An efficient curvilinear non-hydrostatic model for simulating surface water waves

An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in fluids Vol. 66; no. 9; pp. 1093 - 1115
Main Authors Choi, Doo Yong, Wu, Chin H., Young, Chih-Chieh
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.07.2011
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.
AbstractList Abstract An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.
Author Choi, Doo Yong
Young, Chih-Chieh
Wu, Chin H.
Author_xml – sequence: 1
  givenname: Doo Yong
  surname: Choi
  fullname: Choi, Doo Yong
  organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A
– sequence: 2
  givenname: Chin H.
  surname: Wu
  fullname: Wu, Chin H.
  email: chinwu@engr.wisc.edu
  organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A
– sequence: 3
  givenname: Chih-Chieh
  surname: Young
  fullname: Young, Chih-Chieh
  organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24318368$$DView record in Pascal Francis
BookMark eNp1kE1LAzEURYNUsK2CPyEbwc3U5GU-l7XaKpSqoBTchEzmRaPTaUmmrf33prS4c_MuPA6Hy-2RTrNskJBLzgacMbgxdTUAweCEdDkrsoiJVHRIl0HGI2AFPyM9778YYwXkoktehg1FY6y22LRUr93G1rZB5WjwRp-7yi19q1qr6WJZYU3N0lFvF-s6_JoP6tfOKI10q1p04W7Qn5NTo2qPF8fsk7fx_evoIZo-TR5Hw2mkhRAQCZZWSnNAnmOZGASjy8wAAg8tQYgkLxXnMSacoWZVlqeQCMYBigSKsixEn1wfvDpU9A6NXDm7UG4nOZP7KWSYQu6nCOjVAV0pr1VtnGq09X88xILnIs0DFx24ra1x969Pjqd3R--Rt77Fnz9euW-ZZiJL5Hw2kXER32bvz3M5E78RjH1d
CODEN IJNFDW
CitedBy_id crossref_primary_10_2112_JCOASTRES_D_18_00022_1
crossref_primary_10_1080_00221686_2014_948503
crossref_primary_10_3390_w12123513
crossref_primary_10_1016_j_jcp_2017_11_009
crossref_primary_10_1080_00221686_2013_778340
crossref_primary_10_1016_j_compfluid_2019_04_005
crossref_primary_10_1115_1_4043179
crossref_primary_10_1016_j_oceaneng_2020_106957
crossref_primary_10_1016_j_amc_2017_07_050
crossref_primary_10_1016_j_apm_2017_01_030
crossref_primary_10_1016_j_cnsns_2018_07_029
crossref_primary_10_1007_s11431_013_5159_8
crossref_primary_10_1002_fld_2676
crossref_primary_10_1016_j_oceaneng_2017_12_015
crossref_primary_10_3390_computation9040047
crossref_primary_10_9765_KSCOE_2011_23_5_335
crossref_primary_10_1016_j_oceaneng_2022_113526
crossref_primary_10_1016_j_jcp_2013_09_050
crossref_primary_10_3741_JKWRA_2012_45_4_349
crossref_primary_10_1007_s42241_018_0065_y
crossref_primary_10_1088_0169_5983_48_1_015508
crossref_primary_10_1080_00221686_2016_1212943
Cites_doi 10.1002/fld.258
10.1029/96JC02776
10.1002/fld.1650150602
10.1121/1.381069
10.1002/fld.595
10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
10.1002/fld.1054
10.1061/(ASCE)0733-950X(2001)127:3(152)
10.1061/(ASCE)0733-950X(2003)129:3(124)
10.1061/(ASCE)0733-950X(1988)114:6(673)
10.1016/j.jhydrol.2006.08.002
10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
10.1061/(ASCE)0733-950X(2005)131:5(226)
10.1002/fld.1542
10.1002/fld.680
10.1016/j.coastaleng.2005.02.004
10.1090/S0025-5718-1968-0242392-2
10.1137/0913035
10.1061/(ASCE)0733-950X(1992)118:5(551)
10.1061/9780872620490.027
10.1002/fld.778
10.1002/fld.721
10.1016/j.oceaneng.2008.09.006
10.1002/fld.1904
10.1061/(ASCE)0733-9399(2006)132:4(447)
10.1016/j.oceaneng.2005.06.002
10.1002/fld.1650210803
10.1007/s00254-008-1448-0
10.1002/1097-0363(20010215)35:3<341::AID-FLD96>3.0.CO;2-R
10.1016/j.jcp.2003.12.022
10.1061/(ASCE)0733-950X(2001)127:1(16)
10.1002/fld.376
10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
10.1016/j.jcp.2004.10.022
10.1016/S0895-7177(02)00264-9
10.1002/fld.670
10.1002/fld.1961
10.1080/00221680209499939
10.1017/S0022112098008945
10.1016/j.ocemod.2007.04.001
10.2112/06-0709.1
10.1016/S0378-3839(00)00067-3
10.1002/(SICI)1097-0363(19980815)28:2<201::AID-FLD706>3.0.CO;2-Q
10.1007/978-3-642-58239-4
10.1002/fld.1019
10.1016/j.oceaneng.2006.11.001
10.1002/nme.1620270105
10.1017/S0022112067002605
10.1029/JC087iC10p07932
10.1016/j.compfluid.2007.10.007
10.1002/fld.2150
10.1002/fld.1876
10.1007/BF00375926
10.1002/fld.622
10.1016/0141-1187(94)90015-9
10.1017/S0022112080000481
10.1142/1232
10.1061/(ASCE)EM.1943-7889.0000078
10.1016/j.ocemod.2006.03.006
10.1080/1061856021000043913
10.1016/S0278-4343(00)00008-X
10.1002/fld.557
10.1017/S0022112060001201
10.1017/S0022112083002232
10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2
10.1016/j.coastaleng.2009.05.004
10.1016/S0309-1708(02)00007-6
ContentType Journal Article
Copyright Copyright © 2010 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2010 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
DOI 10.1002/fld.2302
DatabaseName Istex
Pascal-Francis
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1115
ExternalDocumentID 10_1002_fld_2302
24318368
FLD2302
ark_67375_WNG_494B7ZPW_N
Genre article
GrantInformation_xml – fundername: Korea Water Resources Corporation
– fundername: Wisconsin Coastal Management Program
  funderid: NOAA‐AD089091‐009.23
– fundername: The Carbon Balance of Lake Superior
  funderid: NSF‐OCE‐0628560
– fundername: University of Wisconsin Sea
  funderid: NA16RG2257
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
6TJ
AAPBV
ABEML
ABHUG
ABTAH
ACSCC
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AI.
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
TUS
VH1
VOH
ZY4
~A~
AAYXX
CITATION
ID FETCH-LOGICAL-c3332-306dac12e18eb5fe2fcb7f2e2120923358ba114e510ec0d78625301229529bb93
IEDL.DBID DR2
ISSN 0271-2091
IngestDate Fri Aug 23 02:24:16 EDT 2024
Sun Oct 22 16:04:48 EDT 2023
Sat Aug 24 00:54:02 EDT 2024
Wed Oct 30 09:52:55 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Water
Curvilinear coordinates
Wave diffraction
Dispersion (wave)
diffraction
non-hydrostatic
reflection
Digital simulation
Circular pipe
Fractional step method
Cnoidal wave
Wave reflection
Wave propagation
Circular cylinder
Free surface flow
Modelling
runup
dispersion
curvilinear model
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3332-306dac12e18eb5fe2fcb7f2e2120923358ba114e510ec0d78625301229529bb93
Notes istex:FD78CC90A957C665AA04065291F2282991D82F49
ark:/67375/WNG-494B7ZPW-N
University of Wisconsin Sea - No. NA16RG2257
ArticleID:FLD2302
Wisconsin Coastal Management Program - No. NOAA-AD089091-009.23
The Carbon Balance of Lake Superior - No. NSF-OCE-0628560
Korea Water Resources Corporation
PageCount 23
ParticipantIDs crossref_primary_10_1002_fld_2302
pascalfrancis_primary_24318368
wiley_primary_10_1002_fld_2302_FLD2302
istex_primary_ark_67375_WNG_494B7ZPW_N
PublicationCentury 2000
PublicationDate 30 July 2011
PublicationDateYYYYMMDD 2011-07-30
PublicationDate_xml – month: 07
  year: 2011
  text: 30 July 2011
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Young CC, Wu WC, Kuo JT, Liu WC. A higher-order σ-coordinate non-hydrostatic model for nonlinear surface waves. Ocean Engineering 2007; 34:1357-1370.
Thomas JF, Warsi ZUA, Mastin CW. Numerical Grid Generation. Elsevier: Amsterdam, 1985.
Zhang KQ, Xiao CY, She J. Comparison of the CEST and SLOSH models for storm surge flooding. Journal of Coastal Research 2008; 24:489-499.
Tsay TK, Ebersole BA, Liu PLF. Numerical modeling of wave propagation using parabolic approximation with a boundary fitted co-ordinate system. International Journal for Numerical Methods in Engineering 1989; 27:37-55.
Liang D, Lin B, Falconer RA. A boundary-fitted numerical model for flood routing with shock capturing capability. Journal of Hydrology 2007; 332:477-486.
Liu PLF, Losada IJ. Wave propagation modeling in coastal engineering. Journal of Hydraulic Research 2002; 40:229-240.
Liu WC, Lee CH, Wu CH, Kimura N. Modeling diagnosis of suspended sediment transport in tidal estuarine system. Environmental Geology 2009; 57(7):1661-1673.
Lee JW, Teubner MD, Nixon JB, Gill PM. A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids 2006; 50:649-672.
Shi FY, Kirby JT, Dalrymple RA, Chen Q. Wave simulations in Ponce de Leon Inlet using Boussinesq model. Journal of Waterway, Port, Coastal, and Ocean Engineering 2003; 129:124-135.
Casulli V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. International Journal for Numerical Methods in Fluids 1999; 30:425-440.
Hirsch C. Numerical Computation of Internal and External Flows. Wiley: New York, 1998.
Young CC, Wu CH. Non-hydrostatic modeling of nonlinear deep-water wave groups. Journal of Engineering Mechanics 2010; 136(2):155-167.
Yue DKP, Mei CC. Forward diffraction of Stokes wave by a thin wedge. Journal of Fluid Mechanics 1980; 99:33-52.
Li B, Fleming CA. Three-dimensional model of Navier-Stokes equations for water waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 2001; 127:16-25.
Shi FY, Dalrymple RA, Kirby JT, Chen Q, Kennedy A. A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering 2001; 42:334-358.
Yuan H, Wu CH. A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. International Journal for Numerical Methods in Fluids 2004; 11:811-835.
Li B. A 3-D model based on Navier-Stokes equations for regular and irregular water wave propagation. Ocean Engineering 2008; 35:1842-1853.
Stelling G, Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids 2003; 43:1-23.
Pacanowski RC, Gnanadesikan A. Transient response in a z-level ocean model that resolves topography with partial cell. Monthly Weather Review 1998; 126:3248-3270.
Dean RG, Dalrymple RA. Water Wave Mechanics for Engineers and Scientists. World Scientific: Singapore, 1991.
Chen XJ. A fully hydrodynamic model for three-dimensional, free-surface flows. International Journal for Numerical Methods in Fluids 2003; 42:929-952.
Chorin AJ. Numerical solution of Navier-Stokes equations. Mathematics of Computation 1968; 22:745-762.
Kanarska Y, Shchepetkin A, Williams JC. Algorithm for non-hydrostatic dynamics in the regional oceanic modeling system. Ocean Modeling 2007; 18:143-174.
Yuan H, Wu CH. An implicit 3D fully non-hydrostatic model for free-surface flows. International Journal for Numerical Methods in Fluids 2004; 46:709-733.
Blasco J, Maidana MA, Espino M. A fully 3D finite element model for non-hydrostatic coastal flows with a free surface. International Journal for Numerical Methods in Fluids 2009; 60(6):611-631.
Casulli V, Cheng RT. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids 1992; 15:629-648.
Lin P, Li CW. A σ-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids 2002; 38:1045-1068.
Fringer OB, Gerritsen M, Street RL. An unstructured-grid, finite-volume, non-hydrostatic, parallel coastal ocean simulator. Ocean Modelling 2006; 14(3-4):139-173.
Kocyigit MB, Falconer RA, Lin B. Three-dimensional numerical modeling of free surface flows with non-hydrostatic pressure. International Journal for Numerical Methods in Fluids 2002; 40:1145-1162.
Young CC, Wu CH. An efficient and accurate non-hydrostatic model with embedded Boussinesq-type like equations for surface wave modeling. International Journal for Numerical Methods in Fluids 2009; 60:27-53.
Wang KH, Wu TY, Yates GT. Three-dimensional scattering of solitary waves by vertical cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering 1992; 118:551-566.
Shi FY, Sun WX. A variable boundary model for storm-surge flooding in generalized curvilinear grids. International Journal for Numerical Methods in Fluids 1995; 21:641-651.
Laitone EV. The second order approximation to cnoidal and solitary waves. Journal of Fluid Mechanics 1960; 9(3):430-444.
Marshall J, Hill C, Perelman L, Adcroft A. Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. Journal of Geophysical Research 1997; 102:5733-5752.
Dalrymple RA, Kirby JT, Martin PA. Spectral methods for forward-propagating water waves in conformally-mapped channel. Applied Ocean Research 1994; 16:249-266.
Koshizuka S, Oka Y, Kondo S. A staggered differencing technique on boundary fitted curvilinear grids for incompressible flows along curvilinear or slant walls. Journal of Computer Mechanics 1990; 7:123-136.
Chen XJ. Using a piecewise linear bottom to fit the bed variation in a laterally averaged z-co-ordinate hydrodynamic model. International Journal for Numerical Methods in Fluids 2004; 44:1185-1205.
Bradford SF. Godunov-based model for non-hydrostatic wave dynamics. Journal of Waterway, Port, Coastal, and Ocean Engineering 2005; 131:226-238.
Cea L, Stelling G, Zijlema M. Non-hydrostatic 3D free surface layer-structured finite volume model for short wave propagation. International Journal for Numerical Methods in Fluids 2009; 61:382-410.
Zhan JM, Li YS, Wai OWH. An accurate finite difference scheme for Boussinesq equations. Journal of Computational Fluid Dynamics 2004; 18(5):421-430.
Van der Vorst HA. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1992; 13:631-644.
Young CC, Wu CH. A σ-coordinate non-hydrostatic model with embedded Boussinesq-type like equations for modeling deep-water waves. International Journal for Numerical Methods in Fluids 2010; DOI: 10.1002/fld.2150.
Tsay TK, Liu PLF. Numerical solution of water wave refraction and diffraction problems in the parabolic approximation. Journal of Geophysical Research 1982; 87:7932-7940.
Stansby PK, Zhou JG. Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal for Numerical Methods in Fluids 1998; 3:541-563.
Kirby JT. Parabolic wave computations in non-orthogonal coordinate systems. Journal of Waterway, Port, Coastal Ocean Engineering 1988; 114:673-685.
Mayer S, Garapon A, Sorensen LS. A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics. International Journal for Numerical Methods in Fluids 1998; 28:293-315.
Rostafinski W. Acoustic systems containing curved duct sections. Journal of Acoustic Society of America 1976; 60:23-28.
Androsov AA, Kagan BA, Romanenkov DA, Voltzinger NE. Numerical modelling of barotropic tidal dynamics in the strait of Messina. Advances in Water Resources 2002; 25:401-415.
Young EF, Aldridge JN, Brown J. Development and validation of a three-dimensional curvilinear model for the study of fluxes through the North Channel of the Irish Sea. Continental Shelf Research 2000; 20:997-1035.
Peregrine DH. Long waves on a beach. Journal of Fluid Mechanics 1967; 27:815-827.
Fletcher CAJ. Computational Techniques for Fluid Dynamics. Springer: Berlin, 1991.
Kirby JT, Dalrymple RA. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly-varying topography. Journal of Fluid Mechanics 1983; 136:453-466.
Shi FY, Kirby JT. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction. Journal of Computational Physics 2005; 204:562-586.
Namin M, Lin B, Falconer R. An implicit numerical algorithm for solving non-hydrostatic free-surface flow problems. International Journal for Numerical Methods in Fluids 2001; 35:341-356.
Beji S, Nadaoka K. Fully dispersive non-linear water wave model in curvilinear coordinates. Journal of Computational Physics 2004; 198:645-658.
Wang KH, Li WM, Lee HS. Propagation and transformation of periodic nonlinear shallow-water waves in basins with selected breakwater systems. Computers and Fluids 2008; 37:931-942.
Young CC, Wu CH, Liu WC, Kuo JT. A higher-order non-hydrostatic sigma model for simulating non-linear refraction-diffraction of water waves. Coastal Engineering 2009; 56(9):919-930.
Walters RA. A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. International Journal for Numerical Methods in Fluids 2005; 49(7):721-737.
Yuan H, Wu CH. Fully non-hydrostatic modeling of surface waves. Journal of Engineering Mechanics 2006; 132:447-456.
Zhang HS, Zhu L, You Y. A numerical model for wave propagation in curvilinear coordinates. Coastal Engineering 2005; 205:513-533.
Li YS, Zhan JM. Boussinesq-type model with boundary-fitted coordinate system. Journal of Waterway, Port, Coastal, and Ocean Engineering 2001; 127:152-160.
Isaacson M. Wave runup around large circular cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering 1978; 104:69-79.
Casulli V, Zanolli P. Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Mathematical and Computer M
2005; 131
2006; 33
1976; 60
2008; 37
2006; 132
2008; 35
1992; 13
1992; 15
1967; 27
1960; 9
2007; 34
1968; 22
2001; 42
1997; 102
2009; 56
2007; 332
2009; 57
2003; 129
2002; 40
1995; 21
1992; 118
1985
2008; 24
1998; 126
1978; 104
2003; 42
2003; 43
1998; 362
2002; 38
2004; 44
2007; 18
2002; 36
1998; 28
1983; 136
2006; 50
2009; 61
2010
2009; 60
2004; 45
2006; 14
2000; 20
2004; 46
1998
2008; 56
1991
2005; 49
1989; 27
2001; 127
2004; 11
2002; 25
2004; 198
2004; 18
2010; 136
1982; 87
2005; 204
1980; 99
2005; 205
1988; 114
1994; 16
1998; 3
1999; 30
2001; 35
1990; 7
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_60_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
Hirsch C (e_1_2_7_15_2) 1998
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
Isaacson M (e_1_2_7_2_2) 1978; 104
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
Thomas JF (e_1_2_7_9_2) 1985
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Stansby PK (e_1_2_7_39_2) 1998; 3
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – start-page: 306
  end-page: 317
– year: 1985
– volume: 28
  start-page: 201
  year: 1998
  end-page: 213
  article-title: Free‐surface flow over curved surfaces, part II: computational model
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 127
  start-page: 152
  year: 2001
  end-page: 160
  article-title: Boussinesq‐type model with boundary‐fitted coordinate system
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 33
  start-page: 587
  year: 2006
  end-page: 609
  article-title: A new efficient 3D non‐hydrostatic free‐surface flow model for simulating water wave motions
  publication-title: Ocean Engineering
– volume: 205
  start-page: 513
  year: 2005
  end-page: 533
  article-title: A numerical model for wave propagation in curvilinear coordinates
  publication-title: Coastal Engineering
– volume: 35
  start-page: 341
  year: 2001
  end-page: 356
  article-title: An implicit numerical algorithm for solving non‐hydrostatic free‐surface flow problems
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 11
  start-page: 811
  year: 2004
  end-page: 835
  article-title: A two‐dimensional vertical non‐hydrostatic σ model with an implicit method for free‐surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 87
  start-page: 7932
  year: 1982
  end-page: 7940
  article-title: Numerical solution of water wave refraction and diffraction problems in the parabolic approximation
  publication-title: Journal of Geophysical Research
– volume: 7
  start-page: 123
  year: 1990
  end-page: 136
  article-title: A staggered differencing technique on boundary fitted curvilinear grids for incompressible flows along curvilinear or slant walls
  publication-title: Journal of Computer Mechanics
– volume: 28
  start-page: 293
  year: 1998
  end-page: 315
  article-title: A fractional step method for unsteady free‐surface flow with applications to non‐linear wave dynamics
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 22
  start-page: 745
  year: 1968
  end-page: 762
  article-title: Numerical solution of Navier–Stokes equations
  publication-title: Mathematics of Computation
– volume: 60
  start-page: 23
  year: 1976
  end-page: 28
  article-title: Acoustic systems containing curved duct sections
  publication-title: Journal of Acoustic Society of America
– volume: 37
  start-page: 931
  year: 2008
  end-page: 942
  article-title: Propagation and transformation of periodic nonlinear shallow‐water waves in basins with selected breakwater systems
  publication-title: Computers and Fluids
– volume: 126
  start-page: 3248
  year: 1998
  end-page: 3270
  article-title: Transient response in a z‐level ocean model that resolves topography with partial cell
  publication-title: Monthly Weather Review
– year: 1998
– volume: 44
  start-page: 55
  year: 2004
  end-page: 70
  article-title: Calculation of curved open channel flow using physical curvilinear non‐orthogonal co‐ordinates
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 56
  start-page: 919
  issue: 9
  year: 2009
  end-page: 930
  article-title: A higher‐order non‐hydrostatic sigma model for simulating non‐linear refraction–diffraction of water waves
  publication-title: Coastal Engineering
– volume: 40
  start-page: 229
  year: 2002
  end-page: 240
  article-title: Wave propagation modeling in coastal engineering
  publication-title: Journal of Hydraulic Research
– volume: 204
  start-page: 562
  year: 2005
  end-page: 586
  article-title: Curvilinear parabolic approximation for surface wave transformation with wave–current interaction
  publication-title: Journal of Computational Physics
– volume: 131
  start-page: 226
  year: 2005
  end-page: 238
  article-title: Godunov‐based model for non‐hydrostatic wave dynamics
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 45
  start-page: 643
  year: 2004
  end-page: 657
  article-title: Boundary‐fitted non‐linear dispersive wave model for regions of arbitrary geometry
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 104
  start-page: 69
  year: 1978
  end-page: 79
  article-title: Wave runup around large circular cylinder
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 14
  start-page: 139
  issue: 3–4
  year: 2006
  end-page: 173
  article-title: An unstructured‐grid, finite‐volume, non‐hydrostatic, parallel coastal ocean simulator
  publication-title: Ocean Modelling
– start-page: 471
  end-page: 490
– volume: 114
  start-page: 673
  year: 1988
  end-page: 685
  article-title: Parabolic wave computations in non‐orthogonal coordinate systems
  publication-title: Journal of Waterway, Port, Coastal Ocean Engineering
– volume: 42
  start-page: 334
  year: 2001
  end-page: 358
  article-title: A fully nonlinear Boussinesq model in generalized curvilinear coordinates
  publication-title: Coastal Engineering
– volume: 136
  start-page: 453
  year: 1983
  end-page: 466
  article-title: A parabolic equation for the combined refraction–diffraction of Stokes waves by mildly‐varying topography
  publication-title: Journal of Fluid Mechanics
– volume: 136
  start-page: 155
  issue: 2
  year: 2010
  end-page: 167
  article-title: Non‐hydrostatic modeling of nonlinear deep‐water wave groups
  publication-title: Journal of Engineering Mechanics
– volume: 9
  start-page: 430
  issue: 3
  year: 1960
  end-page: 444
  article-title: The second order approximation to cnoidal and solitary waves
  publication-title: Journal of Fluid Mechanics
– volume: 43
  start-page: 1
  year: 2003
  end-page: 23
  article-title: An accurate and efficient finite‐difference algorithm for non‐hydrostatic free‐surface flow with application to wave propagation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 25
  start-page: 401
  year: 2002
  end-page: 415
  article-title: Numerical modelling of barotropic tidal dynamics in the strait of Messina
  publication-title: Advances in Water Resources
– volume: 38
  start-page: 1045
  year: 2002
  end-page: 1068
  article-title: A σ‐coordinate three‐dimensional numerical model for surface wave propagation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 20
  start-page: 997
  year: 2000
  end-page: 1035
  article-title: Development and validation of a three‐dimensional curvilinear model for the study of fluxes through the North Channel of the Irish Sea
  publication-title: Continental Shelf Research
– volume: 27
  start-page: 815
  year: 1967
  end-page: 827
  article-title: Long waves on a beach
  publication-title: Journal of Fluid Mechanics
– year: 2010
  article-title: A σ‐coordinate non‐hydrostatic model with embedded Boussinesq‐type like equations for modeling deep‐water waves
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 60
  start-page: 27
  year: 2009
  end-page: 53
  article-title: An efficient and accurate non‐hydrostatic model with embedded Boussinesq‐type like equations for surface wave modeling
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 42
  start-page: 929
  year: 2003
  end-page: 952
  article-title: A fully hydrodynamic model for three‐dimensional, free‐surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 27
  start-page: 37
  year: 1989
  end-page: 55
  article-title: Numerical modeling of wave propagation using parabolic approximation with a boundary fitted co‐ordinate system
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 21
  start-page: 641
  year: 1995
  end-page: 651
  article-title: A variable boundary model for storm‐surge flooding in generalized curvilinear grids
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 35
  start-page: 1842
  year: 2008
  end-page: 1853
  article-title: A 3‐D model based on Navier–Stokes equations for regular and irregular water wave propagation
  publication-title: Ocean Engineering
– volume: 49
  start-page: 721
  issue: 7
  year: 2005
  end-page: 737
  article-title: A semi‐implicit finite element model for non‐hydrostatic (dispersive) surface waves
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 127
  start-page: 16
  year: 2001
  end-page: 25
  article-title: Three‐dimensional model of Navier–Stokes equations for water waves
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 198
  start-page: 645
  year: 2004
  end-page: 658
  article-title: Fully dispersive non‐linear water wave model in curvilinear coordinates
  publication-title: Journal of Computational Physics
– volume: 132
  start-page: 447
  year: 2006
  end-page: 456
  article-title: Fully non‐hydrostatic modeling of surface waves
  publication-title: Journal of Engineering Mechanics
– volume: 50
  start-page: 649
  year: 2006
  end-page: 672
  article-title: A 3‐D non‐hydrostatic pressure model for small amplitude free surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 129
  start-page: 124
  year: 2003
  end-page: 135
  article-title: Wave simulations in Ponce de Leon Inlet using Boussinesq model
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 99
  start-page: 33
  year: 1980
  end-page: 52
  article-title: Forward diffraction of Stokes wave by a thin wedge
  publication-title: Journal of Fluid Mechanics
– volume: 61
  start-page: 382
  year: 2009
  end-page: 410
  article-title: Non‐hydrostatic 3D free surface layer‐structured finite volume model for short wave propagation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 30
  start-page: 425
  year: 1999
  end-page: 440
  article-title: A semi‐implicit finite difference method for non‐hydrostatic, free‐surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 15
  start-page: 629
  year: 1992
  end-page: 648
  article-title: Semi‐implicit finite difference methods for three‐dimensional shallow water flow
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 18
  start-page: 421
  issue: 5
  year: 2004
  end-page: 430
  article-title: An accurate finite difference scheme for Boussinesq equations
  publication-title: Journal of Computational Fluid Dynamics
– volume: 118
  start-page: 551
  year: 1992
  end-page: 566
  article-title: Three‐dimensional scattering of solitary waves by vertical cylinder
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
– volume: 16
  start-page: 249
  year: 1994
  end-page: 266
  article-title: Spectral methods for forward‐propagating water waves in conformally‐mapped channel
  publication-title: Applied Ocean Research
– volume: 60
  start-page: 611
  issue: 6
  year: 2009
  end-page: 631
  article-title: A fully 3D finite element model for non‐hydrostatic coastal flows with a free surface
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 56
  start-page: 607
  year: 2008
  end-page: 627
  article-title: A three‐dimensional non‐hydrostatic vertical boundary fitted model for free‐surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 36
  start-page: 1131
  issue: 9–10
  year: 2002
  end-page: 1149
  article-title: Semi‐implicit numerical modeling of non‐hydrostatic free‐surface flows for environmental problems
  publication-title: Mathematical and Computer Modeling
– volume: 362
  start-page: 157
  year: 1998
  end-page: 176
  article-title: Propagation of solitary waves through significantly curved shallow water channels
  publication-title: Journal of Fluid Mechanics
– volume: 46
  start-page: 709
  year: 2004
  end-page: 733
  article-title: An implicit 3D fully non‐hydrostatic model for free‐surface flows
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 40
  start-page: 1145
  year: 2002
  end-page: 1162
  article-title: Three‐dimensional numerical modeling of free surface flows with non‐hydrostatic pressure
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 332
  start-page: 477
  year: 2007
  end-page: 486
  article-title: A boundary‐fitted numerical model for flood routing with shock capturing capability
  publication-title: Journal of Hydrology
– year: 1991
– volume: 57
  start-page: 1661
  issue: 7
  year: 2009
  end-page: 1673
  article-title: Modeling diagnosis of suspended sediment transport in tidal estuarine system
  publication-title: Environmental Geology
– volume: 24
  start-page: 489
  year: 2008
  end-page: 499
  article-title: Comparison of the CEST and SLOSH models for storm surge flooding
  publication-title: Journal of Coastal Research
– volume: 3
  start-page: 541
  year: 1998
  end-page: 563
  article-title: Shallow‐water flow solver with non‐hydrostatic pressure: 2D vertical plane problems
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 34
  start-page: 1357
  year: 2007
  end-page: 1370
  article-title: A higher‐order σ‐coordinate non‐hydrostatic model for nonlinear surface waves
  publication-title: Ocean Engineering
– volume: 102
  start-page: 5733
  year: 1997
  end-page: 5752
  article-title: Hydrostatic, quasi‐hydrostatic, and non‐hydrostatic ocean modeling
  publication-title: Journal of Geophysical Research
– volume: 18
  start-page: 143
  year: 2007
  end-page: 174
  article-title: Algorithm for non‐hydrostatic dynamics in the regional oceanic modeling system
  publication-title: Ocean Modeling
– volume: 44
  start-page: 1185
  year: 2004
  end-page: 1205
  article-title: Using a piecewise linear bottom to fit the bed variation in a laterally averaged z‐co‐ordinate hydrodynamic model
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 13
  start-page: 631
  year: 1992
  end-page: 644
  article-title: Bi‐CGSTAB: a fast and smoothly converging variant of Bi‐CG for the solution of nonsymmetric linear systems
  publication-title: SIAM Journal on Scientific and Statistical Computing
– ident: e_1_2_7_44_2
  doi: 10.1002/fld.258
– ident: e_1_2_7_51_2
  doi: 10.1029/96JC02776
– ident: e_1_2_7_65_2
  doi: 10.1002/fld.1650150602
– ident: e_1_2_7_72_2
  doi: 10.1121/1.381069
– ident: e_1_2_7_46_2
  doi: 10.1002/fld.595
– ident: e_1_2_7_40_2
  doi: 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
– ident: e_1_2_7_50_2
  doi: 10.1002/fld.1054
– ident: e_1_2_7_34_2
  doi: 10.1061/(ASCE)0733-950X(2001)127:3(152)
– ident: e_1_2_7_8_2
  doi: 10.1061/(ASCE)0733-950X(2003)129:3(124)
– ident: e_1_2_7_29_2
  doi: 10.1061/(ASCE)0733-950X(1988)114:6(673)
– ident: e_1_2_7_24_2
  doi: 10.1016/j.jhydrol.2006.08.002
– ident: e_1_2_7_38_2
  doi: 10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
– ident: e_1_2_7_57_2
  doi: 10.1061/(ASCE)0733-950X(2005)131:5(226)
– ident: e_1_2_7_55_2
  doi: 10.1002/fld.1542
– ident: e_1_2_7_63_2
  doi: 10.1002/fld.680
– ident: e_1_2_7_32_2
  doi: 10.1016/j.coastaleng.2005.02.004
– ident: e_1_2_7_64_2
  doi: 10.1090/S0025-5718-1968-0242392-2
– ident: e_1_2_7_66_2
  doi: 10.1137/0913035
– ident: e_1_2_7_3_2
  doi: 10.1061/(ASCE)0733-950X(1992)118:5(551)
– ident: e_1_2_7_26_2
  doi: 10.1061/9780872620490.027
– ident: e_1_2_7_48_2
  doi: 10.1002/fld.778
– ident: e_1_2_7_6_2
  doi: 10.1002/fld.721
– ident: e_1_2_7_58_2
  doi: 10.1016/j.oceaneng.2008.09.006
– ident: e_1_2_7_13_2
  doi: 10.1002/fld.1904
– ident: e_1_2_7_52_2
  doi: 10.1061/(ASCE)0733-9399(2006)132:4(447)
– ident: e_1_2_7_49_2
  doi: 10.1016/j.oceaneng.2005.06.002
– ident: e_1_2_7_21_2
  doi: 10.1002/fld.1650210803
– ident: e_1_2_7_20_2
  doi: 10.1007/s00254-008-1448-0
– ident: e_1_2_7_42_2
  doi: 10.1002/1097-0363(20010215)35:3<341::AID-FLD96>3.0.CO;2-R
– ident: e_1_2_7_37_2
  doi: 10.1016/j.jcp.2003.12.022
– ident: e_1_2_7_41_2
  doi: 10.1061/(ASCE)0733-950X(2001)127:1(16)
– ident: e_1_2_7_7_2
– ident: e_1_2_7_43_2
  doi: 10.1002/fld.376
– volume: 3
  start-page: 541
  year: 1998
  ident: e_1_2_7_39_2
  article-title: Shallow‐water flow solver with non‐hydrostatic pressure: 2D vertical plane problems
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
  contributor:
    fullname: Stansby PK
– ident: e_1_2_7_31_2
  doi: 10.1016/j.jcp.2004.10.022
– volume-title: Numerical Grid Generation
  year: 1985
  ident: e_1_2_7_9_2
  contributor:
    fullname: Thomas JF
– ident: e_1_2_7_10_2
  doi: 10.1016/S0895-7177(02)00264-9
– volume: 104
  start-page: 69
  year: 1978
  ident: e_1_2_7_2_2
  article-title: Wave runup around large circular cylinder
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering
  contributor:
    fullname: Isaacson M
– ident: e_1_2_7_47_2
  doi: 10.1002/fld.670
– ident: e_1_2_7_56_2
  doi: 10.1002/fld.1961
– ident: e_1_2_7_25_2
  doi: 10.1080/00221680209499939
– ident: e_1_2_7_5_2
  doi: 10.1017/S0022112098008945
– ident: e_1_2_7_61_2
  doi: 10.1016/j.ocemod.2007.04.001
– ident: e_1_2_7_22_2
  doi: 10.2112/06-0709.1
– ident: e_1_2_7_35_2
  doi: 10.1016/S0378-3839(00)00067-3
– ident: e_1_2_7_23_2
  doi: 10.1002/(SICI)1097-0363(19980815)28:2<201::AID-FLD706>3.0.CO;2-Q
– ident: e_1_2_7_14_2
  doi: 10.1007/978-3-642-58239-4
– ident: e_1_2_7_12_2
  doi: 10.1002/fld.1019
– ident: e_1_2_7_54_2
  doi: 10.1016/j.oceaneng.2006.11.001
– ident: e_1_2_7_30_2
  doi: 10.1002/nme.1620270105
– ident: e_1_2_7_33_2
  doi: 10.1017/S0022112067002605
– ident: e_1_2_7_28_2
  doi: 10.1029/JC087iC10p07932
– ident: e_1_2_7_36_2
  doi: 10.1016/j.compfluid.2007.10.007
– ident: e_1_2_7_60_2
  doi: 10.1002/fld.2150
– ident: e_1_2_7_59_2
  doi: 10.1002/fld.1876
– ident: e_1_2_7_17_2
  doi: 10.1007/BF00375926
– ident: e_1_2_7_16_2
  doi: 10.1002/fld.622
– ident: e_1_2_7_4_2
  doi: 10.1016/0141-1187(94)90015-9
– ident: e_1_2_7_68_2
  doi: 10.1017/S0022112080000481
– ident: e_1_2_7_69_2
  doi: 10.1142/1232
– ident: e_1_2_7_67_2
  doi: 10.1061/(ASCE)EM.1943-7889.0000078
– ident: e_1_2_7_11_2
  doi: 10.1016/j.ocemod.2006.03.006
– ident: e_1_2_7_71_2
  doi: 10.1080/1061856021000043913
– ident: e_1_2_7_18_2
  doi: 10.1016/S0278-4343(00)00008-X
– ident: e_1_2_7_45_2
  doi: 10.1002/fld.557
– volume-title: Numerical Computation of Internal and External Flows
  year: 1998
  ident: e_1_2_7_15_2
  contributor:
    fullname: Hirsch C
– ident: e_1_2_7_70_2
  doi: 10.1017/S0022112060001201
– ident: e_1_2_7_27_2
  doi: 10.1017/S0022112083002232
– ident: e_1_2_7_62_2
  doi: 10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2
– ident: e_1_2_7_53_2
  doi: 10.1016/j.coastaleng.2009.05.004
– ident: e_1_2_7_19_2
  doi: 10.1016/S0309-1708(02)00007-6
SSID ssj0009283
Score 2.131083
Snippet An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized...
Abstract An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The...
SourceID crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1093
SubjectTerms Computational methods in fluid dynamics
curvilinear model
diffraction
dispersion
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic waves
non-hydrostatic
Physics
reflection
runup
runup, diffraction
Title An efficient curvilinear non-hydrostatic model for simulating surface water waves
URI https://api.istex.fr/ark:/67375/WNG-494B7ZPW-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2302
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvcABykssLxkJcQsk4zhOjlC6RRWsqrYIVA5R_AggIK2S3ZZy4ifwG_tLmEmyS7cSUsUludixPeN52Jn5hrGtyKLW1w48GwvrhdopT4OJPet8LbJEoFGn3OHjXnR4En48k2dtVCXlwjT4EKMLN5KMWl-TgGe62n0GDc1vLEUxk_oNhKJoroPPz8hRCTQInKAC3AhJMMSd9WF32HHMEr0hot5RZGRWIXHypqrFuMdam5zuLDsfTraJNLneGfT1jrn_B8fxdat5y2ZaT5TvNVtnjk24Yp7Ntl4pb2W-mmfTf0EWLrAvewV3NewEWituBqhpaPCs5MX34s_D4-VvS3kkhAPL6yo7HL1iXl3d1mXCigteDco8M47_Qie3xOdPVy2yk-77r-8OvbYwg2eEEODhMcNmJgAXxE7L3EFutMrBASXighAy1hmesxzKuzO-VXhqkoL-4SUSEq0TscQmcVJumXEpFYCVJvE1OgugtM01to-sjeIIu3bY5pBJ6Y8GfyNtkJYhRZqlRLMO2665N2qQldcUr6Zketr7kIZJuK--fTpNex22McbeUQcISbVFMX6pZtKLQ6XdowN6r_xvw1U21dxCoyr319hkvxy4dXRj-nqj3rBP4cLu3Q
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE4UCggtoViJMQtbXYc5yFOhbIssF0haNUKIVnxI7RqCVWyy-vET-A38kuYSTZbFgkJcUkudmzPeB52Zr4BeBA70vrGY-BS6YLI-CQwaNPA-dDIPJNk1Dl3eG8cDw-iF0fqaAkedbkwLT7E_MKNJaPR1yzgfCG9fYEaWpw5DmMm_btC0i65bsPu6wvsqAxbDE5M-rQVsn6HPBvidtdzwRatMFm_cGxkXhN5irauxaLP2hidwSq866bbxpqcbk0nZst--wPJ8T_Xcw2uzpxRsdPunuuw5Ms1WJ05pmIm9vUaXPkNtfAGvNkphW-QJ8hgCTslZcOj55UoP5Y_v_84_uo4lYShYEVTaEeQYyzqkw9NpbDyvainVZFbLz6Tn1vR85Ovb8LB4On-k2Ewq80QWCklBnTScLnto--n3qjCY2FNUqBHzsVFKVVqcjpqeRJ5b0OX0MFJSf6NlynMjMnkLVimSfnbIJRKEJ2yWWjIX8DEuMJQ-9i5OI2paw_ud1zS5y0Eh27BllETzTTTrAcPG_bNG-TVKYesJUofjp_pKIseJ29fHepxDzYX-DvvgBFrtzilLzVc-utQejDa5ff6vza8B5eG-3sjPXo-frkBl9tLadLs4R1YnlRTf5e8monZbHbvL8FC8vU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8YSIw-gKDG8wPWxPhW6M12-_EIwoGKF6ISiD5suh8Vg1bS3on6xJ_A38hfwkzbOzwTE-NL-7LbbWd2Zn-7nfkNwLPYkdc3HgOXShdExieBQZsGzodG5pmkRZ1zh98M492D6NWROuqiKjkXpuWHmB64sWU0_poN_NQV69ekocUXx1HM5H7no5iALwOit9fUURm2FJyY9GkmZP0J8WyI65OeM0vRPEv1B4dG5jVJp2jLWsxC1mbNGSzCx8nbtqEmJ2vjkVmzv_4gcvy_z7kDCx0UFRvt3FmCG75chsUOlorO6OtluP0bZ-FdeLdRCt_wTtByJeyYXA0Pnlei_FZenl8c_3ScSMJEsKIpsyMIFov689emTlj5SdTjqsitF2eEciu6fvf1PTgYbL9_sRt0lRkCK6XEgMTtcttH30-9UYXHwpqkQI-ciYtSqtTktNHyZPDehi6hbZOS_BMvU5gZk8n7MEcv5R-AUCpBdMpmoSG0gIlxhaH2sXNxGlPXHjydKEmftgQcuqVaRk0y0yyzHjxvtDdtkFcnHLCWKH043NFRFm0mH_YP9bAHKzPqnXbAiH1bnNKTGiX9dSg92Nvi-8N_bbgKN_e3Bnrv5fD1I7jVnkiTWw8fw9yoGvsnBGlGZqWZu1f7pPGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+curvilinear+non-hydrostatic+model+for+simulating+surface+water+waves&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Choi%2C+Doo+Yong&rft.au=Wu%2C+Chin+H.&rft.au=Young%2C+Chih-Chieh&rft.date=2011-07-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=66&rft.issue=9&rft.spage=1093&rft.epage=1115&rft_id=info:doi/10.1002%2Ffld.2302&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_494B7ZPW_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon