: 111 article-title: Response of a rigid foundation to a spatially random ground motion publication-title: Earthquake Engineering and Structural Dynamics – volume: 29 start-page: 3255 year: 2007 end-page: 3262 article-title: Response of suspended beams due to moving loads and vertical seismic ground excitations publication-title: Engineering Structures – volume: 86 start-page: 88 year: 2008 end-page: 103 article-title: Multi‐support excitation of single span bridges, using real seismic ground motion recorded at the SMART‐1 array publication-title: Computers and Structures – volume: 41 start-page: 301 issue: 4 year: 2004 end-page: 332 article-title: A new wheel/rail spatially dynamic coupling model and its verification publication-title: Vehicle System Dynamics – volume: 258 start-page: 65 issue: 1 year: 2002 end-page: 94 article-title: Dynamic stability of trains moving over bridges shaken by earthquakes publication-title: Journal of Sound and Vibration – start-page: 1 year: 2010 end-page: 26 article-title: Computer‐aided nonlinear vehicle–bridge interaction analysis publication-title: Journal of Vibration and Control – ident: e_1_2_7_14_2 doi: 10.1080/00423110412331315178 – ident: e_1_2_7_3_2 doi: 10.1002/eqe.580 – volume-title: Vehicle‐track Coupling Dynamics year: 2007 ident: e_1_2_7_15_2 – ident: e_1_2_7_6_2 doi: 10.1002/eqe.594 – volume-title: Three‐dimensional Static and Dynamic Analysis of Structures: A Physical Approach with Emphasis on Earthquake Engineering year: 2002 ident: e_1_2_7_11_2 – ident: e_1_2_7_2_2 doi: 10.1006/jsvi.2002.5089 – ident: e_1_2_7_18_2 doi: 10.1002/eqe.997 – ident: e_1_2_7_17_2 doi: 10.1201/9781420009910 – ident: e_1_2_7_8_2 doi: 10.1016/j.jsv.2008.05.012 – ident: e_1_2_7_10_2 doi: 10.1016/0266‐8920(96)00007‐0 – ident: e_1_2_7_7_2 doi: 10.1016/j.engstruct.2007.10.001 – ident: e_1_2_7_12_2 doi: 10.1016/S0045-7949(97)00108-9 – ident: e_1_2_7_16_2 doi: 10.1016/j.engstruct.2004.05.005 – volume: 14 start-page: 99 year: 1986 ident: e_1_2_7_19_2 article-title: Response of a rigid foundation to a spatially random ground motion publication-title: Earthquake Engineering and Structural Dynamics doi: 10.1002/eqe.4290140606 – ident: e_1_2_7_9_2 doi: 10.1016/j.jsv.2009.04.013 – ident: e_1_2_7_5_2 doi: 10.1016/j.compstruc.2007.05.035 – ident: e_1_2_7_13_2 doi: 10.1177/1077546309341603 – ident: e_1_2_7_4_2 doi: 10.1002/eqe.4290210101 |
SSID | ssj0003607 |
Score | 2.3123124 |
Snippet | The probability that an earthquake occurs when a train is running over a bridge in earthquake‐prone regions is much higher than before, for high‐speed railway... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 139 |
SubjectTerms | bridge displacement seismic ground motion dynamic interaction Earth sciences Earth, ocean, space Earthquakes, seismology Engineering and environment geology. Geothermics Engineering geology Exact sciences and technology Internal geophysics non-uniform trains wheel-rail separation |
Title | Dynamic interaction of bridge-train system under non-uniform seismic ground motion |
URI | https://api.istex.fr/ark:/67375/WNG-RDGSZPDP-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.1122 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz34FuujRBA9rW6T7GZ7FFsVQdH6RA9Lkk1AqlvtA8RTf4LgP-wvMbNpt1YUxNNe8tjMJJOZMN83CG2GomR8X0JahQk9xonxokQqj2pOlGJRojI6hpPT8OiKHd8Gt_2sSsDCOH6I_MENTkZmr-GAC9naHZKG6hcN-Bcwv5CqBf5QbcgcRUM_p8uMrAUe8M76ZHfQceQmmgChvkJmpGhZ4RhX1WLUY82unIMZdD_4WZdpUt_ptOWOevvG4_i_1cyi6b4nivfc1plDYzqdR1Nf-AkX0HXF1avHQCrRdBAI3DDYobx63Y-swAR2bNAY4GhNnDbSXve9kwLi6wm39EMLBgDwSJpgVzNoEV0dVC_3j7x-IQZPUUqJJ0TCbQROqeCJdQGlDVGMpjYYUUqWuAqlDQKptKYhMszagIiThAfE8BJT0kTKp0to3M6ulxGmIdNaAD6XlhnlgRBRmSXMhujWk0yYLqDtgVJi1Wcph7U8xo5fmcRWUjFIqoA28pbPjpnjhzZbmV7zBqJZh0w2HsQ3p4dxrXJ4cXdWOYvPC6g4ovi8AwmAEo2FdqRMfb9OFVfPq_Bd-WvDVTRpnS_innPW0Hi72dHr1sFpy2K2lT8BkJb5VQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE4lLe6PIqREJzSZm0nTsUJsdsu0K7a0kKFkCzbsSVUSNt9SIhTfwIS_7C_hJl4k7IIJMQpl7Ede-zxjDXfNwBPctMNaWoprSLkiVQ8JEVpXSK84s7JonQ1HcPOMB8cytdH2dECPG-wMJEfon1wo5NR22s64PQgvX7JGurPPAFg0P4uUUHvOp7av-SOEnnaEmYWaIMb5tmUrzct5-6iJVrWr5Qbaca4PCHWtZj3WetLZ_M6fGx-N-aaHK9NJ3bNffuNyfE_53MDlmfOKHsRd89NWPDVLbj2C0XhbXjXiyXrGfFKjCIKgp0EFoFeF-c_6hoTLBJCM0KkjVh1Ul2cf59WBPr6wsb-05g6IPxIVbJYNugOHG72D14OklkthsQJIXhiTKkwCBfCqBK9QItRSvAC4xHnbFe53GIcKCxahyJINAOF4qXKeFBd6WwoXCruwiKO7leAiVx6bwiiKzakUJkxxYYsJUbp6EyW0nfgWaMV7WZE5TSXzzpSLHONK6VppTrwuJU8jeQcf5B5Wiu2FTCjY0pmU5l-P9zS-72ttx92e7t6rwOrc5pvG_CMWNFkjj3V-vvrULq_16fvvX8VfARXBgc723r71fDNfbiKvhiPrzsPYHEymvqH6O9M7Gq9r38CFQb9cA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEO4QSIweAFHDgmCTGD0NzHb3TA9H4uwCPjYLihI9dPqZGGTAfSTEEz_BxH_IL7FqendwjSbG01z6MV3VXV3Vqe8rQp7muh3S1GBaRcgTIVlICmdswr1k1orC2ZqO4U0vPzgRL0-z00lWJWJhIj9E8-CGJ6O213jAL13YuSUN9V894l_A_C6IPC1wR5fHt9RRPE8bvswCTPCUeDZlO9OeM1fRAkr1ClMj9RCkE2JZi1mXtb5zukvk0_RvY6rJ2fZ4ZLbtt9-IHP9vOctkceKK0r24d-6TOV-tkHu_EBQ-IO_LWLCeIqvEIGIg6EWgEeZ1c_2jrjBBIx00RTzagFYX1c3193GFkK9zOvSfhzgAokcqR2PRoIfkpNt59-IgmVRiSCznnCVaOwkhOOdaOvABDcQowXOIRqw1bWlzA1EgN2AbiiDACBSSOZmxINvCmlDYlD8i8zC7XyWU58J7jQBdviu4zLQudoUTEKODK-mEb5HnU6UoO6Epx7V8UZFgmSmQlEJJtchW0_IyUnP8oc2zWq9NAz04w1Q2makPvX11XO6__dgv--qoRTZnFN90YBlyookcRqrV99epVOeog9-1f234hNzpl131-rD3ap3cBUeMxaedx2R-NBj7DXB2Rmaz3tU_AUYE_Cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+interaction+of+bridge%E2%80%94train+system+under+non-uniform+seismic+ground+motion&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=DU%2C+X.+T&rft.au=XU%2C+Y.+L&rft.au=XIA%2C+H&rft.date=2012&rft.pub=Wiley&rft.issn=0098-8847&rft.volume=41&rft.issue=1&rft.spage=139&rft.epage=157&rft_id=info:doi/10.1002%2Feqe.1122&rft.externalDBID=n%2Fa&rft.externalDocID=25305546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |