Nitrogen‐doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23

Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary materials (Print) Vol. 1; no. 2; pp. 309 - 315
Main Authors Mo, Yanping, Wang, Chao, Zheng, Xuntian, Zhou, Peng, Li, Jing, Yu, Xinxin, Yang, Kaizhong, Deng, Xinyu, Park, Hyesung, Huang, Fuzhi, Cheng, Yi‐Bing
Format Journal Article
LanguageEnglish
Published Wuhan John Wiley & Sons, Inc 01.04.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop high‐quality tin oxide films via a nitrogen‐doping strategy for high‐efficiency and stable planar PSCs. The aligned energy level at the interface of doped SnO2/perovskite, more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability. Correspondingly, the power conversion efficiency of the devices based on N‐SnO2 film increases to 23.41% from 20.55% of the devices based on the pristine SnO2. The N‐SnO2 devices show an outstanding stability retaining 97.8% of the initial efficiency after steady‐state output at a maximum power point for 600 s under standard AM1.5G continuous illumination without encapsulation, while less than 50% efficiency remains for the devices based on pristine SnO2. This simple scalable strategy has shown great promise toward highly efficient and stable PSCs. An efficient SnO2 electron transport layer is realized by nitrogen doping during the chemical bath deposition, achieving a well‐aligned energy level, enhanced charge extraction, and reduced charge recombination, thus resulting in improved efficiency and stability.
AbstractList Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop high‐quality tin oxide films via a nitrogen‐doping strategy for high‐efficiency and stable planar PSCs. The aligned energy level at the interface of doped SnO2/perovskite, more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability. Correspondingly, the power conversion efficiency of the devices based on N‐SnO2 film increases to 23.41% from 20.55% of the devices based on the pristine SnO2. The N‐SnO2 devices show an outstanding stability retaining 97.8% of the initial efficiency after steady‐state output at a maximum power point for 600 s under standard AM1.5G continuous illumination without encapsulation, while less than 50% efficiency remains for the devices based on pristine SnO2. This simple scalable strategy has shown great promise toward highly efficient and stable PSCs. An efficient SnO2 electron transport layer is realized by nitrogen doping during the chemical bath deposition, achieving a well‐aligned energy level, enhanced charge extraction, and reduced charge recombination, thus resulting in improved efficiency and stability.
Abstract Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop high‐quality tin oxide films via a nitrogen‐doping strategy for high‐efficiency and stable planar PSCs. The aligned energy level at the interface of doped SnO 2 /perovskite, more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability. Correspondingly, the power conversion efficiency of the devices based on N‐SnO 2 film increases to 23.41% from 20.55% of the devices based on the pristine SnO 2 . The N‐SnO 2 devices show an outstanding stability retaining 97.8% of the initial efficiency after steady‐state output at a maximum power point for 600 s under standard AM1.5G continuous illumination without encapsulation, while less than 50% efficiency remains for the devices based on pristine SnO 2 . This simple scalable strategy has shown great promise toward highly efficient and stable PSCs.
Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop high‐quality tin oxide films via a nitrogen‐doping strategy for high‐efficiency and stable planar PSCs. The aligned energy level at the interface of doped SnO2/perovskite, more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability. Correspondingly, the power conversion efficiency of the devices based on N‐SnO2 film increases to 23.41% from 20.55% of the devices based on the pristine SnO2. The N‐SnO2 devices show an outstanding stability retaining 97.8% of the initial efficiency after steady‐state output at a maximum power point for 600 s under standard AM1.5G continuous illumination without encapsulation, while less than 50% efficiency remains for the devices based on pristine SnO2. This simple scalable strategy has shown great promise toward highly efficient and stable PSCs.
Abstract Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature chemical bath deposition method. However, tin oxide often contains pernicious defects, resulting in unsatisfactory performance. Herein, we develop high‐quality tin oxide films via a nitrogen‐doping strategy for high‐efficiency and stable planar PSCs. The aligned energy level at the interface of doped SnO2/perovskite, more excellent charge extraction and reduced nonradiative recombination contribute to the enhanced efficiency and stability. Correspondingly, the power conversion efficiency of the devices based on N‐SnO2 film increases to 23.41% from 20.55% of the devices based on the pristine SnO2. The N‐SnO2 devices show an outstanding stability retaining 97.8% of the initial efficiency after steady‐state output at a maximum power point for 600 s under standard AM1.5G continuous illumination without encapsulation, while less than 50% efficiency remains for the devices based on pristine SnO2. This simple scalable strategy has shown great promise toward highly efficient and stable PSCs.
Author Yu, Xinxin
Wang, Chao
Huang, Fuzhi
Park, Hyesung
Li, Jing
Deng, Xinyu
Zheng, Xuntian
Yang, Kaizhong
Cheng, Yi‐Bing
Zhou, Peng
Mo, Yanping
Author_xml – sequence: 1
  givenname: Yanping
  surname: Mo
  fullname: Mo, Yanping
  organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory
– sequence: 2
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Xuntian
  surname: Zheng
  fullname: Zheng, Xuntian
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Peng
  surname: Zhou
  fullname: Zhou, Peng
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Xinxin
  surname: Yu
  fullname: Yu, Xinxin
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Kaizhong
  surname: Yang
  fullname: Yang, Kaizhong
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Xinyu
  surname: Deng
  fullname: Deng, Xinyu
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Hyesung
  surname: Park
  fullname: Park, Hyesung
  email: hspark@unist.ac.kr
  organization: Ulsan National Institute of Science and Technology
– sequence: 10
  givenname: Fuzhi
  orcidid: 0000-0002-8635-9262
  surname: Huang
  fullname: Huang, Fuzhi
  email: fuzhi.huang@whut.edu.cn
  organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory
– sequence: 11
  givenname: Yi‐Bing
  surname: Cheng
  fullname: Cheng, Yi‐Bing
  organization: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory
BookMark eNp9kU1uFDEQhS0UJJKQDSewxC7SBP9N93iJAoGRAmxAYmeV7erEE0-7YzsJs-MInJGT4KSjiFVWVar66r2S3gHZG9OIhLzh7IQzJt4FvxUnXDAhXpB90Xf9Qin-c--__hU5KmXDGqw511zuk-3XUHO6wPHv7z8-TehpDSNNv4JHihFdW460ZhjLlHKlEXaY6ZAyLRVsRDphTrflKlSkJUXI1GGMhd6FeklxGIILOLodTbftTMjX5OUAseDRYz0kP84-fj_9vDj_9ml9-v584aSUYqFcJ2zPQKolaOYAlFaDtr2WzOrlSiOHbimGzlplO66XIFe-QwaOiW41NOyQrGddn2Bjphy2kHcmQTAPg5QvDOQaXETjPWjuRKd43yttsbloD07YFaC3YJvW21lryun6Bks1m3STx_a-kUwLKRnrRaOOZ8rlVErG4cmVM3OfjrlPxzyk02A-w3ch4u4Z0qw_fBHzzT_nd5Tm
CitedBy_id crossref_primary_10_1039_D4YA00010B
crossref_primary_10_1021_acsami_4c02917
crossref_primary_10_1016_j_ceramint_2023_11_296
crossref_primary_10_3390_polym16020199
crossref_primary_10_1002_smll_202311755
crossref_primary_10_1021_acs_jpcc_3c06605
crossref_primary_10_1088_1674_4926_45_4_040201
crossref_primary_10_1002_solr_202300890
crossref_primary_10_1002_solr_202300410
crossref_primary_10_1002_ange_202403610
crossref_primary_10_1002_anie_202309292
crossref_primary_10_1039_D2QM01330D
crossref_primary_10_1016_j_cej_2022_140894
crossref_primary_10_1002_adfm_202310194
crossref_primary_10_1002_ange_202217526
crossref_primary_10_1016_j_cej_2023_148133
crossref_primary_10_1002_idm2_12147
crossref_primary_10_1002_adfm_202210600
crossref_primary_10_1016_j_jechem_2024_01_064
crossref_primary_10_1007_s12274_023_6115_y
crossref_primary_10_1002_solr_202201067
crossref_primary_10_1021_acsami_4c00360
crossref_primary_10_1021_acsami_3c08970
crossref_primary_10_1016_j_cclet_2024_109821
crossref_primary_10_1088_1402_4896_ad1fc5
crossref_primary_10_1002_anie_202403610
crossref_primary_10_1002_eem2_12728
crossref_primary_10_1002_aenm_202303092
crossref_primary_10_1016_j_jmst_2022_05_038
crossref_primary_10_1002_aenm_202203681
crossref_primary_10_1088_1674_4926_43_9_092201
crossref_primary_10_1016_j_ceramint_2023_12_054
crossref_primary_10_1002_solr_202300860
crossref_primary_10_1039_D2TA07989E
crossref_primary_10_1002_aenm_202303972
crossref_primary_10_1016_j_mtelec_2023_100086
crossref_primary_10_1016_j_nanoen_2023_108883
crossref_primary_10_1002_adfm_202315157
crossref_primary_10_1039_D3DT03501H
crossref_primary_10_1002_ange_202309292
crossref_primary_10_1016_j_cinorg_2024_100050
crossref_primary_10_1021_acs_jpcc_3c07558
crossref_primary_10_1002_adma_202313663
crossref_primary_10_1002_anse_202300078
crossref_primary_10_1002_solr_202200258
crossref_primary_10_1016_j_nanoen_2024_109507
crossref_primary_10_1039_D4SE00320A
crossref_primary_10_3390_ma16186170
crossref_primary_10_1002_adma_202311923
crossref_primary_10_1002_adfm_202314652
crossref_primary_10_1002_aenm_202302775
crossref_primary_10_1021_acsami_4c00745
crossref_primary_10_1002_adpr_202200236
crossref_primary_10_1088_2752_5724_ac9248
crossref_primary_10_1002_solr_202200232
crossref_primary_10_1002_solr_202400184
crossref_primary_10_1002_idm2_12164
crossref_primary_10_1002_adma_202313811
crossref_primary_10_1007_s12598_023_02578_5
crossref_primary_10_1016_j_cej_2022_136626
crossref_primary_10_1016_j_cej_2024_152378
crossref_primary_10_1002_adfm_202313910
crossref_primary_10_1016_j_cej_2022_137515
crossref_primary_10_1021_acsami_3c16640
crossref_primary_10_1002_anie_202217526
Cites_doi 10.1039/C8RA10603G
10.1016/j.orgel.2019.01.027
10.1002/solr.201900154
10.1016/j.nanoen.2019.104014
10.1021/acsami.8b02624
10.1038/ncomms3885
10.1002/cssc.201801433
10.1021/ja809598r
10.1039/c2jm35274e
10.1021/ja307789s
10.1039/C6EE02390H
10.1126/science.1061051
10.1016/j.orgel.2019.05.011
10.1039/C6EE02139E
10.1021/acsenergylett.1c00443
10.1038/ncomms8747
10.1039/C4TA04883K
10.1039/D0TC00515K
10.1038/s41467-018-05760-x
10.1039/C7TA08040A
10.1038/nenergy.2016.177
10.1021/acsenergylett.0c01566
10.1021/jp0716233
10.1002/adma.201902902
10.1016/j.orgel.2019.03.053
10.1126/science.abc4417
10.1002/advs.201800130
10.1039/C9TC04269E
10.1039/C9TA08042B
10.1002/adma.201805944
10.1021/jacs.8b11001
10.1186/s11671-017-2247-x
10.1002/cssc.201600944
10.1038/s41586-021-03285-w
10.1038/s41586-021-03406-5
10.1002/adfm.201501264
10.1186/s11671-017-1992-1
10.1039/D1TC00277E
ContentType Journal Article
Copyright 2022 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/idm2.12022
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Free Backfiles
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Materials Science Database
Materials Science Collection
ProQuest - Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2767-441X
EndPage 315
ExternalDocumentID oai_doaj_org_article_dda91c26417749beb799dac2b8aedbab
10_1002_idm2_12022
IDM212022
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: WUT: 202443004
– fundername: Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory
  funderid: XDT2020‐001; XHT2020‐005
– fundername: Ministry of Science and Technology of the People's Republic of China
  funderid: 2017YFE0131900; 2019YFE0107200
– fundername: National Natural Science Foundation of China
  funderid: 21875178; 52172230; 91963209
GroupedDBID 0R~
1OC
24P
AAHHS
ABJCF
ACCFJ
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
KB.
PDBOC
PIMPY
WIN
AAYXX
CITATION
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3332-4c62b70a345a90caa494f9b7930b9589e1a652f6bb4b6195a38d6e0ac0268f793
IEDL.DBID DOA
ISSN 2767-441X
2767-4401
IngestDate Sun Sep 29 07:04:31 EDT 2024
Fri Sep 13 09:41:36 EDT 2024
Wed Sep 11 13:54:12 EDT 2024
Sat Aug 24 01:00:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3332-4c62b70a345a90caa494f9b7930b9589e1a652f6bb4b6195a38d6e0ac0268f793
ORCID 0000-0002-8635-9262
OpenAccessLink https://doaj.org/article/dda91c26417749beb799dac2b8aedbab
PQID 3092330072
PQPubID 6853479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_dda91c26417749beb799dac2b8aedbab
proquest_journals_3092330072
crossref_primary_10_1002_idm2_12022
wiley_primary_10_1002_idm2_12022_IDM212022
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Wuhan
PublicationPlace_xml – name: Wuhan
PublicationTitle Interdisciplinary materials (Print)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2021; 9
2019; 7
2019; 9
2021; 6
2019; 71
2015; 6
2013; 4
2019; 3
2017; 2
2019; 73
2015; 3
2019; 31
2009; 131
2019; 141
2020; 8
2018; 9
2015; 25
2020; 5
2001; 293
2012; 134
2018; 5
2019; 65
2019; 67
2007; 111
2020; 370
2017; 12
2021; 590
2021; 592
2018; 11
2018; 10
2012; 22
2016; 9
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 9
  start-page: 3239
  year: 2018
  article-title: High efficiency planar‐type perovskite solar cells with negligible hysteresis using EDTA‐complexed SnO
  publication-title: Nat Commun
– volume: 9
  start-page: 4240
  year: 2021
  end-page: 4247
  article-title: KF‐doped SnO as an electron transport layer for efficient inorganic CsPbI Br perovskite solar cells with enhanced open‐circuit voltages
  publication-title: J Mater Chem C
– volume: 9
  start-page: 3128
  year: 2016
  end-page: 3134
  article-title: Highly efficient and stable planar perovskite solar cells by solution‐processed tin oxide
  publication-title: Energy Environ Sci
– volume: 3
  year: 2019
  article-title: Surface chlorination of ZnO for perovskite solar cells with enhanced efficiency and stability
  publication-title: Sol. RRL
– volume: 71
  start-page: 98
  year: 2019
  end-page: 105
  article-title: Negligible hysteresis planar perovskite solar cells using Ga‐doped SnO nanocrystal as electron transport layers
  publication-title: Org Electron
– volume: 12
  start-page: 498
  year: 2017
  article-title: Electrodeposition of SnO on FTO and its application in planar heterojunction perovskite solar cells as an electron transport layer
  publication-title: Nanoscale Res Lett
– volume: 6
  start-page: 7747
  year: 2015
  article-title: Non‐wetting surface‐driven high‐aspect‐ratio crystalline grain growth for efficient hybrid perovskite solar cells
  publication-title: Nat Commun
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  article-title: Organometal halide perovskites as visible‐light sensitizers for photovoltaic cells
  publication-title: J Am Chem Soc
– volume: 2
  year: 2017
  article-title: Enhanced electron extraction using SnO for high‐efficiency planar‐structure HC(NH ) PbI ‐based perovskite solar cells
  publication-title: Nat Energy
– volume: 9
  start-page: 9946
  year: 2019
  end-page: 9950
  article-title: Room‐temperature synthesized SnO electron transport layers for efficient perovskite solar cells
  publication-title: RSC Adv
– volume: 12
  start-page: 238
  year: 2017
  article-title: Enhanced performance of planar perovskite solar cells using low‐temperature solution‐processed Al‐doped SnO as electron transport layers
  publication-title: Nanoscale Res Lett
– volume: 111
  start-page: 15228
  year: 2007
  end-page: 15235
  article-title: Effect of plasma processing gas composition on the nitrogen‐doping status and visible light photocatalysis of TiO
  publication-title: J Phys Chem C
– volume: 7
  start-page: 22323
  year: 2019
  end-page: 22331
  article-title: Highly efficient planar perovskite solar cells via acid‐assisted surface passivation
  publication-title: J Mater Chem A
– volume: 590
  start-page: 587
  year: 2021
  end-page: 593
  article-title: Efficient perovskite solar cells via improved carrier management
  publication-title: Nature
– volume: 25
  start-page: 7200
  year: 2015
  end-page: 7207
  article-title: Improving the extraction of photogenerated electrons with SnO nanocolloids for efficient planar perovskite solar cells
  publication-title: Adv Funct Mater
– volume: 5
  start-page: 2796
  year: 2020
  end-page: 2801
  article-title: Bifunctional surface engineering on SnO reduces energy loss in perovskite solar cells
  publication-title: ACS Energy Lett
– volume: 4
  start-page: 2885
  year: 2013
  article-title: Overcoming ultraviolet light instability of sensitized TiO with meso‐superstructured organometal tri‐halide perovskite solar cells
  publication-title: Nat Commun
– volume: 67
  start-page: 159
  year: 2019
  end-page: 167
  article-title: Solution processed Mo doped SnO as an effective ETL in the fabrication of low temperature planer perovskite solar cell under ambient conditions
  publication-title: Org Electron
– volume: 5
  year: 2018
  article-title: Efficient planar perovskite solar cells using passivated tin oxide as an electron transport layer
  publication-title: Adv Sci
– volume: 22
  start-page: 24545
  year: 2012
  end-page: 24551
  article-title: Influence of confinement regimes on magnetic property of pristine SnO quantum dots
  publication-title: J Mater Chem
– volume: 9
  start-page: 2686
  year: 2016
  end-page: 2691
  article-title: Low temperature solution‐processed Sb:SnO nanocrystals for efficient planar perovskite solar cells
  publication-title: ChemSusChem
– volume: 592
  start-page: 381
  year: 2021
  end-page: 385
  article-title: Pseudo‐halide anion engineering for alpha‐FAPbI perovskite solar cells
  publication-title: Nature
– volume: 73
  start-page: 62
  year: 2019
  end-page: 68
  article-title: La‐doped SnO as ETL for efficient planar‐structure hybrid perovskite solar cells
  publication-title: Org Electron
– volume: 8
  start-page: 11638
  year: 2020
  end-page: 11646
  article-title: Chlorine‐doped SnO hydrophobic surfaces for large grain perovskite solar cells
  publication-title: J Mater Chem C
– volume: 6
  start-page: 2121
  year: 2021
  end-page: 2128
  article-title: Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open‐circuit voltage of 1.20 V
  publication-title: ACS Energy Lett
– volume: 31
  year: 2019
  article-title: Multifunctional chemical linker imidazoleacetic acid hydrochloride for 21% efficient and stable planar perovskite solar cells
  publication-title: Adv Mater
– volume: 31
  year: 2019
  article-title: Novel molecular doping mechanism for n‐doping of SnO via triphenylphosphine oxide and its effect on perovskite solar cells
  publication-title: Adv Mater
– volume: 3
  start-page: 9051
  year: 2015
  end-page: 9057
  article-title: Highly efficient perovskite solar cells based on a nanostructured WO ‐TiO core‐shell electron transporting material
  publication-title: J Mater Chem A
– volume: 65
  year: 2019
  article-title: Tailored electronic properties of Zr‐doped SnO nanoparticles for efficient planar perovskite solar cells with marginal hysteresis
  publication-title: Nano Energy
– volume: 370
  start-page: 108
  year: 2020
  end-page: 112
  article-title: Impact of strain relaxation on performance of alpha‐formamidinium lead iodide perovskite solar cells
  publication-title: Science
– volume: 134
  start-page: 17396
  year: 2012
  end-page: 17399
  article-title: Mesoscopic CH NH PbI /TiO heterojunction solar cells
  publication-title: J Am Chem Soc
– volume: 141
  start-page: 541
  year: 2019
  end-page: 547
  article-title: High‐efficiency, hysteresis‐less, UV‐stable perovskite solar cells with cascade ZnO‐ZnS electron transport layer
  publication-title: J Am Chem Soc
– volume: 10
  start-page: 14922
  year: 2018
  end-page: 14929
  article-title: Low‐temperature presynthesized crystalline tin oxide for efficient flexible perovskite solar cells and modules
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 12204
  year: 2019
  end-page: 12210
  article-title: Poly(vinylpyrrolidone)‐doped SnO as an electron transport layer for perovskite solar cells with improved performance
  publication-title: J Mater Chem C
– volume: 11
  start-page: 2898
  year: 2018
  end-page: 2903
  article-title: Enhanced crystallinity of low‐temperature solution‐processed SnO for highly reproducible planar perovskite solar cells
  publication-title: ChemSusChem
– volume: 9
  start-page: 3071
  year: 2016
  end-page: 3078
  article-title: Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells
  publication-title: Energy Environ Sci
– volume: 5
  start-page: 24790
  year: 2017
  end-page: 24803
  article-title: Solution‐processed SnO thin film for a hysteresis‐free planar perovskite solar cell with a power conversion efficiency of 19.2%
  publication-title: J Mater Chem A
– volume: 293
  start-page: 269
  year: 2001
  end-page: 271
  article-title: Visible‐light photocatalysis in nitrogen‐doped titanium oxides
  publication-title: Science
– ident: e_1_2_6_14_1
  doi: 10.1039/C8RA10603G
– ident: e_1_2_6_23_1
  doi: 10.1016/j.orgel.2019.01.027
– ident: e_1_2_6_12_1
  doi: 10.1002/solr.201900154
– ident: e_1_2_6_26_1
  doi: 10.1016/j.nanoen.2019.104014
– ident: e_1_2_6_33_1
  doi: 10.1021/acsami.8b02624
– ident: e_1_2_6_9_1
  doi: 10.1038/ncomms3885
– ident: e_1_2_6_15_1
  doi: 10.1002/cssc.201801433
– ident: e_1_2_6_2_1
  doi: 10.1021/ja809598r
– ident: e_1_2_6_34_1
  doi: 10.1039/c2jm35274e
– ident: e_1_2_6_11_1
  doi: 10.1021/ja307789s
– ident: e_1_2_6_18_1
  doi: 10.1039/C6EE02390H
– ident: e_1_2_6_36_1
  doi: 10.1126/science.1061051
– ident: e_1_2_6_25_1
  doi: 10.1016/j.orgel.2019.05.011
– ident: e_1_2_6_38_1
  doi: 10.1039/C6EE02139E
– ident: e_1_2_6_32_1
  doi: 10.1021/acsenergylett.1c00443
– ident: e_1_2_6_39_1
  doi: 10.1038/ncomms8747
– ident: e_1_2_6_13_1
  doi: 10.1039/C4TA04883K
– ident: e_1_2_6_30_1
  doi: 10.1039/D0TC00515K
– ident: e_1_2_6_8_1
  doi: 10.1038/s41467-018-05760-x
– ident: e_1_2_6_19_1
  doi: 10.1039/C7TA08040A
– ident: e_1_2_6_20_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_6_21_1
  doi: 10.1021/acsenergylett.0c01566
– ident: e_1_2_6_35_1
  doi: 10.1021/jp0716233
– ident: e_1_2_6_37_1
  doi: 10.1002/adma.201902902
– ident: e_1_2_6_27_1
  doi: 10.1016/j.orgel.2019.03.053
– ident: e_1_2_6_5_1
  doi: 10.1126/science.abc4417
– ident: e_1_2_6_17_1
  doi: 10.1002/advs.201800130
– ident: e_1_2_6_29_1
  doi: 10.1039/C9TC04269E
– ident: e_1_2_6_7_1
  doi: 10.1039/C9TA08042B
– ident: e_1_2_6_31_1
  doi: 10.1002/adma.201805944
– ident: e_1_2_6_10_1
  doi: 10.1021/jacs.8b11001
– ident: e_1_2_6_16_1
  doi: 10.1186/s11671-017-2247-x
– ident: e_1_2_6_22_1
  doi: 10.1002/cssc.201600944
– ident: e_1_2_6_3_1
  doi: 10.1038/s41586-021-03285-w
– ident: e_1_2_6_4_1
  doi: 10.1038/s41586-021-03406-5
– ident: e_1_2_6_6_1
  doi: 10.1002/adfm.201501264
– ident: e_1_2_6_24_1
  doi: 10.1186/s11671-017-1992-1
– ident: e_1_2_6_28_1
  doi: 10.1039/D1TC00277E
SSID ssj0002911913
Score 2.504385
Snippet Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the low‐temperature...
Abstract Tin oxide has made a major breakthrough in high‐efficiency perovskite solar cells (PSCs) as an efficient electron transport layer by the...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 309
SubjectTerms Charge efficiency
Contact angle
Devices
Efficiency
Electron transport
electron transport layer
Energy
Energy conversion efficiency
Energy levels
Glass substrates
Interface stability
Maximum power
Morphology
N doping
Nanocrystals
Nitrogen
Oxide coatings
perovskite solar cell
Perovskites
Photovoltaic cells
Semiconductors
SnO2
Solar cells
Spectrum analysis
Tin dioxide
Tin oxides
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3NbtQwEMdHpVzggMqXWGiRJTghhU1s58Mn1ALLgtSeqNSb5bEdtFK7WXYD4sgj8Iw8CTPeZGkvvUWRFVnjsf2fif0bgNcOfe1rrLLQ1iHTjW8zNMZlkpyjrcrY6AQwPT2r5uf6y0V5sQfz8S4MH6sc18S0UIfOc458qnKSIopB11OHnAXw_fTd6nvG9aP4P-tQTOMO3C2Yicd3xmefdtkWaRhkxr-bZc2gb4oqdqxSOV2EK_m2kLmUN3anBPG_oTyv69e0Ac0O4MGgHMXxdqgfwl5cPoL713iCj-HqbNGvO3KJv7__hG4Vg-gXS9H9WoQoxno3oh9x5uLSkd4WpFoFSUS8jIKh4T83nM8VGw55Baf1N4JztSIm1gRf1BR86lNI9QTOZx-_vp9nQz2FzCulZKZ9JbHOndKlM7l3ThvdGqQZmqMpGxMLV5WyrRA1UlxVOtWEKubOU5zWtNTsKewvu2V8BqKmMKiJuozeKK0cqRiMpnWywZoiIlVO4NVoR7vaYjPsFpAsLVvbJmtP4IRNvGvBqOv0olt_s8PMsSE4U3jSbQUpVYOR-muC8xIbFwM6nMDhOEB2mH8b-99bJvAmDdot3bCfP5zK9PT89m-9gHvcantw5xD2-_WPeESapMeXyd3-AZhE4EI
  priority: 102
  providerName: ProQuest
– databaseName: Wiley-Blackwell Open Access Collection
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1La9wwEMdFSC_toaQvumlSBO2p4MaW5Iegl_QR0kJCDw3sTcxIcllI1mHthh77EfIZ80k6I683yaXQk42RwYxmpP-MpZ-EeAvoa19jlYW2DplpfJuhtZApco62KmNjEsD05LQ6PjPf5uV8S3yY9sKMfIhNwY0jI43XHOCA_cEtNHQRLtT7gnJ3GoAfkK5p2KeV-b6psCjL8DL-xaxqhnubYr7hk6qD29fvzUgJ3H9Pbd7VrGnSOdoRj9dqUR6O3ftEbMXlU_HoDkPwmbg4XQyrjtzg5s916C5jkMNiKbvfixDldMaNHCaEuTwH0tiSlKokWYjnUTIo_KrnGq7sOc2VXMrvJddnZUx8Cd6cKXmlp1T6uTg7-vLj03G2PkMh81prlRlfKaxz0KYEm3sAY01rkaIyR0s2iwVUpWorRIOUS5Wgm1DFHDzlZk1LzV6I7WW3jC-FrCn1aaIpo7faaCDlgtG2oBqsKQvS5Uy8mezoLkdUhhuhyMqxtV2y9kx8ZBNvWjDeOj3oVj_dOlpcCGALT1qtIHVqMdL32gBeYQMxIOBM7E0d5NYx1zudk1jVjEKfiXep0_7xGe7r5xOV7nb_p_Er8ZAv49KdPbE9rH7FfVIlA75OzvcXXK7dRQ
  priority: 102
  providerName: Wiley-Blackwell
Title Nitrogen‐doped tin oxide electron transport layer for stable perovskite solar cells with efficiency over 23
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fidm2.12022
https://www.proquest.com/docview/3092330072/abstract/
https://doaj.org/article/dda91c26417749beb799dac2b8aedbab
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PSxwxFMcfrb20h2JtS7faJaCnwtSZ_JhJjtq6tYKLlAreQl6SgQXdFXcUj_4J_o39S_qS2ZX1Ui9ehmEIQ3gvk3y_4c0nADsOfeMbrIvQNqGQ2rcFGuMKToOjrVXUMgNMj8f14ak8OlNnK0d9pZqwHg_cB243BGcqT8t2RULFYMTGmOA8R-1iQId59q3UiplKczA3CVwmHnikfHcSLvi3iqw-f7QCZVD_I3W5qlHzIjNah7cLdcj2-l69gxdxugFvVpiB7-FiPOmuZpT2v3f3YXYZA-smUza7nYTIlmfasG6JLGfnjjQ1I2XKSAbieWQJDH4zT3u2bJ5sLUtb93OW9mNZzDyJ9DMmS5WdjIsPcDo6-PP9sFicmVB4IQQvpK85NqUTUjlTeuekka2hoIkSjdImVq5WvK0RJZJ3Uk7oUMfSefJiuqVmH2FtOpvGT8Aasjo6ShW9EVI4UioYTeu4xoZcj1AD2F7G0V72aAzbQ5C5TdG2OdoD2E8hfmiRcNb5ASXZLpJsn0ryALaWCbKLb2xuRUniVCT0-QC-5qT9pxv2149jnu8-P0eHNuF1eldfwrMFa93VdfxC6qTDIbzk8oSuevRzCK_2D8Ynv4d5cP4DF4PolQ
link.rule.ids 315,786,790,870,2115,11589,12792,21416,27957,27958,33408,33779,43635,43840,46087,46511
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4VJSHWCjUEpyQQrO28_AJUWi1Ld0VQq3Um-VX0ErtZtkE1GN_Qn8jv4QZb7K0l96iyIms8dj-vvH4G4D3xrrCFTZPfFX4RJauSqxSJuHoHFWehVJGAdPJNB-fyePz7LwLuDVdWmW_JsaF2teOYuR7IkUoIkjo-tPiV0JVo-h0tSuh8QA2pUCqMoDN_YPp9x_rKAtXJGBGx8y8IIFvZBNrjVK-N_OX_OMI6T-_sytF8f47iPM2bo0bz-ET2OoQI_u8GuJt2Ajzp_D4lo7gM7icztplja7w9_rG14vgWTubs_pq5gPr69ywtpcxZxcGcTZDtMoQGtqLwEgs_E9DcVzWENVlFM5vGMVoWYgaE3RBk1G2J-PiOZwdHpx-GSddHYXECSF4Il3ObZEaITOjUmeMVLJSFmdmalVWqjAyecar3FppkU9lRpQ-D6lxyM_KCpu9gMG8noeXwAqkP2WQWXBKSGEQvdigKsNLWyATEtkQ3vV21IuVXIZeCSNzTdbW0dpD2CcTr1uQxHV8US9_6m7GaO-NGjnEayNEqMoG7K_yxnFbmuCtsUPY6QdId_Ou0f-9ZAgf4qDd0w199HXC49Or-_-1Cw_Hp5MTfXI0_fYaHtEXq-SdHRi0y9_hDeKS1r7tnO8fGYLg1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PaxQxFMcfpYLoQfyJa6sG9CSMnUkyMwn0otalVbv0YGFvIb9GFtqdZXcsPfZP8G_0L-l7mZ1texG8DSGB8JKXfN-b5BOA99b52teuykJTh0wq32ROa5txnBxNVUYlE8D0eFIdnspv03K6BfvDXZieD7FJuJFnpPWaHHwRmr0baOgsnPOPBcbuuADfk1WuKPTi8mSTYeGa4GX0i5nXBPeWxXTDJ-V7N83v7EgJ3H9Hbd7WrGnTGT-GR2u1yD71w_sEtuL8KTy8xRB8BueTWbdscRr8vfoT2kUMrJvNWXs5C5ENb9ywbkCYszOLGpuhUmUoC91ZZAQKv1hRDpetKMxllMpfMcrPspj4EnQ5k9FJT8bFczgdf_355TBbv6GQeSEEz6SvuKtzK2Rpde6tlVo22qFX5k6XSsfCViVvKuekw1iqtEKFKubWY2ymGqz2Arbn7Ty-BFZj6KOiLKPXQgqLysVF3ViuXI1RkChH8G6wo1n0qAzTQ5G5IWubZO0RfCYTb2oQ3joVtMtfZu0tJgSrC49arUB1ql3E_upgPXfKxuCsG8HuMEBm7XMrI3IUq4JQ6CP4kAbtH90wRwfHPH29-p_Kb-H-ycHY_DiafN-BB1TSn-LZhe1u-Tu-RoHSuTdpHl4DBvHf2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen%E2%80%90doped+tin+oxide+electron+transport+layer+for+stable+perovskite+solar+cells+with+efficiency+over+23&rft.jtitle=Interdisciplinary+materials+%28Print%29&rft.au=Mo%2C+Yanping&rft.au=Wang%2C+Chao&rft.au=Zheng%2C+Xuntian&rft.au=Zhou%2C+Peng&rft.date=2022-04-01&rft.issn=2767-4401&rft.eissn=2767-441X&rft.volume=1&rft.issue=2&rft.spage=309&rft.epage=315&rft_id=info:doi/10.1002%2Fidm2.12022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_idm2_12022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2767-441X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2767-441X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2767-441X&client=summon