An efficient curvilinear non-hydrostatic model for simulating surface water waves
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher...
Saved in:
Published in | International journal for numerical methods in fluids Vol. 66; no. 9; pp. 1093 - 1115 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
30.07.2011
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
AbstractList | Abstract
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd. An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd. |
Author | Choi, Doo Yong Young, Chih-Chieh Wu, Chin H. |
Author_xml | – sequence: 1 givenname: Doo Yong surname: Choi fullname: Choi, Doo Yong organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A – sequence: 2 givenname: Chin H. surname: Wu fullname: Wu, Chin H. email: chinwu@engr.wisc.edu organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A – sequence: 3 givenname: Chih-Chieh surname: Young fullname: Young, Chih-Chieh organization: Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24318368$$DView record in Pascal Francis |
BookMark | eNp1kE1LAzEURYNUsK2CPyEbwc3U5GU-l7XaKpSqoBTchEzmRaPTaUmmrf33prS4c_MuPA6Hy-2RTrNskJBLzgacMbgxdTUAweCEdDkrsoiJVHRIl0HGI2AFPyM9778YYwXkoktehg1FY6y22LRUr93G1rZB5WjwRp-7yi19q1qr6WJZYU3N0lFvF-s6_JoP6tfOKI10q1p04W7Qn5NTo2qPF8fsk7fx_evoIZo-TR5Hw2mkhRAQCZZWSnNAnmOZGASjy8wAAg8tQYgkLxXnMSacoWZVlqeQCMYBigSKsixEn1wfvDpU9A6NXDm7UG4nOZP7KWSYQu6nCOjVAV0pr1VtnGq09X88xILnIs0DFx24ra1x969Pjqd3R--Rt77Fnz9euW-ZZiJL5Hw2kXER32bvz3M5E78RjH1d |
CODEN | IJNFDW |
CitedBy_id | crossref_primary_10_2112_JCOASTRES_D_18_00022_1 crossref_primary_10_1080_00221686_2014_948503 crossref_primary_10_3390_w12123513 crossref_primary_10_1016_j_jcp_2017_11_009 crossref_primary_10_1080_00221686_2013_778340 crossref_primary_10_1016_j_compfluid_2019_04_005 crossref_primary_10_1115_1_4043179 crossref_primary_10_1016_j_oceaneng_2020_106957 crossref_primary_10_1016_j_amc_2017_07_050 crossref_primary_10_1016_j_apm_2017_01_030 crossref_primary_10_1016_j_cnsns_2018_07_029 crossref_primary_10_1007_s11431_013_5159_8 crossref_primary_10_1002_fld_2676 crossref_primary_10_1016_j_oceaneng_2017_12_015 crossref_primary_10_3390_computation9040047 crossref_primary_10_9765_KSCOE_2011_23_5_335 crossref_primary_10_1016_j_oceaneng_2022_113526 crossref_primary_10_1016_j_jcp_2013_09_050 crossref_primary_10_3741_JKWRA_2012_45_4_349 crossref_primary_10_1007_s42241_018_0065_y crossref_primary_10_1088_0169_5983_48_1_015508 crossref_primary_10_1080_00221686_2016_1212943 |
Cites_doi | 10.1002/fld.258 10.1029/96JC02776 10.1002/fld.1650150602 10.1121/1.381069 10.1002/fld.595 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D 10.1002/fld.1054 10.1061/(ASCE)0733-950X(2001)127:3(152) 10.1061/(ASCE)0733-950X(2003)129:3(124) 10.1061/(ASCE)0733-950X(1988)114:6(673) 10.1016/j.jhydrol.2006.08.002 10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1 10.1061/(ASCE)0733-950X(2005)131:5(226) 10.1002/fld.1542 10.1002/fld.680 10.1016/j.coastaleng.2005.02.004 10.1090/S0025-5718-1968-0242392-2 10.1137/0913035 10.1061/(ASCE)0733-950X(1992)118:5(551) 10.1061/9780872620490.027 10.1002/fld.778 10.1002/fld.721 10.1016/j.oceaneng.2008.09.006 10.1002/fld.1904 10.1061/(ASCE)0733-9399(2006)132:4(447) 10.1016/j.oceaneng.2005.06.002 10.1002/fld.1650210803 10.1007/s00254-008-1448-0 10.1002/1097-0363(20010215)35:3<341::AID-FLD96>3.0.CO;2-R 10.1016/j.jcp.2003.12.022 10.1061/(ASCE)0733-950X(2001)127:1(16) 10.1002/fld.376 10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0 10.1016/j.jcp.2004.10.022 10.1016/S0895-7177(02)00264-9 10.1002/fld.670 10.1002/fld.1961 10.1080/00221680209499939 10.1017/S0022112098008945 10.1016/j.ocemod.2007.04.001 10.2112/06-0709.1 10.1016/S0378-3839(00)00067-3 10.1002/(SICI)1097-0363(19980815)28:2<201::AID-FLD706>3.0.CO;2-Q 10.1007/978-3-642-58239-4 10.1002/fld.1019 10.1016/j.oceaneng.2006.11.001 10.1002/nme.1620270105 10.1017/S0022112067002605 10.1029/JC087iC10p07932 10.1016/j.compfluid.2007.10.007 10.1002/fld.2150 10.1002/fld.1876 10.1007/BF00375926 10.1002/fld.622 10.1016/0141-1187(94)90015-9 10.1017/S0022112080000481 10.1142/1232 10.1061/(ASCE)EM.1943-7889.0000078 10.1016/j.ocemod.2006.03.006 10.1080/1061856021000043913 10.1016/S0278-4343(00)00008-X 10.1002/fld.557 10.1017/S0022112060001201 10.1017/S0022112083002232 10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2 10.1016/j.coastaleng.2009.05.004 10.1016/S0309-1708(02)00007-6 |
ContentType | Journal Article |
Copyright | Copyright © 2010 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION |
DOI | 10.1002/fld.2302 |
DatabaseName | Istex Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1097-0363 |
EndPage | 1115 |
ExternalDocumentID | 10_1002_fld_2302 24318368 FLD2302 ark_67375_WNG_494B7ZPW_N |
Genre | article |
GrantInformation_xml | – fundername: Korea Water Resources Corporation – fundername: Wisconsin Coastal Management Program funderid: NOAA‐AD089091‐009.23 – fundername: The Carbon Balance of Lake Superior funderid: NSF‐OCE‐0628560 – fundername: University of Wisconsin Sea funderid: NA16RG2257 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 6TJ AAPBV ABEML ABHUG ABTAH ACSCC ACXME ADAWD ADDAD AFVGU AGJLS AI. IQODW M6O PALCI RIWAO RJQFR SAMSI TUS VH1 VOH ZY4 ~A~ AAYXX CITATION |
ID | FETCH-LOGICAL-c3332-306dac12e18eb5fe2fcb7f2e2120923358ba114e510ec0d78625301229529bb93 |
IEDL.DBID | DR2 |
ISSN | 0271-2091 |
IngestDate | Fri Aug 23 02:24:16 EDT 2024 Sun Oct 22 16:04:48 EDT 2023 Sat Aug 24 00:54:02 EDT 2024 Wed Oct 30 09:52:55 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Water Curvilinear coordinates Wave diffraction Dispersion (wave) diffraction non-hydrostatic reflection Digital simulation Circular pipe Fractional step method Cnoidal wave Wave reflection Wave propagation Circular cylinder Free surface flow Modelling runup dispersion curvilinear model |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3332-306dac12e18eb5fe2fcb7f2e2120923358ba114e510ec0d78625301229529bb93 |
Notes | istex:FD78CC90A957C665AA04065291F2282991D82F49 ark:/67375/WNG-494B7ZPW-N University of Wisconsin Sea - No. NA16RG2257 ArticleID:FLD2302 Wisconsin Coastal Management Program - No. NOAA-AD089091-009.23 The Carbon Balance of Lake Superior - No. NSF-OCE-0628560 Korea Water Resources Corporation |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1002_fld_2302 pascalfrancis_primary_24318368 wiley_primary_10_1002_fld_2302_FLD2302 istex_primary_ark_67375_WNG_494B7ZPW_N |
PublicationCentury | 2000 |
PublicationDate | 30 July 2011 |
PublicationDateYYYYMMDD | 2011-07-30 |
PublicationDate_xml | – month: 07 year: 2011 text: 30 July 2011 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
PublicationTitle | International journal for numerical methods in fluids |
PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
PublicationYear | 2011 |
Publisher | John Wiley & Sons, Ltd Wiley |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
References | Young CC, Wu WC, Kuo JT, Liu WC. A higher-order σ-coordinate non-hydrostatic model for nonlinear surface waves. Ocean Engineering 2007; 34:1357-1370. Thomas JF, Warsi ZUA, Mastin CW. Numerical Grid Generation. Elsevier: Amsterdam, 1985. Zhang KQ, Xiao CY, She J. Comparison of the CEST and SLOSH models for storm surge flooding. Journal of Coastal Research 2008; 24:489-499. Tsay TK, Ebersole BA, Liu PLF. Numerical modeling of wave propagation using parabolic approximation with a boundary fitted co-ordinate system. International Journal for Numerical Methods in Engineering 1989; 27:37-55. Liang D, Lin B, Falconer RA. A boundary-fitted numerical model for flood routing with shock capturing capability. Journal of Hydrology 2007; 332:477-486. Liu PLF, Losada IJ. Wave propagation modeling in coastal engineering. Journal of Hydraulic Research 2002; 40:229-240. Liu WC, Lee CH, Wu CH, Kimura N. Modeling diagnosis of suspended sediment transport in tidal estuarine system. Environmental Geology 2009; 57(7):1661-1673. Lee JW, Teubner MD, Nixon JB, Gill PM. A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids 2006; 50:649-672. Shi FY, Kirby JT, Dalrymple RA, Chen Q. Wave simulations in Ponce de Leon Inlet using Boussinesq model. Journal of Waterway, Port, Coastal, and Ocean Engineering 2003; 129:124-135. Casulli V. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. International Journal for Numerical Methods in Fluids 1999; 30:425-440. Hirsch C. Numerical Computation of Internal and External Flows. Wiley: New York, 1998. Young CC, Wu CH. Non-hydrostatic modeling of nonlinear deep-water wave groups. Journal of Engineering Mechanics 2010; 136(2):155-167. Yue DKP, Mei CC. Forward diffraction of Stokes wave by a thin wedge. Journal of Fluid Mechanics 1980; 99:33-52. Li B, Fleming CA. Three-dimensional model of Navier-Stokes equations for water waves. Journal of Waterway, Port, Coastal, and Ocean Engineering 2001; 127:16-25. Shi FY, Dalrymple RA, Kirby JT, Chen Q, Kennedy A. A fully nonlinear Boussinesq model in generalized curvilinear coordinates. Coastal Engineering 2001; 42:334-358. Yuan H, Wu CH. A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. International Journal for Numerical Methods in Fluids 2004; 11:811-835. Li B. A 3-D model based on Navier-Stokes equations for regular and irregular water wave propagation. Ocean Engineering 2008; 35:1842-1853. Stelling G, Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids 2003; 43:1-23. Pacanowski RC, Gnanadesikan A. Transient response in a z-level ocean model that resolves topography with partial cell. Monthly Weather Review 1998; 126:3248-3270. Dean RG, Dalrymple RA. Water Wave Mechanics for Engineers and Scientists. World Scientific: Singapore, 1991. Chen XJ. A fully hydrodynamic model for three-dimensional, free-surface flows. International Journal for Numerical Methods in Fluids 2003; 42:929-952. Chorin AJ. Numerical solution of Navier-Stokes equations. Mathematics of Computation 1968; 22:745-762. Kanarska Y, Shchepetkin A, Williams JC. Algorithm for non-hydrostatic dynamics in the regional oceanic modeling system. Ocean Modeling 2007; 18:143-174. Yuan H, Wu CH. An implicit 3D fully non-hydrostatic model for free-surface flows. International Journal for Numerical Methods in Fluids 2004; 46:709-733. Blasco J, Maidana MA, Espino M. A fully 3D finite element model for non-hydrostatic coastal flows with a free surface. International Journal for Numerical Methods in Fluids 2009; 60(6):611-631. Casulli V, Cheng RT. Semi-implicit finite difference methods for three-dimensional shallow water flow. International Journal for Numerical Methods in Fluids 1992; 15:629-648. Lin P, Li CW. A σ-coordinate three-dimensional numerical model for surface wave propagation. International Journal for Numerical Methods in Fluids 2002; 38:1045-1068. Fringer OB, Gerritsen M, Street RL. An unstructured-grid, finite-volume, non-hydrostatic, parallel coastal ocean simulator. Ocean Modelling 2006; 14(3-4):139-173. Kocyigit MB, Falconer RA, Lin B. Three-dimensional numerical modeling of free surface flows with non-hydrostatic pressure. International Journal for Numerical Methods in Fluids 2002; 40:1145-1162. Young CC, Wu CH. An efficient and accurate non-hydrostatic model with embedded Boussinesq-type like equations for surface wave modeling. International Journal for Numerical Methods in Fluids 2009; 60:27-53. Wang KH, Wu TY, Yates GT. Three-dimensional scattering of solitary waves by vertical cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering 1992; 118:551-566. Shi FY, Sun WX. A variable boundary model for storm-surge flooding in generalized curvilinear grids. International Journal for Numerical Methods in Fluids 1995; 21:641-651. Laitone EV. The second order approximation to cnoidal and solitary waves. Journal of Fluid Mechanics 1960; 9(3):430-444. Marshall J, Hill C, Perelman L, Adcroft A. Hydrostatic, quasi-hydrostatic, and non-hydrostatic ocean modeling. Journal of Geophysical Research 1997; 102:5733-5752. Dalrymple RA, Kirby JT, Martin PA. Spectral methods for forward-propagating water waves in conformally-mapped channel. Applied Ocean Research 1994; 16:249-266. Koshizuka S, Oka Y, Kondo S. A staggered differencing technique on boundary fitted curvilinear grids for incompressible flows along curvilinear or slant walls. Journal of Computer Mechanics 1990; 7:123-136. Chen XJ. Using a piecewise linear bottom to fit the bed variation in a laterally averaged z-co-ordinate hydrodynamic model. International Journal for Numerical Methods in Fluids 2004; 44:1185-1205. Bradford SF. Godunov-based model for non-hydrostatic wave dynamics. Journal of Waterway, Port, Coastal, and Ocean Engineering 2005; 131:226-238. Cea L, Stelling G, Zijlema M. Non-hydrostatic 3D free surface layer-structured finite volume model for short wave propagation. International Journal for Numerical Methods in Fluids 2009; 61:382-410. Zhan JM, Li YS, Wai OWH. An accurate finite difference scheme for Boussinesq equations. Journal of Computational Fluid Dynamics 2004; 18(5):421-430. Van der Vorst HA. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 1992; 13:631-644. Young CC, Wu CH. A σ-coordinate non-hydrostatic model with embedded Boussinesq-type like equations for modeling deep-water waves. International Journal for Numerical Methods in Fluids 2010; DOI: 10.1002/fld.2150. Tsay TK, Liu PLF. Numerical solution of water wave refraction and diffraction problems in the parabolic approximation. Journal of Geophysical Research 1982; 87:7932-7940. Stansby PK, Zhou JG. Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal for Numerical Methods in Fluids 1998; 3:541-563. Kirby JT. Parabolic wave computations in non-orthogonal coordinate systems. Journal of Waterway, Port, Coastal Ocean Engineering 1988; 114:673-685. Mayer S, Garapon A, Sorensen LS. A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics. International Journal for Numerical Methods in Fluids 1998; 28:293-315. Rostafinski W. Acoustic systems containing curved duct sections. Journal of Acoustic Society of America 1976; 60:23-28. Androsov AA, Kagan BA, Romanenkov DA, Voltzinger NE. Numerical modelling of barotropic tidal dynamics in the strait of Messina. Advances in Water Resources 2002; 25:401-415. Young EF, Aldridge JN, Brown J. Development and validation of a three-dimensional curvilinear model for the study of fluxes through the North Channel of the Irish Sea. Continental Shelf Research 2000; 20:997-1035. Peregrine DH. Long waves on a beach. Journal of Fluid Mechanics 1967; 27:815-827. Fletcher CAJ. Computational Techniques for Fluid Dynamics. Springer: Berlin, 1991. Kirby JT, Dalrymple RA. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly-varying topography. Journal of Fluid Mechanics 1983; 136:453-466. Shi FY, Kirby JT. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction. Journal of Computational Physics 2005; 204:562-586. Namin M, Lin B, Falconer R. An implicit numerical algorithm for solving non-hydrostatic free-surface flow problems. International Journal for Numerical Methods in Fluids 2001; 35:341-356. Beji S, Nadaoka K. Fully dispersive non-linear water wave model in curvilinear coordinates. Journal of Computational Physics 2004; 198:645-658. Wang KH, Li WM, Lee HS. Propagation and transformation of periodic nonlinear shallow-water waves in basins with selected breakwater systems. Computers and Fluids 2008; 37:931-942. Young CC, Wu CH, Liu WC, Kuo JT. A higher-order non-hydrostatic sigma model for simulating non-linear refraction-diffraction of water waves. Coastal Engineering 2009; 56(9):919-930. Walters RA. A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. International Journal for Numerical Methods in Fluids 2005; 49(7):721-737. Yuan H, Wu CH. Fully non-hydrostatic modeling of surface waves. Journal of Engineering Mechanics 2006; 132:447-456. Zhang HS, Zhu L, You Y. A numerical model for wave propagation in curvilinear coordinates. Coastal Engineering 2005; 205:513-533. Li YS, Zhan JM. Boussinesq-type model with boundary-fitted coordinate system. Journal of Waterway, Port, Coastal, and Ocean Engineering 2001; 127:152-160. Isaacson M. Wave runup around large circular cylinder. Journal of Waterway, Port, Coastal, and Ocean Engineering 1978; 104:69-79. Casulli V, Zanolli P. Semi-implicit numerical modeling of non-hydrostatic free-surface flows for environmental problems. Mathematical and Computer M 2005; 131 2006; 33 1976; 60 2008; 37 2006; 132 2008; 35 1992; 13 1992; 15 1967; 27 1960; 9 2007; 34 1968; 22 2001; 42 1997; 102 2009; 56 2007; 332 2009; 57 2003; 129 2002; 40 1995; 21 1992; 118 1985 2008; 24 1998; 126 1978; 104 2003; 42 2003; 43 1998; 362 2002; 38 2004; 44 2007; 18 2002; 36 1998; 28 1983; 136 2006; 50 2009; 61 2010 2009; 60 2004; 45 2006; 14 2000; 20 2004; 46 1998 2008; 56 1991 2005; 49 1989; 27 2001; 127 2004; 11 2002; 25 2004; 198 2004; 18 2010; 136 1982; 87 2005; 204 1980; 99 2005; 205 1988; 114 1994; 16 1998; 3 1999; 30 2001; 35 1990; 7 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_60_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 Hirsch C (e_1_2_7_15_2) 1998 e_1_2_7_71_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 Isaacson M (e_1_2_7_2_2) 1978; 104 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 Thomas JF (e_1_2_7_9_2) 1985 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Stansby PK (e_1_2_7_39_2) 1998; 3 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – start-page: 306 end-page: 317 – year: 1985 – volume: 28 start-page: 201 year: 1998 end-page: 213 article-title: Free‐surface flow over curved surfaces, part II: computational model publication-title: International Journal for Numerical Methods in Fluids – volume: 127 start-page: 152 year: 2001 end-page: 160 article-title: Boussinesq‐type model with boundary‐fitted coordinate system publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 33 start-page: 587 year: 2006 end-page: 609 article-title: A new efficient 3D non‐hydrostatic free‐surface flow model for simulating water wave motions publication-title: Ocean Engineering – volume: 205 start-page: 513 year: 2005 end-page: 533 article-title: A numerical model for wave propagation in curvilinear coordinates publication-title: Coastal Engineering – volume: 35 start-page: 341 year: 2001 end-page: 356 article-title: An implicit numerical algorithm for solving non‐hydrostatic free‐surface flow problems publication-title: International Journal for Numerical Methods in Fluids – volume: 11 start-page: 811 year: 2004 end-page: 835 article-title: A two‐dimensional vertical non‐hydrostatic σ model with an implicit method for free‐surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 87 start-page: 7932 year: 1982 end-page: 7940 article-title: Numerical solution of water wave refraction and diffraction problems in the parabolic approximation publication-title: Journal of Geophysical Research – volume: 7 start-page: 123 year: 1990 end-page: 136 article-title: A staggered differencing technique on boundary fitted curvilinear grids for incompressible flows along curvilinear or slant walls publication-title: Journal of Computer Mechanics – volume: 28 start-page: 293 year: 1998 end-page: 315 article-title: A fractional step method for unsteady free‐surface flow with applications to non‐linear wave dynamics publication-title: International Journal for Numerical Methods in Fluids – volume: 22 start-page: 745 year: 1968 end-page: 762 article-title: Numerical solution of Navier–Stokes equations publication-title: Mathematics of Computation – volume: 60 start-page: 23 year: 1976 end-page: 28 article-title: Acoustic systems containing curved duct sections publication-title: Journal of Acoustic Society of America – volume: 37 start-page: 931 year: 2008 end-page: 942 article-title: Propagation and transformation of periodic nonlinear shallow‐water waves in basins with selected breakwater systems publication-title: Computers and Fluids – volume: 126 start-page: 3248 year: 1998 end-page: 3270 article-title: Transient response in a z‐level ocean model that resolves topography with partial cell publication-title: Monthly Weather Review – year: 1998 – volume: 44 start-page: 55 year: 2004 end-page: 70 article-title: Calculation of curved open channel flow using physical curvilinear non‐orthogonal co‐ordinates publication-title: International Journal for Numerical Methods in Fluids – volume: 56 start-page: 919 issue: 9 year: 2009 end-page: 930 article-title: A higher‐order non‐hydrostatic sigma model for simulating non‐linear refraction–diffraction of water waves publication-title: Coastal Engineering – volume: 40 start-page: 229 year: 2002 end-page: 240 article-title: Wave propagation modeling in coastal engineering publication-title: Journal of Hydraulic Research – volume: 204 start-page: 562 year: 2005 end-page: 586 article-title: Curvilinear parabolic approximation for surface wave transformation with wave–current interaction publication-title: Journal of Computational Physics – volume: 131 start-page: 226 year: 2005 end-page: 238 article-title: Godunov‐based model for non‐hydrostatic wave dynamics publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 45 start-page: 643 year: 2004 end-page: 657 article-title: Boundary‐fitted non‐linear dispersive wave model for regions of arbitrary geometry publication-title: International Journal for Numerical Methods in Fluids – volume: 104 start-page: 69 year: 1978 end-page: 79 article-title: Wave runup around large circular cylinder publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 14 start-page: 139 issue: 3–4 year: 2006 end-page: 173 article-title: An unstructured‐grid, finite‐volume, non‐hydrostatic, parallel coastal ocean simulator publication-title: Ocean Modelling – start-page: 471 end-page: 490 – volume: 114 start-page: 673 year: 1988 end-page: 685 article-title: Parabolic wave computations in non‐orthogonal coordinate systems publication-title: Journal of Waterway, Port, Coastal Ocean Engineering – volume: 42 start-page: 334 year: 2001 end-page: 358 article-title: A fully nonlinear Boussinesq model in generalized curvilinear coordinates publication-title: Coastal Engineering – volume: 136 start-page: 453 year: 1983 end-page: 466 article-title: A parabolic equation for the combined refraction–diffraction of Stokes waves by mildly‐varying topography publication-title: Journal of Fluid Mechanics – volume: 136 start-page: 155 issue: 2 year: 2010 end-page: 167 article-title: Non‐hydrostatic modeling of nonlinear deep‐water wave groups publication-title: Journal of Engineering Mechanics – volume: 9 start-page: 430 issue: 3 year: 1960 end-page: 444 article-title: The second order approximation to cnoidal and solitary waves publication-title: Journal of Fluid Mechanics – volume: 43 start-page: 1 year: 2003 end-page: 23 article-title: An accurate and efficient finite‐difference algorithm for non‐hydrostatic free‐surface flow with application to wave propagation publication-title: International Journal for Numerical Methods in Fluids – volume: 25 start-page: 401 year: 2002 end-page: 415 article-title: Numerical modelling of barotropic tidal dynamics in the strait of Messina publication-title: Advances in Water Resources – volume: 38 start-page: 1045 year: 2002 end-page: 1068 article-title: A σ‐coordinate three‐dimensional numerical model for surface wave propagation publication-title: International Journal for Numerical Methods in Fluids – volume: 20 start-page: 997 year: 2000 end-page: 1035 article-title: Development and validation of a three‐dimensional curvilinear model for the study of fluxes through the North Channel of the Irish Sea publication-title: Continental Shelf Research – volume: 27 start-page: 815 year: 1967 end-page: 827 article-title: Long waves on a beach publication-title: Journal of Fluid Mechanics – year: 2010 article-title: A σ‐coordinate non‐hydrostatic model with embedded Boussinesq‐type like equations for modeling deep‐water waves publication-title: International Journal for Numerical Methods in Fluids – volume: 60 start-page: 27 year: 2009 end-page: 53 article-title: An efficient and accurate non‐hydrostatic model with embedded Boussinesq‐type like equations for surface wave modeling publication-title: International Journal for Numerical Methods in Fluids – volume: 42 start-page: 929 year: 2003 end-page: 952 article-title: A fully hydrodynamic model for three‐dimensional, free‐surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 27 start-page: 37 year: 1989 end-page: 55 article-title: Numerical modeling of wave propagation using parabolic approximation with a boundary fitted co‐ordinate system publication-title: International Journal for Numerical Methods in Engineering – volume: 21 start-page: 641 year: 1995 end-page: 651 article-title: A variable boundary model for storm‐surge flooding in generalized curvilinear grids publication-title: International Journal for Numerical Methods in Fluids – volume: 35 start-page: 1842 year: 2008 end-page: 1853 article-title: A 3‐D model based on Navier–Stokes equations for regular and irregular water wave propagation publication-title: Ocean Engineering – volume: 49 start-page: 721 issue: 7 year: 2005 end-page: 737 article-title: A semi‐implicit finite element model for non‐hydrostatic (dispersive) surface waves publication-title: International Journal for Numerical Methods in Fluids – volume: 127 start-page: 16 year: 2001 end-page: 25 article-title: Three‐dimensional model of Navier–Stokes equations for water waves publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 198 start-page: 645 year: 2004 end-page: 658 article-title: Fully dispersive non‐linear water wave model in curvilinear coordinates publication-title: Journal of Computational Physics – volume: 132 start-page: 447 year: 2006 end-page: 456 article-title: Fully non‐hydrostatic modeling of surface waves publication-title: Journal of Engineering Mechanics – volume: 50 start-page: 649 year: 2006 end-page: 672 article-title: A 3‐D non‐hydrostatic pressure model for small amplitude free surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 129 start-page: 124 year: 2003 end-page: 135 article-title: Wave simulations in Ponce de Leon Inlet using Boussinesq model publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 99 start-page: 33 year: 1980 end-page: 52 article-title: Forward diffraction of Stokes wave by a thin wedge publication-title: Journal of Fluid Mechanics – volume: 61 start-page: 382 year: 2009 end-page: 410 article-title: Non‐hydrostatic 3D free surface layer‐structured finite volume model for short wave propagation publication-title: International Journal for Numerical Methods in Fluids – volume: 30 start-page: 425 year: 1999 end-page: 440 article-title: A semi‐implicit finite difference method for non‐hydrostatic, free‐surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 15 start-page: 629 year: 1992 end-page: 648 article-title: Semi‐implicit finite difference methods for three‐dimensional shallow water flow publication-title: International Journal for Numerical Methods in Fluids – volume: 18 start-page: 421 issue: 5 year: 2004 end-page: 430 article-title: An accurate finite difference scheme for Boussinesq equations publication-title: Journal of Computational Fluid Dynamics – volume: 118 start-page: 551 year: 1992 end-page: 566 article-title: Three‐dimensional scattering of solitary waves by vertical cylinder publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering – volume: 16 start-page: 249 year: 1994 end-page: 266 article-title: Spectral methods for forward‐propagating water waves in conformally‐mapped channel publication-title: Applied Ocean Research – volume: 60 start-page: 611 issue: 6 year: 2009 end-page: 631 article-title: A fully 3D finite element model for non‐hydrostatic coastal flows with a free surface publication-title: International Journal for Numerical Methods in Fluids – volume: 56 start-page: 607 year: 2008 end-page: 627 article-title: A three‐dimensional non‐hydrostatic vertical boundary fitted model for free‐surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 36 start-page: 1131 issue: 9–10 year: 2002 end-page: 1149 article-title: Semi‐implicit numerical modeling of non‐hydrostatic free‐surface flows for environmental problems publication-title: Mathematical and Computer Modeling – volume: 362 start-page: 157 year: 1998 end-page: 176 article-title: Propagation of solitary waves through significantly curved shallow water channels publication-title: Journal of Fluid Mechanics – volume: 46 start-page: 709 year: 2004 end-page: 733 article-title: An implicit 3D fully non‐hydrostatic model for free‐surface flows publication-title: International Journal for Numerical Methods in Fluids – volume: 40 start-page: 1145 year: 2002 end-page: 1162 article-title: Three‐dimensional numerical modeling of free surface flows with non‐hydrostatic pressure publication-title: International Journal for Numerical Methods in Fluids – volume: 332 start-page: 477 year: 2007 end-page: 486 article-title: A boundary‐fitted numerical model for flood routing with shock capturing capability publication-title: Journal of Hydrology – year: 1991 – volume: 57 start-page: 1661 issue: 7 year: 2009 end-page: 1673 article-title: Modeling diagnosis of suspended sediment transport in tidal estuarine system publication-title: Environmental Geology – volume: 24 start-page: 489 year: 2008 end-page: 499 article-title: Comparison of the CEST and SLOSH models for storm surge flooding publication-title: Journal of Coastal Research – volume: 3 start-page: 541 year: 1998 end-page: 563 article-title: Shallow‐water flow solver with non‐hydrostatic pressure: 2D vertical plane problems publication-title: International Journal for Numerical Methods in Fluids – volume: 34 start-page: 1357 year: 2007 end-page: 1370 article-title: A higher‐order σ‐coordinate non‐hydrostatic model for nonlinear surface waves publication-title: Ocean Engineering – volume: 102 start-page: 5733 year: 1997 end-page: 5752 article-title: Hydrostatic, quasi‐hydrostatic, and non‐hydrostatic ocean modeling publication-title: Journal of Geophysical Research – volume: 18 start-page: 143 year: 2007 end-page: 174 article-title: Algorithm for non‐hydrostatic dynamics in the regional oceanic modeling system publication-title: Ocean Modeling – volume: 44 start-page: 1185 year: 2004 end-page: 1205 article-title: Using a piecewise linear bottom to fit the bed variation in a laterally averaged z‐co‐ordinate hydrodynamic model publication-title: International Journal for Numerical Methods in Fluids – volume: 13 start-page: 631 year: 1992 end-page: 644 article-title: Bi‐CGSTAB: a fast and smoothly converging variant of Bi‐CG for the solution of nonsymmetric linear systems publication-title: SIAM Journal on Scientific and Statistical Computing – ident: e_1_2_7_44_2 doi: 10.1002/fld.258 – ident: e_1_2_7_51_2 doi: 10.1029/96JC02776 – ident: e_1_2_7_65_2 doi: 10.1002/fld.1650150602 – ident: e_1_2_7_72_2 doi: 10.1121/1.381069 – ident: e_1_2_7_46_2 doi: 10.1002/fld.595 – ident: e_1_2_7_40_2 doi: 10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D – ident: e_1_2_7_50_2 doi: 10.1002/fld.1054 – ident: e_1_2_7_34_2 doi: 10.1061/(ASCE)0733-950X(2001)127:3(152) – ident: e_1_2_7_8_2 doi: 10.1061/(ASCE)0733-950X(2003)129:3(124) – ident: e_1_2_7_29_2 doi: 10.1061/(ASCE)0733-950X(1988)114:6(673) – ident: e_1_2_7_24_2 doi: 10.1016/j.jhydrol.2006.08.002 – ident: e_1_2_7_38_2 doi: 10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1 – ident: e_1_2_7_57_2 doi: 10.1061/(ASCE)0733-950X(2005)131:5(226) – ident: e_1_2_7_55_2 doi: 10.1002/fld.1542 – ident: e_1_2_7_63_2 doi: 10.1002/fld.680 – ident: e_1_2_7_32_2 doi: 10.1016/j.coastaleng.2005.02.004 – ident: e_1_2_7_64_2 doi: 10.1090/S0025-5718-1968-0242392-2 – ident: e_1_2_7_66_2 doi: 10.1137/0913035 – ident: e_1_2_7_3_2 doi: 10.1061/(ASCE)0733-950X(1992)118:5(551) – ident: e_1_2_7_26_2 doi: 10.1061/9780872620490.027 – ident: e_1_2_7_48_2 doi: 10.1002/fld.778 – ident: e_1_2_7_6_2 doi: 10.1002/fld.721 – ident: e_1_2_7_58_2 doi: 10.1016/j.oceaneng.2008.09.006 – ident: e_1_2_7_13_2 doi: 10.1002/fld.1904 – ident: e_1_2_7_52_2 doi: 10.1061/(ASCE)0733-9399(2006)132:4(447) – ident: e_1_2_7_49_2 doi: 10.1016/j.oceaneng.2005.06.002 – ident: e_1_2_7_21_2 doi: 10.1002/fld.1650210803 – ident: e_1_2_7_20_2 doi: 10.1007/s00254-008-1448-0 – ident: e_1_2_7_42_2 doi: 10.1002/1097-0363(20010215)35:3<341::AID-FLD96>3.0.CO;2-R – ident: e_1_2_7_37_2 doi: 10.1016/j.jcp.2003.12.022 – ident: e_1_2_7_41_2 doi: 10.1061/(ASCE)0733-950X(2001)127:1(16) – ident: e_1_2_7_7_2 – ident: e_1_2_7_43_2 doi: 10.1002/fld.376 – volume: 3 start-page: 541 year: 1998 ident: e_1_2_7_39_2 article-title: Shallow‐water flow solver with non‐hydrostatic pressure: 2D vertical plane problems publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0 contributor: fullname: Stansby PK – ident: e_1_2_7_31_2 doi: 10.1016/j.jcp.2004.10.022 – volume-title: Numerical Grid Generation year: 1985 ident: e_1_2_7_9_2 contributor: fullname: Thomas JF – ident: e_1_2_7_10_2 doi: 10.1016/S0895-7177(02)00264-9 – volume: 104 start-page: 69 year: 1978 ident: e_1_2_7_2_2 article-title: Wave runup around large circular cylinder publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering contributor: fullname: Isaacson M – ident: e_1_2_7_47_2 doi: 10.1002/fld.670 – ident: e_1_2_7_56_2 doi: 10.1002/fld.1961 – ident: e_1_2_7_25_2 doi: 10.1080/00221680209499939 – ident: e_1_2_7_5_2 doi: 10.1017/S0022112098008945 – ident: e_1_2_7_61_2 doi: 10.1016/j.ocemod.2007.04.001 – ident: e_1_2_7_22_2 doi: 10.2112/06-0709.1 – ident: e_1_2_7_35_2 doi: 10.1016/S0378-3839(00)00067-3 – ident: e_1_2_7_23_2 doi: 10.1002/(SICI)1097-0363(19980815)28:2<201::AID-FLD706>3.0.CO;2-Q – ident: e_1_2_7_14_2 doi: 10.1007/978-3-642-58239-4 – ident: e_1_2_7_12_2 doi: 10.1002/fld.1019 – ident: e_1_2_7_54_2 doi: 10.1016/j.oceaneng.2006.11.001 – ident: e_1_2_7_30_2 doi: 10.1002/nme.1620270105 – ident: e_1_2_7_33_2 doi: 10.1017/S0022112067002605 – ident: e_1_2_7_28_2 doi: 10.1029/JC087iC10p07932 – ident: e_1_2_7_36_2 doi: 10.1016/j.compfluid.2007.10.007 – ident: e_1_2_7_60_2 doi: 10.1002/fld.2150 – ident: e_1_2_7_59_2 doi: 10.1002/fld.1876 – ident: e_1_2_7_17_2 doi: 10.1007/BF00375926 – ident: e_1_2_7_16_2 doi: 10.1002/fld.622 – ident: e_1_2_7_4_2 doi: 10.1016/0141-1187(94)90015-9 – ident: e_1_2_7_68_2 doi: 10.1017/S0022112080000481 – ident: e_1_2_7_69_2 doi: 10.1142/1232 – ident: e_1_2_7_67_2 doi: 10.1061/(ASCE)EM.1943-7889.0000078 – ident: e_1_2_7_11_2 doi: 10.1016/j.ocemod.2006.03.006 – ident: e_1_2_7_71_2 doi: 10.1080/1061856021000043913 – ident: e_1_2_7_18_2 doi: 10.1016/S0278-4343(00)00008-X – ident: e_1_2_7_45_2 doi: 10.1002/fld.557 – volume-title: Numerical Computation of Internal and External Flows year: 1998 ident: e_1_2_7_15_2 contributor: fullname: Hirsch C – ident: e_1_2_7_70_2 doi: 10.1017/S0022112060001201 – ident: e_1_2_7_27_2 doi: 10.1017/S0022112083002232 – ident: e_1_2_7_62_2 doi: 10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2 – ident: e_1_2_7_53_2 doi: 10.1016/j.coastaleng.2009.05.004 – ident: e_1_2_7_19_2 doi: 10.1016/S0309-1708(02)00007-6 |
SSID | ssj0009283 |
Score | 2.131083 |
Snippet | An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized... Abstract An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The... |
SourceID | crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1093 |
SubjectTerms | Computational methods in fluid dynamics curvilinear model diffraction dispersion Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic waves non-hydrostatic Physics reflection runup runup, diffraction |
Title | An efficient curvilinear non-hydrostatic model for simulating surface water waves |
URI | https://api.istex.fr/ark:/67375/WNG-494B7ZPW-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2302 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQvcABykssLxkJcQsk4zhOjlC6RRWsqrYIVA5R_AggIK2S3ZZy4ifwG_tLmEmyS7cSUsUludixPeN52Jn5hrGtyKLW1w48GwvrhdopT4OJPet8LbJEoFGn3OHjXnR4En48k2dtVCXlwjT4EKMLN5KMWl-TgGe62n0GDc1vLEUxk_oNhKJoroPPz8hRCTQInKAC3AhJMMSd9WF32HHMEr0hot5RZGRWIXHypqrFuMdam5zuLDsfTraJNLneGfT1jrn_B8fxdat5y2ZaT5TvNVtnjk24Yp7Ntl4pb2W-mmfTf0EWLrAvewV3NewEWituBqhpaPCs5MX34s_D4-VvS3kkhAPL6yo7HL1iXl3d1mXCigteDco8M47_Qie3xOdPVy2yk-77r-8OvbYwg2eEEODhMcNmJgAXxE7L3EFutMrBASXighAy1hmesxzKuzO-VXhqkoL-4SUSEq0TscQmcVJumXEpFYCVJvE1OgugtM01to-sjeIIu3bY5pBJ6Y8GfyNtkJYhRZqlRLMO2665N2qQldcUr6Zketr7kIZJuK--fTpNex22McbeUQcISbVFMX6pZtKLQ6XdowN6r_xvw1U21dxCoyr319hkvxy4dXRj-nqj3rBP4cLu3Q |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QE4UCggtoViJMQtbXYc5yFOhbIssF0haNUKIVnxI7RqCVWyy-vET-A38kuYSTZbFgkJcUkudmzPeB52Zr4BeBA70vrGY-BS6YLI-CQwaNPA-dDIPJNk1Dl3eG8cDw-iF0fqaAkedbkwLT7E_MKNJaPR1yzgfCG9fYEaWpw5DmMm_btC0i65bsPu6wvsqAxbDE5M-rQVsn6HPBvidtdzwRatMFm_cGxkXhN5irauxaLP2hidwSq866bbxpqcbk0nZst--wPJ8T_Xcw2uzpxRsdPunuuw5Ms1WJ05pmIm9vUaXPkNtfAGvNkphW-QJ8hgCTslZcOj55UoP5Y_v_84_uo4lYShYEVTaEeQYyzqkw9NpbDyvainVZFbLz6Tn1vR85Ovb8LB4On-k2Ewq80QWCklBnTScLnto--n3qjCY2FNUqBHzsVFKVVqcjpqeRJ5b0OX0MFJSf6NlynMjMnkLVimSfnbIJRKEJ2yWWjIX8DEuMJQ-9i5OI2paw_ud1zS5y0Eh27BllETzTTTrAcPG_bNG-TVKYesJUofjp_pKIseJ29fHepxDzYX-DvvgBFrtzilLzVc-utQejDa5ff6vza8B5eG-3sjPXo-frkBl9tLadLs4R1YnlRTf5e8monZbHbvL8FC8vU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9RAEJ8YSIw-gKDG8wPWxPhW6M12-_EIwoGKF6ISiD5suh8Vg1bS3on6xJ_A38hfwkzbOzwTE-NL-7LbbWd2Zn-7nfkNwLPYkdc3HgOXShdExieBQZsGzodG5pmkRZ1zh98M492D6NWROuqiKjkXpuWHmB64sWU0_poN_NQV69ekocUXx1HM5H7no5iALwOit9fUURm2FJyY9GkmZP0J8WyI65OeM0vRPEv1B4dG5jVJp2jLWsxC1mbNGSzCx8nbtqEmJ2vjkVmzv_4gcvy_z7kDCx0UFRvt3FmCG75chsUOlorO6OtluP0bZ-FdeLdRCt_wTtByJeyYXA0Pnlei_FZenl8c_3ScSMJEsKIpsyMIFov689emTlj5SdTjqsitF2eEciu6fvf1PTgYbL9_sRt0lRkCK6XEgMTtcttH30-9UYXHwpqkQI-ciYtSqtTktNHyZPDehi6hbZOS_BMvU5gZk8n7MEcv5R-AUCpBdMpmoSG0gIlxhaH2sXNxGlPXHjydKEmftgQcuqVaRk0y0yyzHjxvtDdtkFcnHLCWKH043NFRFm0mH_YP9bAHKzPqnXbAiH1bnNKTGiX9dSg92Nvi-8N_bbgKN_e3Bnrv5fD1I7jVnkiTWw8fw9yoGvsnBGlGZqWZu1f7pPGk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+curvilinear+non-hydrostatic+model+for+simulating+surface+water+waves&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Choi%2C+Doo+Yong&rft.au=Wu%2C+Chin+H.&rft.au=Young%2C+Chih-Chieh&rft.date=2011-07-30&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=66&rft.issue=9&rft.spage=1093&rft.epage=1115&rft_id=info:doi/10.1002%2Ffld.2302&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_494B7ZPW_N |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |