Territorial Resilience Through Visibility Analysis for Immediate Detection of Wildfires Integrating Fire Susceptibility, Geographical Features, and Optimization Methods

Climate change effects tend to reinforce the frequency and severity of wildfires worldwide, and early detection of wildfire events is considered of crucial importance. The primary aim of this study was the spatial optimization of fire resources (that is, watchtowers) considering the interplay of geo...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of disaster risk science Vol. 13; no. 4; pp. 621 - 635
Main Authors Sakellariou, Stavros, Sfoungaris, George, Christopoulou, Olga
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.08.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-0055
2192-6395
DOI10.1007/s13753-022-00433-2

Cover

Loading…
Abstract Climate change effects tend to reinforce the frequency and severity of wildfires worldwide, and early detection of wildfire events is considered of crucial importance. The primary aim of this study was the spatial optimization of fire resources (that is, watchtowers) considering the interplay of geographical features (that is, simulated burn probability to delimit fire vulnerability; topography effects; and accessibility to candidate watchtower locations) and geo-optimization techniques (exact programming methods) to find both an effective and financially feasible solution in terms of visibility coverage in Chalkidiki Prefecture of northern Greece. The integration of all geographical features through the Analytical Hierarchy Process indicated the most appropriate territory for the installment of watchtowers. Terrain analysis guaranteed the independence and proximity of location options (applying spatial systematic sampling to avoid first order redundancy) across the ridges. The conjunction of the above processes yielded 654 candidate watchtower positions in 151,890 ha of forests. The algorithm was designed to maximize the joint visible area and simultaneously minimize the number of candidate locations and overlapping effects (avoiding second order redundancy). The results indicate four differentiated location options in the study area: (1) 75 locations can cover 90% of the forests (maximum visible area); (2) 47 locations can cover 85% of the forests; (3) 31 locations can cover 80.2% of the forests; and (4) 16 locations can cover 70.6% of the forests. The last option is an efficient solution because it covers about 71% of the forests with just half the number of watchtowers that would be required for the third option with only about 10% additional forest coverage. However, the final choice of any location scheme is subject to agency priorities and their respective financial flexibility.
AbstractList Climate change effects tend to reinforce the frequency and severity of wildfires worldwide, and early detection of wildfire events is considered of crucial importance. The primary aim of this study was the spatial optimization of fire resources (that is, watchtowers) considering the interplay of geographical features (that is, simulated burn probability to delimit fire vulnerability; topography effects; and accessibility to candidate watchtower locations) and geo-optimization techniques (exact programming methods) to find both an effective and financially feasible solution in terms of visibility coverage in Chalkidiki Prefecture of northern Greece. The integration of all geographical features through the Analytical Hierarchy Process indicated the most appropriate territory for the installment of watchtowers. Terrain analysis guaranteed the independence and proximity of location options (applying spatial systematic sampling to avoid first order redundancy) across the ridges. The conjunction of the above processes yielded 654 candidate watchtower positions in 151,890 ha of forests. The algorithm was designed to maximize the joint visible area and simultaneously minimize the number of candidate locations and overlapping effects (avoiding second order redundancy). The results indicate four differentiated location options in the study area: (1) 75 locations can cover 90% of the forests (maximum visible area); (2) 47 locations can cover 85% of the forests; (3) 31 locations can cover 80.2% of the forests; and (4) 16 locations can cover 70.6% of the forests. The last option is an efficient solution because it covers about 71% of the forests with just half the number of watchtowers that would be required for the third option with only about 10% additional forest coverage. However, the final choice of any location scheme is subject to agency priorities and their respective financial flexibility.
Audience Academic
Author Sfoungaris, George
Sakellariou, Stavros
Christopoulou, Olga
Author_xml – sequence: 1
  givenname: Stavros
  surname: Sakellariou
  fullname: Sakellariou, Stavros
  email: stasakel@gmail.com
  organization: Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Department of Planning and Regional Development, University of Thessaly
– sequence: 2
  givenname: George
  surname: Sfoungaris
  fullname: Sfoungaris, George
  organization: Computer Science Department, University of Crete
– sequence: 3
  givenname: Olga
  surname: Christopoulou
  fullname: Christopoulou, Olga
  organization: Department of Planning and Regional Development, University of Thessaly
BookMark eNp9kc9u1DAQxiNUJErpC3CyxLUpjp1_Pq4KW1ZqVQkWOFqOM85OlcSL7T0sT8RjMmwqVeJQ-2Br5vuNPfO9zc5mP0OWvS_4dcF58zEWsqlkzoXIOS-lzMWr7FwUSuS1VNUZ3bmqKFVVb7LLGB85rbauRavOsz9bCAGTD2hG9hUijgizBbbdBX8YduwHRuwomI5sNZvxGDEy5wPbTBP0aBKwT5DAJvQz8479xLF3GCCyzZxgCCbhPLA1Rdi3Q7SwT0_VrtgteMrvd2jp5TWYdCDsipm5Zw8km_C3OVW9h7TzfXyXvXZmjHD5dF5k39eftzdf8ruH283N6i63UoqUO9cp15VN1xmjOt5XNBUlulIYaYuyUXUJtqxqI0UFlreq7Htjmr4pTV0X1nJ5kX1Y6u6D_3WAmPSjPwRqPWoaGM23aHlNqutFNZgRNM7Op2As7R4mtGSPQ4qvmqIqlWhqRUC7ADb4GAM4bTGdGiQQR11w_c9LvXip6df65KUWhIr_0H3AyYTjy5BcoEjieYDw3MYL1F-R0LcB
CitedBy_id crossref_primary_10_3390_land13071018
crossref_primary_10_1080_13658816_2024_2408279
crossref_primary_10_1139_cjfr_2023_0084
crossref_primary_10_3390_fire6080305
crossref_primary_10_1007_s41207_023_00385_z
crossref_primary_10_1007_s13753_023_00464_3
Cites_doi 10.3390/su11247166
10.3390/s20175014
10.1080/17538947.2016.1207718
10.1080/2150704X.2017.1350303
10.4018/IJAEIS.2017100101
10.1016/j.scitotenv.2018.11.038
10.1016/j.eswa.2019.112975
10.1080/13658816.2019.1664743
10.5194/bg-11-7305-2014
10.3390/s18030712
10.1029/2019GL083699
10.1007/3-540-35589-8_52
10.1007/978-3-030-55563-4_4
10.1016/j.scitotenv.2020.139004
10.1007/s11676-018-0666-x
10.1109/HIS.2010.5600013
10.5194/nhess-18-847-2018
10.1007/978-3-642-56094-1_9
10.3390/f12010005
10.1016/j.envsoft.2013.04.004
10.1139/cjfr-2019-0413
10.14358/PERS.69.8.881
10.1016/j.scitotenv.2020.139561
10.1080/17477891.2019.1628696
10.1016/j.landusepol.2019.104206
10.1155/2014/597368
10.1038/s41598-019-46362-x
10.1016/j.ijdrr.2020.101479
10.1016/j.scitotenv.2016.03.231
10.1016/0377-2217(90)90057-I
10.1088/1748-9326/aa7e6e
10.1007/s11069-012-0495-8
10.1016/j.ijdrr.2022.103129
10.1016/j.still.2017.12.005
10.1016/j.cageo.2004.07.008
10.1007/s10661-017-6008-1
10.1016/j.firesaf.2014.11.016
ContentType Journal Article
Copyright The Author(s) 2022
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7TN
7XB
88F
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
F1W
GNUQQ
H97
HCIFZ
L.G
L6V
M1Q
M7S
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1007/s13753-022-00433-2
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Military Database (ProQuest)
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 2192-6395
EndPage 635
ExternalDocumentID A715492769
10_1007_s13753_022_00433_2
GeographicLocations Greece
United States
GeographicLocations_xml – name: Greece
– name: United States
GroupedDBID -02
-0B
-A0
-SB
-S~
0R~
2VQ
2XV
3V.
4.4
40G
5VR
5VS
7XC
8FE
8FG
8FH
92M
9D9
9DB
AAFWJ
AAKKN
AAXDM
ABEEZ
ABFTD
ABJCF
ABUWG
ACACY
ACGFS
ACIWK
ACULB
ADINQ
AENEX
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ATCPS
BAPOH
BENPR
BGLVJ
BHPHI
BPHCQ
C24
C6C
CAJEB
CCPQU
DWQXO
EBS
EJD
FIL
GROUPED_DOAJ
HCIFZ
HF~
HZ~
IAO
IEP
IGS
IPNFZ
ITC
KQ8
L6V
M1Q
M7S
M~E
O9-
OK1
P62
PATMY
PIMPY
PQQKQ
PROAC
PTHSS
PYCSY
Q--
R-B
RIG
RSV
RT2
SCL
SEV
SOJ
T8R
TKY
U1F
U1G
U2A
U5B
U5L
AAYXX
CITATION
PHGZM
PHGZT
PMFND
7TN
7XB
8FK
AZQEC
C1K
F1W
GNUQQ
H97
L.G
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c332t-ffb9fb47bbaa9b0d502292b42a3c147964ec456a325ec0894ddaa7d74a661cc03
IEDL.DBID BENPR
ISSN 2095-0055
IngestDate Fri Jul 25 10:52:37 EDT 2025
Tue Jun 10 20:33:47 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Tue Jul 01 01:50:36 EDT 2025
Fri Feb 21 02:44:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Greece
Wildfire detection
Topography effects
Watchtowers
Viewshed coverage
Spatial optimization
Burn probability
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-ffb9fb47bbaa9b0d502292b42a3c147964ec456a325ec0894ddaa7d74a661cc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2890041806?pq-origsite=%requestingapplication%
PQID 2890041806
PQPubID 2034738
PageCount 15
ParticipantIDs proquest_journals_2890041806
gale_infotracacademiconefile_A715492769
crossref_citationtrail_10_1007_s13753_022_00433_2
crossref_primary_10_1007_s13753_022_00433_2
springer_journals_10_1007_s13753_022_00433_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220800
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 8
  year: 2022
  text: 20220800
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle International journal of disaster risk science
PublicationTitleAbbrev Int J Disaster Risk Sci
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
References WangYDouWA fast candidate viewpoints filtering algorithm for multiple viewshed site planningInternational Journal of Geographical Information Science202034344846310.1080/13658816.2019.1664743
Preparedness Advice. 2022. Understanding the uses of the military crest of a hill or ridge. https://preparednessadvice.com/understanding-uses-military-crest-hill-ridge/. Accessed 5 Aug 2022.
USDA (U.S. Department of Agriculture). 2018. Fire, fuel and smoke science program. Rocky mountain research station. http://www.firelab.org/project/windninja. Accessed 13 Sept 2018.
Mota, P.H.S., S.J.S.S. da Rocha, N.L.M. de Castro, G.E. Marcatti, L.C. de Jesus França, B.L.S. Schettini, P.H. Villanova, H.T. dos Santos, et al. 2019. Forest fire hazard zoning in Mato Grosso State, Brazil. Land Use Policy 88: Article 104206.
Magalhaes, S.V., M.V. Andrade, and W.R. Franklin. 2010. An optimization heuristic for siting observers in huge terrains stored in external memory. In Proceedings of the 10th International Conference on Hybrid Intelligent Systems, 23–25 August, Atlanta, USA, 135–140.
RuffaultJCurtTMartin-StPaulNKMoronVTrigoRMExtreme wildfire events are linked to global-change-type droughts in the northern MediterraneanNatural Hazards and Earth System Sciences201818384785610.5194/nhess-18-847-2018
Di VirgilioGEvansJPBlakeSAArmstrongMDowdyAJSharplesJMcRaeRClimate change increases the potential for extreme wildfiresGeophysical Research Letters201946148517852610.1029/2019GL083699
NCMA (National Cadastre & Mapping Agency S.A.). 2012. Hellenic Cadastre. https://www.ktimatologio.gr/. Accessed 15 Jun 2018.
HFB (Hellenic Fire Brigade). 2018. Hellenic Fire Brigade: Fire events. https://www.fireservice.gr/el_GR/stoicheia-symbanton. Accessed 17 Apr 2018 (in Greek).
SakellariouSSamaraFTampekisSChristopoulouOSfougarisAOptimal number and location of watchtowers for immediate detection of forest fires in a small islandInternational Journal of Agricultural and Environmental Information Systems20178411910.4018/IJAEIS.2017100101
ShiXXueBDeriving a minimum set of viewpoints for maximum coverage over any given digital elevation model dataInternational Journal of Digital Earth20169121153116710.1080/17538947.2016.1207718
Parisien, M.-A., V. Kafka, K.G. Hirsch, J.B. Todd, S.G. Lavoie, and P.D. Maczek. 2005. Mapping fire susceptibility with the Burn-P3 simulation model. Information Report NOR-X-405. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
WuBWangZZhangQShenNDistinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese loessial regionSoil and Tillage Research2018177889610.1016/j.still.2017.12.005
Sakellariou, S., A. Sfougaris, O. Christopoulou, and S. Tampekis. 2022. Integrated wildfire risk assessment of natural and anthropogenic ecosystems based on simulation modeling and remotely sensed data fusion. International Journal of Disaster Risk Reduction 78: Article 103129.
BaoSXiaoNLaiZZhangHKimCOptimizing watchtower locations for forest fire monitoring using location modelsFire Safety Journal20157110010910.1016/j.firesaf.2014.11.016
XuGZhongXReal-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8Remote Sensing Letters20178111052106110.1080/2150704X.2017.1350303
SakellariouSSamaraFTampekisSSfougarisAChristopoulouODevelopment of a Spatial Decision Support System (SDSS) for the active forest-urban fires management through location planning of mobile fire unitsEnvironmental Hazards202019213115110.1080/17477891.2019.1628696
Esri (Environmental Systems Research Institute). 2019. How to: Identify ridgelines from a DEM. https://support.esri.com/en/technical-article/000011289. Accessed 20 Mar 2019.
CLMS (Copernicus Land Monitoring Service). 2018. CORINE Land Cover. https://land.copernicus.eu/pan-european/corine-land-cover. Accessed 22 Mar 2018.
HysaADjalanteRBisriMBFShawRClassifying the forest surfaces in metropolitan areas by their wildfire ignition probability and spreading capacity in support of forest fire risk reductionIntegrated research on disaster risks2021ChamSpringer517010.1007/978-3-030-55563-4_4
Çolak, E., and F. Sunar. 2020. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. International Journal of Disaster Risk Reduction 45: Article 101479.
HNMS (Hellenic National Meteorological Service). 2018. Hellenic National Meteorological Service webpage. http://www.hnms.gr/emy/en/index_html?. Accessed 10 Feb 2018.
KimYHRanaSWiseSExploring multiple viewshed analysis using terrain features and optimisation techniquesComputers & Geosciences2004309–101019103210.1016/j.cageo.2004.07.008
Wotton, B.M., M.D. Flannigan, and G.A. Marshall. 2017. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters 12(9): Article 095003.
Tymstra, C., R.W. Bryce, B.M. Wotton, S.W. Taylor, and O.B. Armitage. 2010. Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model. Information Report NOR-X-417. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
Zhao, Y., J. Ma, X. Li, and J. Zhang. 2018. Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 18(3): Article 712.
ZhangFZhaoPThiyagalingamJKirubarajanTTerrain-influenced incremental watchtower expansion for wildfire detectionScience of the Total Environment201965416417610.1016/j.scitotenv.2018.11.038
Busico, G., E. Giuditta, N. Kazakis, and N. Colombani. 2019. A hybrid GIS and AHP approach for modelling actual and future forest fire risk under climate change accounting water resources attenuation role. Sustainability 11(24): Article 7166.
Zhang, F., P. Zhao, S. Xu, Y. Wu, X. Yang, and Y. Zhang. 2020. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of the Total Environment 737: Article 139561.
Esri (Environmental Systems Research Institute). 2020. Viewshed. https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/viewshed.htm. Accessed 20 Mar 2020.
Milanović, S., N. Marković, D. Pamučar, L. Gigović, P. Kostić, and S.D. Milanović. 2021. Forest fire probability mapping in Eastern Serbia: Logistic regression versus random forest method. Forests 12(1): Article 5.
van Kreveld, M. 1996. Variations on sweep algorithms: Efficient computation of extended viewsheds and class intervals. Department of Computer Science, Utrecht University, The Netherlands. http://www.cs.uu.nl/research/techreps/repo/CS-1996/1996-22.pdf. Accessed 15 Jun 2020.
FranklinWRRayCKWaughTCHealeyRGHigher isn’t necessarily better: Visibility algorithms and experimentsAdvances in GIS research: 6th international symposium on spatial data handling1994LondonTaylor & Francis751770
KucukOTopalogluOAltunelAOCetinMVisibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in TurkeyEnvironmental Monitoring and Assessment2017189711810.1007/s10661-017-6008-1
van Wagner, C.E. 1987. Development and structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report 35. Ottawa: Canadian Forestry Service.
Sakellariou, S., M.A. Parisien, M. Flannigan, X. Wang, B. de Groot, S. Tampekis, F. Samara, A. Sfougaris, et al. 2020. Spatial planning of fire-agency stations as a function of wildfire likelihood in Thasos, Greece. Science of the Total Environment 729: Article 139004.
CruzMGAlexanderMEUncertainty associated with model predictions of surface and crown fire rates of spreadEnvironmental Modelling & Software201347162810.1016/j.envsoft.2013.04.004
FranklinWRRichardsonDEOosteromPSiting observers on terrainAdvances in spatial data handling2002Berlin, HeidelbergSpringer10912010.1007/978-3-642-56094-1_9
FranklinWRVogtCRiedlAKainzWElmesGATradeoffs when multiple observer siting on large terrain cellsProgress in spatial data handling2006Berlin, HeidelbergSpringer84586110.1007/3-540-35589-8_52
GöltaşMDemirelTÇağlayanİVisibility analysis of fire watchtowers using GIS: A case study in Dalaman State Forest EnterpriseEuropean Journal of Forest Engineering2017326671
ParisienMAWalkerGRLittleJMSimpsonBNWangXPerrakisDDConsiderations for modeling burn probability across landscapes with steep environmental gradients: An example from the Columbia Mountains CanadaNatural Hazards201366243946210.1007/s11069-012-0495-8
SaatyTLHow to make a decision: The analytic hierarchy processEuropean Journal of Operational Research199048192610.1016/0377-2217(90)90057-I
Alkhatib, A.A. 2014. A review on forest fire detection techniques. International Journal of Distributed Sensor Networks 10(3): Article 597368.
Python. 2020. Numeric and mathematical modules. https://docs.python.org/3/library/numeric.html. Accessed 20 Mar 2020.
Dowdy, A.J., H. Ye, A. Pepler, M. Thatcher, S.L. Osbrough, J.P. Evans, G.D. Virgilio, and N. McCarthy. 2019. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports 9(1): Article 10073.
Sakellariou, S., P. Cabral, M. Caetano, F. Pla, M. Painho, O. Christopoulou, A. Sfougaris, N. Dalezios, et al. 2020. Remotely sensed data fusion for spatiotemporal geostatistical analysis of forest fire hazard. Sensors 20(17): Article 5014.
EugenioFCdos SantosARFiedlerNCRibeiroGAda SilvaAGJuvanholRSSchettinoVRMarcattiGEGIS applied to location of fires detection towers in domain area of tropical forestScience of the Total Environment201656254254910.1016/j.scitotenv.2016.03.231
Geofabrik GmbH and OpenStreetMap Contributors. 2018. Data for Greece. https://download.geofabrik.de/europe/greece.html. Accessed 20 Dec 2018.
Esri (Environmental Systems Research Institute). 2020. What is ArcPy?https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm. Accessed 20 Mar 2020.
Sousa, M.J., A. Moutinho, and M. Almeida. 2020. Wildfire detection using transfer learning on augmented datasets. Expert Systems with Applications 142:
433_CR47
433_CR48
433_CR49
TT van Leeuwen (433_CR50) 2014; 11
433_CR45
433_CR41
FC Eugenio (433_CR13) 2016; 562
S Rana (433_CR34) 2003; 69
WR Franklin (433_CR15) 2002
YH Kim (433_CR23) 2004; 30
433_CR37
433_CR38
G Di Virgilio (433_CR8) 2019; 46
433_CR32
433_CR33
433_CR30
X Tian (433_CR46) 2020; 50
433_CR1
TL Saaty (433_CR36) 1990; 48
S Bao (433_CR2) 2015; 71
S Sakellariou (433_CR42) 2019; 30
G Xu (433_CR55) 2017; 8
433_CR9
433_CR6
433_CR4
433_CR28
433_CR5
433_CR29
MG Cruz (433_CR7) 2013; 47
B Wu (433_CR54) 2018; 177
433_CR3
S Sakellariou (433_CR39) 2017; 8
433_CR26
433_CR27
WR Franklin (433_CR16) 1994
433_CR20
CR Ferreira (433_CR14) 2014; 5
433_CR21
O Kucuk (433_CR24) 2017; 189
J Ruffault (433_CR35) 2018; 18
S Sakellariou (433_CR40) 2020; 19
A Hysa (433_CR22) 2021
MA Parisien (433_CR31) 2013; 66
Y Wang (433_CR52) 2020; 34
433_CR18
WR Franklin (433_CR17) 2006
433_CR57
433_CR58
F Sivrikaya (433_CR44) 2014; 23
433_CR53
433_CR10
433_CR11
433_CR12
433_CR51
J Lee (433_CR25) 1994; 60
F Zhang (433_CR56) 2019; 654
M Göltaş (433_CR19) 2017; 3
X Shi (433_CR43) 2016; 9
References_xml – reference: FranklinWRVogtCRiedlAKainzWElmesGATradeoffs when multiple observer siting on large terrain cellsProgress in spatial data handling2006Berlin, HeidelbergSpringer84586110.1007/3-540-35589-8_52
– reference: Parisien, M.-A., V. Kafka, K.G. Hirsch, J.B. Todd, S.G. Lavoie, and P.D. Maczek. 2005. Mapping fire susceptibility with the Burn-P3 simulation model. Information Report NOR-X-405. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
– reference: SakellariouSTampekisSSamaraFFlanniganMJaegerDChristopoulouOSfougarisADetermination of fire risk to assist fire management for insular areas: The case of a small Greek islandJournal of Forestry Research201930258960110.1007/s11676-018-0666-x
– reference: van LeeuwenTTvan der WerfGRHoffmannAADetmersRGRückerGFrenchNHArchibaldSCarvalhoJBiomass burning fuel consumption rates: A field measurement databaseBiogeosciences201411247305732910.5194/bg-11-7305-2014
– reference: USDA (U.S. Department of Agriculture). 2018. Fire, fuel and smoke science program. Rocky mountain research station. http://www.firelab.org/project/windninja. Accessed 13 Sept 2018.
– reference: Sakellariou, S., P. Cabral, M. Caetano, F. Pla, M. Painho, O. Christopoulou, A. Sfougaris, N. Dalezios, et al. 2020. Remotely sensed data fusion for spatiotemporal geostatistical analysis of forest fire hazard. Sensors 20(17): Article 5014.
– reference: CruzMGAlexanderMEUncertainty associated with model predictions of surface and crown fire rates of spreadEnvironmental Modelling & Software201347162810.1016/j.envsoft.2013.04.004
– reference: Busico, G., E. Giuditta, N. Kazakis, and N. Colombani. 2019. A hybrid GIS and AHP approach for modelling actual and future forest fire risk under climate change accounting water resources attenuation role. Sustainability 11(24): Article 7166.
– reference: Mota, P.H.S., S.J.S.S. da Rocha, N.L.M. de Castro, G.E. Marcatti, L.C. de Jesus França, B.L.S. Schettini, P.H. Villanova, H.T. dos Santos, et al. 2019. Forest fire hazard zoning in Mato Grosso State, Brazil. Land Use Policy 88: Article 104206.
– reference: Esri (Environmental Systems Research Institute). 2019. How to: Identify ridgelines from a DEM. https://support.esri.com/en/technical-article/000011289. Accessed 20 Mar 2019.
– reference: NCMA (National Cadastre & Mapping Agency S.A.). 2012. Hellenic Cadastre. https://www.ktimatologio.gr/. Accessed 15 Jun 2018.
– reference: Wotton, B.M., M.D. Flannigan, and G.A. Marshall. 2017. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters 12(9): Article 095003.
– reference: TianXCuiWShuLEvaluating fire management effectiveness with a burn probability model in Daxing’anling ChinaCanadian Journal of Forest Research202050767067910.1139/cjfr-2019-0413
– reference: Tymstra, C., R.W. Bryce, B.M. Wotton, S.W. Taylor, and O.B. Armitage. 2010. Development and structure of Prometheus: the Canadian Wildland Fire Growth Simulation Model. Information Report NOR-X-417. Edmonton, Alberta: Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre.
– reference: FerreiraCRAndradeMVAMagalhãesSVFranklinWRPenaGCA parallel algorithm for viewshed computation on grid terrainsJournal of Information and Data Management201452171180
– reference: Milanović, S., N. Marković, D. Pamučar, L. Gigović, P. Kostić, and S.D. Milanović. 2021. Forest fire probability mapping in Eastern Serbia: Logistic regression versus random forest method. Forests 12(1): Article 5.
– reference: Zhao, Y., J. Ma, X. Li, and J. Zhang. 2018. Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 18(3): Article 712.
– reference: CLMS (Copernicus Land Monitoring Service). 2018. CORINE Land Cover. https://land.copernicus.eu/pan-european/corine-land-cover. Accessed 22 Mar 2018.
– reference: Sakellariou, S., M.A. Parisien, M. Flannigan, X. Wang, B. de Groot, S. Tampekis, F. Samara, A. Sfougaris, et al. 2020. Spatial planning of fire-agency stations as a function of wildfire likelihood in Thasos, Greece. Science of the Total Environment 729: Article 139004.
– reference: HNMS (Hellenic National Meteorological Service). 2018. Hellenic National Meteorological Service webpage. http://www.hnms.gr/emy/en/index_html?. Accessed 10 Feb 2018.
– reference: KucukOTopalogluOAltunelAOCetinMVisibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in TurkeyEnvironmental Monitoring and Assessment2017189711810.1007/s10661-017-6008-1
– reference: Sakellariou, S., A. Sfougaris, O. Christopoulou, and S. Tampekis. 2022. Integrated wildfire risk assessment of natural and anthropogenic ecosystems based on simulation modeling and remotely sensed data fusion. International Journal of Disaster Risk Reduction 78: Article 103129.
– reference: Alkhatib, A.A. 2014. A review on forest fire detection techniques. International Journal of Distributed Sensor Networks 10(3): Article 597368.
– reference: Esri (Environmental Systems Research Institute). 2020. What is ArcPy?https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm. Accessed 20 Mar 2020.
– reference: Preparedness Advice. 2022. Understanding the uses of the military crest of a hill or ridge. https://preparednessadvice.com/understanding-uses-military-crest-hill-ridge/. Accessed 5 Aug 2022.
– reference: FranklinWRRayCKWaughTCHealeyRGHigher isn’t necessarily better: Visibility algorithms and experimentsAdvances in GIS research: 6th international symposium on spatial data handling1994LondonTaylor & Francis751770
– reference: WangYDouWA fast candidate viewpoints filtering algorithm for multiple viewshed site planningInternational Journal of Geographical Information Science202034344846310.1080/13658816.2019.1664743
– reference: Python. 2020. Numeric and mathematical modules. https://docs.python.org/3/library/numeric.html. Accessed 20 Mar 2020.
– reference: Geofabrik GmbH and OpenStreetMap Contributors. 2018. Data for Greece. https://download.geofabrik.de/europe/greece.html. Accessed 20 Dec 2018.
– reference: BaoSXiaoNLaiZZhangHKimCOptimizing watchtower locations for forest fire monitoring using location modelsFire Safety Journal20157110010910.1016/j.firesaf.2014.11.016
– reference: Sousa, M.J., A. Moutinho, and M. Almeida. 2020. Wildfire detection using transfer learning on augmented datasets. Expert Systems with Applications 142: Article 112975.
– reference: ParisienMAWalkerGRLittleJMSimpsonBNWangXPerrakisDDConsiderations for modeling burn probability across landscapes with steep environmental gradients: An example from the Columbia Mountains CanadaNatural Hazards201366243946210.1007/s11069-012-0495-8
– reference: KimYHRanaSWiseSExploring multiple viewshed analysis using terrain features and optimisation techniquesComputers & Geosciences2004309–101019103210.1016/j.cageo.2004.07.008
– reference: Zhang, F., P. Zhao, S. Xu, Y. Wu, X. Yang, and Y. Zhang. 2020. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Science of the Total Environment 737: Article 139561.
– reference: LeeJDigital analysis of viewshed inclusion and topographic features on digital elevation modelsPhotogrammetric Engineering and Remote Sensing1994604451456
– reference: van Wagner, C.E. 1987. Development and structure of the Canadian Forest Fire Weather Index System. Forestry Technical Report 35. Ottawa: Canadian Forestry Service.
– reference: Dowdy, A.J., H. Ye, A. Pepler, M. Thatcher, S.L. Osbrough, J.P. Evans, G.D. Virgilio, and N. McCarthy. 2019. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Scientific Reports 9(1): Article 10073.
– reference: EugenioFCdos SantosARFiedlerNCRibeiroGAda SilvaAGJuvanholRSSchettinoVRMarcattiGEGIS applied to location of fires detection towers in domain area of tropical forestScience of the Total Environment201656254254910.1016/j.scitotenv.2016.03.231
– reference: Magalhaes, S.V., M.V. Andrade, and W.R. Franklin. 2010. An optimization heuristic for siting observers in huge terrains stored in external memory. In Proceedings of the 10th International Conference on Hybrid Intelligent Systems, 23–25 August, Atlanta, USA, 135–140.
– reference: SakellariouSSamaraFTampekisSChristopoulouOSfougarisAOptimal number and location of watchtowers for immediate detection of forest fires in a small islandInternational Journal of Agricultural and Environmental Information Systems20178411910.4018/IJAEIS.2017100101
– reference: FranklinWRRichardsonDEOosteromPSiting observers on terrainAdvances in spatial data handling2002Berlin, HeidelbergSpringer10912010.1007/978-3-642-56094-1_9
– reference: Di VirgilioGEvansJPBlakeSAArmstrongMDowdyAJSharplesJMcRaeRClimate change increases the potential for extreme wildfiresGeophysical Research Letters201946148517852610.1029/2019GL083699
– reference: SaatyTLHow to make a decision: The analytic hierarchy processEuropean Journal of Operational Research199048192610.1016/0377-2217(90)90057-I
– reference: Çolak, E., and F. Sunar. 2020. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. International Journal of Disaster Risk Reduction 45: Article 101479.
– reference: HFB (Hellenic Fire Brigade). 2018. Hellenic Fire Brigade: Fire events. https://www.fireservice.gr/el_GR/stoicheia-symbanton. Accessed 17 Apr 2018 (in Greek).
– reference: van Kreveld, M. 1996. Variations on sweep algorithms: Efficient computation of extended viewsheds and class intervals. Department of Computer Science, Utrecht University, The Netherlands. http://www.cs.uu.nl/research/techreps/repo/CS-1996/1996-22.pdf. Accessed 15 Jun 2020.
– reference: WuBWangZZhangQShenNDistinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese loessial regionSoil and Tillage Research2018177889610.1016/j.still.2017.12.005
– reference: HysaADjalanteRBisriMBFShawRClassifying the forest surfaces in metropolitan areas by their wildfire ignition probability and spreading capacity in support of forest fire risk reductionIntegrated research on disaster risks2021ChamSpringer517010.1007/978-3-030-55563-4_4
– reference: SakellariouSSamaraFTampekisSSfougarisAChristopoulouODevelopment of a Spatial Decision Support System (SDSS) for the active forest-urban fires management through location planning of mobile fire unitsEnvironmental Hazards202019213115110.1080/17477891.2019.1628696
– reference: ZhangFZhaoPThiyagalingamJKirubarajanTTerrain-influenced incremental watchtower expansion for wildfire detectionScience of the Total Environment201965416417610.1016/j.scitotenv.2018.11.038
– reference: Christopoulou, O.G. 2011. Deforestation/reforestation in Mediterranean Europe: The case of Greece. In Soil erosion studies, ed. D. Godone, and S. Stanchi, 41–58. Rijeka, Croatia: InTech.
– reference: RanaSFast approximation of visibility dominance using topographic features as targets and the associated uncertaintyPhotogrammetric Engineering and Remote Sensing200369888188810.14358/PERS.69.8.881
– reference: RuffaultJCurtTMartin-StPaulNKMoronVTrigoRMExtreme wildfire events are linked to global-change-type droughts in the northern MediterraneanNatural Hazards and Earth System Sciences201818384785610.5194/nhess-18-847-2018
– reference: ShiXXueBDeriving a minimum set of viewpoints for maximum coverage over any given digital elevation model dataInternational Journal of Digital Earth20169121153116710.1080/17538947.2016.1207718
– reference: SivrikayaFSağlamBAkayAEBozaliNEvaluation of forest fire risk with GISPolish Journal of Environmental Studies2014231187194
– reference: XuGZhongXReal-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8Remote Sensing Letters20178111052106110.1080/2150704X.2017.1350303
– reference: Esri (Environmental Systems Research Institute). 2020. Viewshed. https://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/viewshed.htm. Accessed 20 Mar 2020.
– reference: GöltaşMDemirelTÇağlayanİVisibility analysis of fire watchtowers using GIS: A case study in Dalaman State Forest EnterpriseEuropean Journal of Forest Engineering2017326671
– ident: 433_CR3
  doi: 10.3390/su11247166
– ident: 433_CR37
  doi: 10.3390/s20175014
– volume: 9
  start-page: 1153
  issue: 12
  year: 2016
  ident: 433_CR43
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2016.1207718
– volume: 8
  start-page: 1052
  issue: 11
  year: 2017
  ident: 433_CR55
  publication-title: Remote Sensing Letters
  doi: 10.1080/2150704X.2017.1350303
– volume: 60
  start-page: 451
  issue: 4
  year: 1994
  ident: 433_CR25
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 8
  start-page: 1
  issue: 4
  year: 2017
  ident: 433_CR39
  publication-title: International Journal of Agricultural and Environmental Information Systems
  doi: 10.4018/IJAEIS.2017100101
– ident: 433_CR32
– ident: 433_CR4
– ident: 433_CR51
– volume: 654
  start-page: 164
  year: 2019
  ident: 433_CR56
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.11.038
– ident: 433_CR45
  doi: 10.1016/j.eswa.2019.112975
– volume: 23
  start-page: 187
  issue: 1
  year: 2014
  ident: 433_CR44
  publication-title: Polish Journal of Environmental Studies
– ident: 433_CR47
– volume: 34
  start-page: 448
  issue: 3
  year: 2020
  ident: 433_CR52
  publication-title: International Journal of Geographical Information Science
  doi: 10.1080/13658816.2019.1664743
– volume: 11
  start-page: 7305
  issue: 24
  year: 2014
  ident: 433_CR50
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-7305-2014
– volume: 5
  start-page: 171
  issue: 2
  year: 2014
  ident: 433_CR14
  publication-title: Journal of Information and Data Management
– ident: 433_CR33
– ident: 433_CR58
  doi: 10.3390/s18030712
– ident: 433_CR5
– volume: 46
  start-page: 8517
  issue: 14
  year: 2019
  ident: 433_CR8
  publication-title: Geophysical Research Letters
  doi: 10.1029/2019GL083699
– ident: 433_CR12
– start-page: 845
  volume-title: Progress in spatial data handling
  year: 2006
  ident: 433_CR17
  doi: 10.1007/3-540-35589-8_52
– start-page: 51
  volume-title: Integrated research on disaster risks
  year: 2021
  ident: 433_CR22
  doi: 10.1007/978-3-030-55563-4_4
– ident: 433_CR38
  doi: 10.1016/j.scitotenv.2020.139004
– volume: 30
  start-page: 589
  issue: 2
  year: 2019
  ident: 433_CR42
  publication-title: Journal of Forestry Research
  doi: 10.1007/s11676-018-0666-x
– ident: 433_CR26
  doi: 10.1109/HIS.2010.5600013
– volume: 18
  start-page: 847
  issue: 3
  year: 2018
  ident: 433_CR35
  publication-title: Natural Hazards and Earth System Sciences
  doi: 10.5194/nhess-18-847-2018
– start-page: 109
  volume-title: Advances in spatial data handling
  year: 2002
  ident: 433_CR15
  doi: 10.1007/978-3-642-56094-1_9
– ident: 433_CR27
  doi: 10.3390/f12010005
– ident: 433_CR21
– volume: 3
  start-page: 66
  issue: 2
  year: 2017
  ident: 433_CR19
  publication-title: European Journal of Forest Engineering
– ident: 433_CR29
– ident: 433_CR30
– volume: 47
  start-page: 16
  year: 2013
  ident: 433_CR7
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2013.04.004
– ident: 433_CR48
– ident: 433_CR11
– volume: 50
  start-page: 670
  issue: 7
  year: 2020
  ident: 433_CR46
  publication-title: Canadian Journal of Forest Research
  doi: 10.1139/cjfr-2019-0413
– volume: 69
  start-page: 881
  issue: 8
  year: 2003
  ident: 433_CR34
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.69.8.881
– ident: 433_CR57
  doi: 10.1016/j.scitotenv.2020.139561
– volume: 19
  start-page: 131
  issue: 2
  year: 2020
  ident: 433_CR40
  publication-title: Environmental Hazards
  doi: 10.1080/17477891.2019.1628696
– start-page: 751
  volume-title: Advances in GIS research: 6th international symposium on spatial data handling
  year: 1994
  ident: 433_CR16
– ident: 433_CR28
  doi: 10.1016/j.landusepol.2019.104206
– ident: 433_CR1
  doi: 10.1155/2014/597368
– ident: 433_CR18
– ident: 433_CR9
  doi: 10.1038/s41598-019-46362-x
– ident: 433_CR20
– ident: 433_CR6
  doi: 10.1016/j.ijdrr.2020.101479
– volume: 562
  start-page: 542
  year: 2016
  ident: 433_CR13
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2016.03.231
– volume: 48
  start-page: 9
  issue: 1
  year: 1990
  ident: 433_CR36
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(90)90057-I
– ident: 433_CR53
  doi: 10.1088/1748-9326/aa7e6e
– volume: 66
  start-page: 439
  issue: 2
  year: 2013
  ident: 433_CR31
  publication-title: Natural Hazards
  doi: 10.1007/s11069-012-0495-8
– ident: 433_CR41
  doi: 10.1016/j.ijdrr.2022.103129
– volume: 177
  start-page: 88
  year: 2018
  ident: 433_CR54
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2017.12.005
– volume: 30
  start-page: 1019
  issue: 9–10
  year: 2004
  ident: 433_CR23
  publication-title: Computers & Geosciences
  doi: 10.1016/j.cageo.2004.07.008
– ident: 433_CR49
– ident: 433_CR10
– volume: 189
  start-page: 1
  issue: 7
  year: 2017
  ident: 433_CR24
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-017-6008-1
– volume: 71
  start-page: 100
  year: 2015
  ident: 433_CR2
  publication-title: Fire Safety Journal
  doi: 10.1016/j.firesaf.2014.11.016
SSID ssj0000866289
Score 2.2586985
Snippet Climate change effects tend to reinforce the frequency and severity of wildfires worldwide, and early detection of wildfire events is considered of crucial...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 621
SubjectTerms Algorithms
Analysis
Analytic hierarchy process
Climate Change
Climatic changes
Computer software industry
Detection
Earth and Environmental Science
Earth Sciences
Environment
Fires
Forest management
Forests
Hierarchies
Landscape/Regional and Urban Planning
Locations (working)
Mathematical optimization
Methods
Natural Hazards
Optimization
Optimization techniques
Probability theory
Redundancy
Ridges
Sustainable Development
Terrain analysis
Visibility
Vulnerability
Wildfires
SummonAdditionalLinks – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwELVQe-GCKAWxsKA5IDiwEY7txJtj1bJqkQoSbKG3yHZsqWKbrTbZA3_EZzLjOK0oFImrM3aszHg8ysx7w9gr7YITmhdZqGzIFAplNtd5ZjSG641yoeIETj79WB6fqQ_nxXmiySEszK38_bsulxhQZ1RzTkkrmaG73S2IZ4wSs-Xh9f8UDM1LETveCU6gY14UCSPz92V-u4due-M_0qLxtlk8ZA9SmAgHg1732D3fPmLTAUsL3_wqmI2H1zAOrDff99nPJbEsEukHDn323cUqHltYDq144OtFKoX9ASMVCWDICieXET7SezjyfazMamEdAP1FE9AhdnCSKCVwp7DAEfiy7WI1zLDaDFIndarqWAEFlVucNgPTNvAJxS4T1hNOY7vq7jE7W7xfHh5nqRFD5qQUfRaCrYJV2lpjKsubAr9jJawSRrpcEZjVOwzEjBSFd3xeqaYxRjdaGbz9nePyCdtp161_yqCkMhXhTBNyIr_PqyLMVSNkyLX00vIJy0e11C6xlFOzjFV9w69MqqxxC3VUZS0m7O31nKuBo-Of0m9I2zUdYFzZmYRDwP0RFVZ9oCNrnS6rCZuOBlGnk93VlJjlKp_zcsJmo5HcPL77vc_-T_w5uy-iuVKt4ZTt9Jutf4HxT29fRsP_BcY7_Wk
  priority: 102
  providerName: Springer Nature
Title Territorial Resilience Through Visibility Analysis for Immediate Detection of Wildfires Integrating Fire Susceptibility, Geographical Features, and Optimization Methods
URI https://link.springer.com/article/10.1007/s13753-022-00433-2
https://www.proquest.com/docview/2890041806
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZYd-GC-Ck6yvQOCA40wrGdpDmhUlY2pA00WtgtchxbmujS0aQH_iP-TN5znFWA2MVSXce1-p5fPtnv-x5jLzLjjMh4Erm8dJHCQVEZZ3GkM4TrlTIu50ROPj1Lj5fq40VyEQ7cmpBW2cdEH6irtaEz8jd0IcZVPOHp2-sfEVWNotvVUEJjj-1jCJ4kA7b_7ujs8_nNKQsC9lT4OniCExWZJ0lgznT8OYloPaKEdroRk5H44-30d4z-57LUv4Pm99m9AB5h2ln7Abtj64ds1DFs4ZtdOb2x8BL6jvXm-yP2a0HaiyQFgl3ntrlc-c0Mi65AD3y9DAmyP6EXKAEEsnBy5UklrYX3tvX5WjWsHWAUqRyGyQZOgtAErhTm2ANfto3PkelmG0Oor065HisgqLnFx8ag6wo-4bCrwACFU1_EunnMlvOjxew4CuUZIiOlaCPnytyVKitLrfOSVwn-j7koldDSxIoortYgPNNSJNbwSa6qSuusypRGTGAMl0_YoF7X9imDlJJXhNGVi0kSP84TN1GVkC7OpJUlH7K4N0thgnY5ldBYFTvVZTJlgUsovCkLMWSvb5657pQ7bh39iqxd0LbGmY0O7ARcHwlkFdPMa9llaT5ko94hirDfm2LnnUM27p1k9_X_f_fg9tmesbvCuydlHI7YoN1s7XNEQW15yPYU_4DtZI5t5_b4aSYUtens0J8uYLsU09_ojwtR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9gAviE9RKHAPfDzQiMRJ6uYBocFWtWwtaHRsb8F2bGmiS0eTCu0_4om_kTvHWQWIve3VsR1Ld7472_f7HWPPhLaaizANbKZskGCnQEUiCqTAcL1ItM1CAidPpv3RYfLhOD3eYL9aLAylVbY20RnqYqHpjvw1PYiFSTQI-2_PvgdUNYpeV9sSGo1a7JnzH3hkq96Md1C-zzkf7s7ejwJfVSDQcczrwFqVWZUIpaTMVFik6MUyrhIuYx0lhMw0GqMKGfPU6HCQJUUhpShEItGVaR3GOO81toVhRoa7aOvd7vTTwcWtDh4Q-tzV3eMhQZ_DNPVInQavF-PpIKAEenqBiwP-hzf82yf88zjrfN7wFrvpg1XYbrTrNtsw5R3WbRC9cGTmVi4NvIC2YbH8dpf9nBHXI1GPYNOBqU7mznjArCkIBF9OfELuObSEKICBM4xPHYilNrBjapcfVsLCAlqtwqJZrmDsiS1wpTDEFvi8qlxOTjNbD3w9d8otmQOFtisc1gNZFvARu516xClMXNHs6h47vBLB3Web5aI0Dxj0KVmGa1nYiCj4oyy1g6TgsY1EbGIVdljUiiXXniudSnbM8zXLM4kyxyXkTpQ577BXF2POGqaQS3u_JGnnZEZwZi09GgLXR4Rc-bZw3Hmin3VYt1WI3NuXKl_vhg7rtUqy_vz__z68fLan7PpoNtnP98fTvUfsBneqStmOXbZZL1fmMUZgtXri1R7Y16veab8Bx4lDxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiKcIBJgDjwNZddf7cPaAUCGNGkpDVVLobbG9tlSRbko2Eeo_4jfw65jxehsBordevbbX0oxnxvZ83zD2TGiruQjTwObKBgl2ClQkokAKDNfLRNs8JHDy_iTbPUreH6fHG-xXi4WhtMrWJjpDXc413ZFv0YNYmESDMNuyPi3iYDh6c_Y9oApS9NLaltNoVGTPnP_A41v9ejxEWT_nfLQzfbcb-AoDgY5jvgysVblViVBKylyFZYoeLecq4TLWUUIoTaMxwpAxT40OB3lSllKKUiQS3ZrWYYzzXmObAr3ioMM23-5MDg4vbnjwsJBxV4OPhwSDDtPUo3Ya7F6MJ4WAkunpNS4O-B-e8W__8M9DrfN_o1vspg9cYbvRtNtsw1R3WK9B98IXM7NyYeAFtA3zxbe77OeUeB-JhgSbDk19MnOGBKZNcSD4fOKTc8-hJUcBDKJhfOoALUsDQ7N0uWIVzC2gBSstmugaxp7kAlcKI2yBT6va5ec0s_XB13anPJMZUJi7wmF9kFUJH7HbqUefwr4roF3fY0dXIrj7rFPNK_OAQUaJM1zL0kZExx_lqR0kJY9tJGITq7DLolYshfa86VS-Y1asGZ9JlAUuoXCiLHiXvboYc9awhlza-yVJuyCTgjNr6ZERuD4i5yq2hePRE1neZb1WIQpva-pivTO6rN8qyfrz___78PLZnrLruMOKD-PJ3iN2gztNpcTHHussFyvzGIOxpXritR7Y16veaL8BsphH8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Territorial+Resilience+Through+Visibility+Analysis+for+Immediate+Detection+of+Wildfires+Integrating+Fire+Susceptibility%2C+Geographical+Features%2C+and+Optimization+Methods&rft.jtitle=International+journal+of+disaster+risk+science&rft.au=Sakellariou%2C+Stavros&rft.au=Sfoungaris%2C+George&rft.au=Christopoulou%2C+Olga&rft.date=2022-08-01&rft.pub=Springer&rft.issn=2095-0055&rft.volume=13&rft.issue=4&rft.spage=621&rft_id=info:doi/10.1007%2Fs13753-022-00433-2&rft.externalDocID=A715492769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-0055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-0055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-0055&client=summon