Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining...
Saved in:
Published in | Brain (London, England : 1878) Vol. 144; no. 9; pp. 2732 - 2744 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
22.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters.
Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson’s disease. We examined 93 subjects (40 healthy controls and 53 Parkinson’s disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations.
A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson’s disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson’s diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson’s disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson’s disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part.
The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson’s disease, which may eventually direct research towards potential novel treatment approaches. |
---|---|
AbstractList | Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches.Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches. Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches. Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson’s disease. We examined 93 subjects (40 healthy controls and 53 Parkinson’s disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson’s disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson’s diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson’s disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson’s disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson’s disease, which may eventually direct research towards potential novel treatment approaches. |
Author | Kinnerup, Martin B Seger, Aline D Betts, Matthew Fink, Gereon R Borghammer, Per Doppler, Christopher E J Stær, Kristian Sommerauer, Michael Fedorova, Tatyana D Knudsen, Karoline Brune, Corinna Farrher, Ezequiel Ismail, Rola Brooks, David J Nahimi, Adjmal Hansen, Allan K Schaldemose, Jeppe L |
Author_xml | – sequence: 1 givenname: Christopher E J orcidid: 0000-0002-1341-0389 surname: Doppler fullname: Doppler, Christopher E J organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany – sequence: 2 givenname: Martin B surname: Kinnerup fullname: Kinnerup, Martin B organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 3 givenname: Corinna surname: Brune fullname: Brune, Corinna organization: Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany – sequence: 4 givenname: Ezequiel surname: Farrher fullname: Farrher, Ezequiel organization: Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany – sequence: 5 givenname: Matthew surname: Betts fullname: Betts, Matthew organization: German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany, Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany – sequence: 6 givenname: Tatyana D surname: Fedorova fullname: Fedorova, Tatyana D organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 7 givenname: Jeppe L surname: Schaldemose fullname: Schaldemose, Jeppe L organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 8 givenname: Karoline surname: Knudsen fullname: Knudsen, Karoline organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 9 givenname: Rola surname: Ismail fullname: Ismail, Rola organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 10 givenname: Aline D surname: Seger fullname: Seger, Aline D organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany – sequence: 11 givenname: Allan K surname: Hansen fullname: Hansen, Allan K organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 12 givenname: Kristian surname: Stær fullname: Stær, Kristian organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 13 givenname: Gereon R surname: Fink fullname: Fink, Gereon R organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany – sequence: 14 givenname: David J orcidid: 0000-0003-2602-2518 surname: Brooks fullname: Brooks, David J organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK, Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK – sequence: 15 givenname: Adjmal surname: Nahimi fullname: Nahimi, Adjmal organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 16 givenname: Per orcidid: 0000-0001-6391-8052 surname: Borghammer fullname: Borghammer, Per organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark – sequence: 17 givenname: Michael orcidid: 0000-0001-5723-9766 surname: Sommerauer fullname: Sommerauer, Michael organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany, Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34196700$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1KxDAUhYMoOqMu3UqWbqr5azpdivgHgiK6Dml6O0TTZExaxJ2v4ev5JGacmY24uhfudw-cc6Zo2wcPCB1RckpJzc-aqK0_0--6YVxuoQkVkhSMlnIbTQghspjVJdlD05ReCKGCM7mL9rigtawImSD3CHMbvHbYBTMmbALE0UHeWpiDh6iHfMY24dGbMC4ctLiLocc-RN3GJTG3Bg8Qe7tSSQlbjx90fLU-Bf_9-ZW1bAKd4ADtdNolOFzPffR8dfl0cVPc3V_fXpzfFYZzNhSQvTAxM7rUNWU1abnRGihnpqq5aGaypaKCbJFy0_BSSsFmbdvwrpPMgDB8H52sdBcxvI2QBtXbZMA57SGMSbFSVKUgVVVm9HiNjk0PrVpE2-v4oTYJZYCvABOztQidMnb4DWXIyTtFiVr2oH57UOse8lfx52sj_D__A_1Bj_k |
CitedBy_id | crossref_primary_10_1212_WNL_0000000000206736 crossref_primary_10_2174_1567205020666230721144603 crossref_primary_10_1016_j_nicl_2023_103479 crossref_primary_10_7554_eLife_87188 crossref_primary_10_1016_j_arr_2022_101840 crossref_primary_10_1523_ENEURO_0483_22_2022 crossref_primary_10_1016_j_neubiorev_2023_105311 crossref_primary_10_1016_j_neuint_2022_105302 crossref_primary_10_1038_s41380_023_02177_x crossref_primary_10_3389_fnagi_2023_1236335 crossref_primary_10_3390_ijms241713039 crossref_primary_10_1002_mds_30058 crossref_primary_10_1002_alz_12937 crossref_primary_10_1016_j_ejphar_2023_175944 crossref_primary_10_1002_mds_28945 crossref_primary_10_1186_s13063_024_08265_9 crossref_primary_10_1186_s40035_023_00347_z crossref_primary_10_1007_s00702_023_02721_7 crossref_primary_10_1038_s41582_023_00802_5 crossref_primary_10_1002_mds_29072 crossref_primary_10_1038_s41583_021_00542_9 crossref_primary_10_1016_j_physbeh_2025_114887 crossref_primary_10_1016_j_neubiorev_2023_105287 crossref_primary_10_1038_s41386_022_01269_6 crossref_primary_10_1093_brain_awad192 crossref_primary_10_1523_JNEUROSCI_0289_22_2023 crossref_primary_10_3233_JPD_230385 crossref_primary_10_1016_j_tins_2022_05_006 crossref_primary_10_3390_cells11172640 crossref_primary_10_1016_j_nicl_2023_103420 crossref_primary_10_3390_brainsci12091146 crossref_primary_10_1002_hbm_70013 crossref_primary_10_1093_brain_awab286 crossref_primary_10_3390_antiox14030255 crossref_primary_10_3389_fnins_2024_1296161 crossref_primary_10_3390_brainsci14010100 crossref_primary_10_1002_jmri_28414 crossref_primary_10_1016_j_neuroimage_2022_119658 crossref_primary_10_3390_biology13010058 crossref_primary_10_3390_ijms23158586 crossref_primary_10_7554_eLife_87188_3 crossref_primary_10_1007_s10286_022_00859_0 crossref_primary_10_1007_s12035_025_04706_x crossref_primary_10_3390_cells12212529 crossref_primary_10_1097_WCO_0000000000001042 crossref_primary_10_1093_brain_awad338 crossref_primary_10_1007_s10286_023_00987_1 crossref_primary_10_37871_jbres1408 crossref_primary_10_1186_s40035_024_00400_5 crossref_primary_10_1093_brain_awae069 |
Cites_doi | 10.1093/brain/awt192 10.1038/s41531-018-0047-3 10.3233/JPD-202481 10.1093/brain/aws211 10.1002/ana.21995 10.1002/syn.20133 10.3389/fncel.2016.00293 10.1186/s12883-020-02007-5 10.1016/j.neuroimage.2017.09.042 10.1002/mds.25135 10.1002/mds.27823 10.1016/j.neuroscience.2011.01.038 10.1093/brain/aww006 10.1186/s40478-015-0222-2 10.1001/archneur.1984.04210080020007 10.1002/mds.26424 10.1002/mds.23429 10.1002/mds.22340 10.1016/j.neuroimage.2011.09.015 10.1016/j.parkreldis.2008.01.017 10.1002/mds.27921 10.3389/fnbeh.2012.00048 10.1016/j.neuron.2010.11.032 10.1007/s004010000247 10.1038/nn.4642 10.18637/jss.v067.i01 10.1038/nature14600 10.1016/j.neuroimage.2015.03.020 10.1016/j.neuroimage.2010.09.025 10.1093/brain/awaa238 10.1093/brain/awx348 10.2967/jnumed.117.190975 10.1212/WNL.0b013e3181fc29c9 10.1038/nrn.2016.178 10.1016/j.neurobiolaging.2019.03.014 10.1038/s41562-019-0715-2 10.1186/s12974-019-1632-z 10.1186/s12974-019-1608-z 10.1109/TMI.2018.2872852 10.1093/brain/awaa216 10.1016/j.neuroimage.2017.07.045 10.1002/mds.27411 10.1002/mds.28124 10.1016/S0969-8051(03)00079-9 10.1016/0306-4522(86)90156-9 10.1016/j.neurobiolaging.2018.10.014 10.1002/cne.901550103 10.1016/j.neuroimage.2009.06.012 10.1038/nature20414 10.1523/JNEUROSCI.4029-08.2009 10.1002/ana.410300308 10.1002/mds.27682 10.1002/mds.25109 10.1016/S0197-4580(02)00065-9 10.1016/S1474-4422(18)30162-5 10.1038/s41583-020-0360-9 10.1007/s11064-005-9015-5 10.1016/j.jalz.2016.06.2362 10.1093/brain/awz120 10.1016/j.parkreldis.2018.06.025 10.1002/ana.410320510 10.1002/cne.901870405 10.1111/ene.13628 10.1016/j.neulet.2013.02.012 10.1073/pnas.97.22.11869 10.1038/nrn2915 10.1016/j.neuroimage.2020.117487 10.1093/brain/awz193 10.1016/j.brainresbull.2019.08.007 10.1093/brain/awt152 10.1093/brain/aww098 10.1016/j.neubiorev.2017.10.023 10.1016/j.neuroimage.2006.01.015 10.1055/s-0040-1713874 10.1016/j.neuroimage.2020.117409 10.1007/s00234-016-1644-7 10.1016/S0969-8051(02)00420-1 10.1016/j.neuron.2016.07.036 10.1016/j.cub.2015.09.039 10.1186/s40478-017-0411-2 10.1002/mds.25975 10.1212/WNL.0000000000003810 10.1109/42.906424 |
ContentType | Journal Article |
Copyright | The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/brain/awab236 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 2744 |
ExternalDocumentID | 34196700 10_1093_brain_awab236 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAWTL AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE CITATION COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO TCURE TEORI TJX TLC TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 ADJQC ADRIX AFXEN CGR CUY CVF ECM EIF NPM RIG 7X8 |
ID | FETCH-LOGICAL-c332t-eab2248ca5a91290d3caae132c7934b86d147e15613cb3566428ddb3ff62ce4c3 |
ISSN | 0006-8950 1460-2156 |
IngestDate | Fri Jul 11 08:47:27 EDT 2025 Wed Feb 19 02:27:17 EST 2025 Thu Apr 24 23:04:03 EDT 2025 Tue Jul 01 00:46:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | noradrenaline positron emission tomography Parkinson’s disease neuromelanin MeNER |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c332t-eab2248ca5a91290d3caae132c7934b86d147e15613cb3566428ddb3ff62ce4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5723-9766 0000-0001-6391-8052 0000-0003-2602-2518 0000-0002-1341-0389 |
OpenAccessLink | https://academic.oup.com/brain/article-pdf/144/9/2732/40880287/awab236.pdf |
PMID | 34196700 |
PQID | 2547540775 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2547540775 pubmed_primary_34196700 crossref_citationtrail_10_1093_brain_awab236 crossref_primary_10_1093_brain_awab236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-22 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2021 |
References | Kebschull (2021103110133894500_awab236-B59) 2016; 91 Schwarz (2021103110133894500_awab236-B75) 2015; 524 Ohtsuka (2021103110133894500_awab236-B81) 2013; 541 Yushkevich (2021103110133894500_awab236-B43) 2006; 31 German (2021103110133894500_awab236-B32) 1992; 32 Li (2021103110133894500_awab236-B77) 2019; 34 Giorgi (2021103110133894500_awab236-B8) 2019; 153 Grosch (2021103110133894500_awab236-B26) 2016; 10 Ghose (2021103110133894500_awab236-B88) 2005; 56 Keren (2021103110133894500_awab236-B42) 2009; 47 Wilson (2021103110133894500_awab236-B87) 2003; 30 Cheng (2021103110133894500_awab236-B24) 2010; 67 Matsuda (2021103110133894500_awab236-B58) 2009; 29 Sugama (2021103110133894500_awab236-B13) 2019; 16 Avants (2021103110133894500_awab236-B44) 2011; 54 Knudsen (2021103110133894500_awab236-B16) 2018; 17 Satoh (2021103110133894500_awab236-B31) 1977; 30 Lenth (2021103110133894500_awab236-B47) 2021 Yust-Katz (2021103110133894500_awab236-B36) 2008; 14 Goldstein (2021103110133894500_awab236-B67) 2020; 40 Nahimi (2021103110133894500_awab236-B22) 2018; 59 Postuma (2021103110133894500_awab236-B33) 2015; 30 Saari (2021103110133894500_awab236-B68) 2017; 88 Braak (2021103110133894500_awab236-B17) 2001; 101 Poe (2021103110133894500_awab236-B7) 2020; 21 O'Keeffe (2021103110133894500_awab236-B54) 2018; 56 Kuya (2021103110133894500_awab236-B69) 2016; 58 Arcuri (2021103110133894500_awab236-B64) 2016; 89 Schwarz (2021103110133894500_awab236-B6) 2015; 25 Liu (2021103110133894500_awab236-B19) 2017; 83 García-Lorenzo (2021103110133894500_awab236-B41) 2013; 136 Sulzer (2021103110133894500_awab236-B5) 2018; 4 Schou (2021103110133894500_awab236-B89) 2003; 30 Betts (2021103110133894500_awab236-B20) 2019; 11 Cao (2021103110133894500_awab236-B9) 2019; 16 Ariz (2021103110133894500_awab236-B83) 2019; 38 Jenkinson (2021103110133894500_awab236-B39) 2012; 62 Surmeier (2021103110133894500_awab236-B57) 2017; 18 Kraemmer (2021103110133894500_awab236-B70) 2014; 29 Theofilas (2021103110133894500_awab236-B3) 2017; 13 Hansen (2021103110133894500_awab236-B55) 2016; 139 Priovoulos (2021103110133894500_awab236-B18) 2018; 168 Bates (2021103110133894500_awab236-B46) 2015; 67 Ehrminger (2021103110133894500_awab236-B40) 2016; 139 Rodovalho (2021103110133894500_awab236-B10) 2006; 31 Dalrymple-Alford (2021103110133894500_awab236-B48) 2010; 75 Ye (2021103110133894500_awab236-B79) 2021; 225 Saper (2021103110133894500_awab236-B11) 2010; 68 Gaspar (2021103110133894500_awab236-B51) 1991; 30 Pérez -Taboada (2021103110133894500_awab236-B65) 2020; 35 Redgrave (2021103110133894500_awab236-B76) 2010; 11 Wang (2021103110133894500_awab236-B82) 2018; 25 Kish (2021103110133894500_awab236-B50) 1984; 41 Loughlin (2021103110133894500_awab236-B28) 1986; 18 Sulzer (2021103110133894500_awab236-B37) 2000; 97 Kelly (2021103110133894500_awab236-B14) 2017; 5 Mäki-Marttunen (2021103110133894500_awab236-B80) 2021; 224 Liu (2021103110133894500_awab236-B86) 2019; 74 Mason (2021103110133894500_awab236-B29) 1979; 187 Bourdenx (2021103110133894500_awab236-B63) 2015; 3 Sommerauer (2021103110133894500_awab236-B15) 2018; 141 Martín-Bastida (2021103110133894500_awab236-B73) 2019; 142 Monje (2021103110133894500_awab236-B61) 2020; 35 Vazey (2021103110133894500_awab236-B12) 2012; 6 Goetz (2021103110133894500_awab236-B35) 2008; 23 Zhang (2021103110133894500_awab236-B38) 2001; 20 Simões (2021103110133894500_awab236-B84) 2020; 20 Braak (2021103110133894500_awab236-B52) 2003; 24 Bolam (2021103110133894500_awab236-B56) 2012; 27 Tomlinson (2021103110133894500_awab236-B34) 2010; 25 Tagliaferro (2021103110133894500_awab236-B53) 2016; 6 Kordower (2021103110133894500_awab236-B60) 2013; 136 Betts (2021103110133894500_awab236-B2) 2017; 163 Mulcahy (2021103110133894500_awab236-B62) 2011; 181 Uematsu (2021103110133894500_awab236-B74) 2017; 20 Isaias (2021103110133894500_awab236-B72) 2016; 8 Horsager (2021103110133894500_awab236-B85) 2020; 143 Pifl (2021103110133894500_awab236-B49) 2012; 27 Betts (2021103110133894500_awab236-B21) 2019; 142 Wihan (2021103110133894500_awab236-B27) 2019; 80 Biondetti (2021103110133894500_awab236-B45) 2020; 143 Pickel (2021103110133894500_awab236-B30) 1974; 155 Colloby (2021103110133894500_awab236-B71) 2012; 135 Sommerauer (2021103110133894500_awab236-B23) 2018; 33 Abeliovich (2021103110133894500_awab236-B66) 2016; 539 Dahl (2021103110133894500_awab236-B4) 2019; 3 Keren (2021103110133894500_awab236-B1) 2015; 113 Borghammer (2021103110133894500_awab236-B78) 2021; 11 Wong (2021103110133894500_awab236-B25) 2019; 34 34382062 - Brain. 2021 Oct 22;144(9):2562-2564 |
References_xml | – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 2021103110133894500_awab236-B53 article-title: Retrograde axonal degeneration in Parkinson disease – volume: 136 start-page: 2419 issue: Pt 8 year: 2013 ident: 2021103110133894500_awab236-B60 article-title: Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awt192 – volume: 4 start-page: 11 issue: 1 year: 2018 ident: 2021103110133894500_awab236-B5 article-title: Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease publication-title: NPJ Parkinson’s Disease doi: 10.1038/s41531-018-0047-3 – volume: 11 start-page: 455 issue: 2 year: 2021 ident: 2021103110133894500_awab236-B78 article-title: The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson’s disease: Explaining motor asymmetry, non-motor phenotypes, and cognitive decline publication-title: J Parkinsons Dis doi: 10.3233/JPD-202481 – volume: 135 start-page: 2798 issue: Pt 9 year: 2012 ident: 2021103110133894500_awab236-B71 article-title: Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias publication-title: Brain doi: 10.1093/brain/aws211 – volume: 67 start-page: 715 issue: 6 year: 2010 ident: 2021103110133894500_awab236-B24 article-title: Clinical progression in Parkinson disease and the neurobiology of axons publication-title: Ann Neurol doi: 10.1002/ana.21995 – volume: 56 start-page: 100 issue: 2 year: 2005 ident: 2021103110133894500_awab236-B88 article-title: Specific in vitro binding of (S,S)-[3H]MeNER to norepinephrine transporters publication-title: Synapse doi: 10.1002/syn.20133 – volume: 11 start-page: 281 issue: 1 year: 2019 ident: 2021103110133894500_awab236-B20 article-title: Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels publication-title: Alzheimer’s Dement – volume: 10 year: 2016 ident: 2021103110133894500_awab236-B26 article-title: Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in Parkinson’s disease publication-title: . Front Cell Neurosci doi: 10.3389/fncel.2016.00293 – volume: 20 start-page: 432 issue: 1 year: 2020 ident: 2021103110133894500_awab236-B84 article-title: A distinct neuromelanin magnetic resonance imaging pattern in Parkinsonian multiple system atrophy publication-title: BMC Neurol doi: 10.1186/s12883-020-02007-5 – volume: 163 start-page: 150 year: 2017 ident: 2021103110133894500_awab236-B2 article-title: In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.09.042 – volume: 27 start-page: 1478 issue: 12 year: 2012 ident: 2021103110133894500_awab236-B56 article-title: Living on the edge with too many mouths to feed: Why dopamine neurons die publication-title: Mov Disord doi: 10.1002/mds.25135 – volume: 8 issue: 196 year: 2016 ident: 2021103110133894500_awab236-B72 article-title: Neuromelanin imaging and dopaminergic loss in Parkinson’s Disease publication-title: Front Aging Neurosci – volume: 34 start-page: 1406 issue: 10 year: 2019 ident: 2021103110133894500_awab236-B25 article-title: Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals? publication-title: Mov Disord doi: 10.1002/mds.27823 – volume: 181 start-page: 234 year: 2011 ident: 2021103110133894500_awab236-B62 article-title: Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.01.038 – volume: 139 start-page: 1180 issue: Pt 4 year: 2016 ident: 2021103110133894500_awab236-B40 article-title: The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder publication-title: Brain doi: 10.1093/brain/aww006 – volume: 3 start-page: 46 issue: 1 year: 2015 ident: 2021103110133894500_awab236-B63 article-title: Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-015-0222-2 – volume: 41 start-page: 612 issue: 6 year: 1984 ident: 2021103110133894500_awab236-B50 article-title: Cerebellar Norepinephrine in Patients With Parkinson’s Disease and Control Subjects publication-title: Arch Neurol doi: 10.1001/archneur.1984.04210080020007 – volume: 30 start-page: 1591 issue: 12 year: 2015 ident: 2021103110133894500_awab236-B33 article-title: MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria publication-title: Mov Disord doi: 10.1002/mds.26424 – volume: 25 start-page: 2649 issue: 15 year: 2010 ident: 2021103110133894500_awab236-B34 article-title: Systematic review of levodopa dose equivalency reporting in Parkinson’s disease: Systematic Review of LED Reporting in PD publication-title: Mov Disord doi: 10.1002/mds.23429 – volume: 23 start-page: 2129 issue: 15 year: 2008 ident: 2021103110133894500_awab236-B35 article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results: MDS-UPDRS: Clinimetric Assessment publication-title: Mov Disord doi: 10.1002/mds.22340 – volume: 62 start-page: 782 issue: 2 year: 2012 ident: 2021103110133894500_awab236-B39 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 14 start-page: 633 issue: 8 year: 2008 ident: 2021103110133894500_awab236-B36 article-title: Handedness as a predictor of side of onset of Parkinson’s disease publication-title: Parkinson Relat Disord doi: 10.1016/j.parkreldis.2008.01.017 – volume: 35 start-page: 419 issue: 3 year: 2020 ident: 2021103110133894500_awab236-B61 article-title: Changes in thalamic dopamine innervation in a progressive Parkinson’s disease model in monkeys publication-title: Mov Disord doi: 10.1002/mds.27921 – volume: 6 year: 2012 ident: 2021103110133894500_awab236-B12 article-title: The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease publication-title: Front Behav Neurosci doi: 10.3389/fnbeh.2012.00048 – volume: 68 start-page: 1023 issue: 6 year: 2010 ident: 2021103110133894500_awab236-B11 article-title: Sleep state switching publication-title: Neuron doi: 10.1016/j.neuron.2010.11.032 – volume: 101 start-page: 195 issue: 3 year: 2001 ident: 2021103110133894500_awab236-B17 article-title: Alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei publication-title: Acta Neuropathol doi: 10.1007/s004010000247 – volume: 20 start-page: 1602 issue: 11 year: 2017 ident: 2021103110133894500_awab236-B74 article-title: Modular organization of the brainstem noradrenaline system coordinates opposing learning states publication-title: Nat Neurosci doi: 10.1038/nn.4642 – volume: 67 start-page: 1 issue: 1 year: 2015 ident: 2021103110133894500_awab236-B46 article-title: Fitting linear mixed-effects models using lme4 publication-title: J Stat Softw doi: 10.18637/jss.v067.i01 – volume: 524 start-page: 88 issue: 7563 year: 2015 ident: 2021103110133894500_awab236-B75 article-title: Viral-genetic tracing of the input–output organization of a central noradrenaline circuit publication-title: Nature doi: 10.1038/nature14600 – volume: 113 start-page: 235 year: 2015 ident: 2021103110133894500_awab236-B1 article-title: Histologic validation of locus coeruleus MRI contrast in post-mortem tissue publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.020 – volume: 54 start-page: 2033 issue: 3 year: 2011 ident: 2021103110133894500_awab236-B44 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.025 – volume: 143 start-page: 3077 issue: 10 year: 2020 ident: 2021103110133894500_awab236-B85 article-title: Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study publication-title: Brain doi: 10.1093/brain/awaa238 – volume: 141 start-page: 496 issue: 2 year: 2018 ident: 2021103110133894500_awab236-B15 article-title: Evaluation of the noradrenergic system in Parkinson’s disease: An 11C-MeNER PET and neuromelanin MRI study publication-title: Brain doi: 10.1093/brain/awx348 – volume: 59 start-page: 659 issue: 4 year: 2018 ident: 2021103110133894500_awab236-B22 article-title: Noradrenergic deficits in Parkinson disease imaged with 11C-MeNER publication-title: J Nucl Med doi: 10.2967/jnumed.117.190975 – volume: 75 start-page: 1717 issue: 19 year: 2010 ident: 2021103110133894500_awab236-B48 article-title: The MoCA: Well-suited screen for cognitive impairment in Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0b013e3181fc29c9 – volume: 18 start-page: 101 issue: 2 year: 2017 ident: 2021103110133894500_awab236-B57 article-title: Selective neuronal vulnerability in Parkinson disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2016.178 – volume: 80 start-page: 29 year: 2019 ident: 2021103110133894500_awab236-B27 article-title: Layer-specific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T α-synuclein–expressing mice publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2019.03.014 – volume: 3 start-page: 1203 issue: 11 year: 2019 ident: 2021103110133894500_awab236-B4 article-title: Rostral locus coeruleus integrity is associated with better memory performance in older adults publication-title: Nat Hum Behav doi: 10.1038/s41562-019-0715-2 – volume: 16 start-page: 266 issue: 1 year: 2019 ident: 2021103110133894500_awab236-B13 article-title: Stress-induced microglial activation occurs through β-adrenergic receptor: Noradrenaline as a key neurotransmitter in microglial activation publication-title: J Neuroinflammation doi: 10.1186/s12974-019-1632-z – volume: 16 start-page: 204 issue: 1 year: 2019 ident: 2021103110133894500_awab236-B9 article-title: The link between chronic pain and Alzheimer’s disease publication-title: J Neuroinflamm doi: 10.1186/s12974-019-1608-z – volume: 38 start-page: 813 issue: 3 year: 2019 ident: 2021103110133894500_awab236-B83 article-title: Dynamic atlas-based segmentation and quantification of neuromelanin-rich brainstem structures in Parkinson disease publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2872852 – year: 2021 ident: 2021103110133894500_awab236-B47 – volume: 143 start-page: 2757 issue: 9 year: 2020 ident: 2021103110133894500_awab236-B45 article-title: Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awaa216 – volume: 168 start-page: 427 year: 2018 ident: 2021103110133894500_awab236-B18 article-title: High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.045 – volume: 33 start-page: 1006 issue: 6 year: 2018 ident: 2021103110133894500_awab236-B23 article-title: Decreased noradrenaline transporter density in the motor cortex of Parkinson’s disease patients: Cortical Noradrenaline Transporter publication-title: Mov Disord doi: 10.1002/mds.27411 – volume: 35 start-page: 1636 issue: 9 year: 2020 ident: 2021103110133894500_awab236-B65 article-title: Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice publication-title: Mov Disord doi: 10.1002/mds.28124 – volume: 30 start-page: 707 issue: 7 year: 2003 ident: 2021103110133894500_awab236-B89 article-title: Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER publication-title: Nuclear Med Biol doi: 10.1016/S0969-8051(03)00079-9 – volume: 18 start-page: 307 issue: 2 year: 1986 ident: 2021103110133894500_awab236-B28 article-title: Efferent projections of nucleus locus coeruleus: Morphologic subpopulations have different efferent targets publication-title: Neuroscience doi: 10.1016/0306-4522(86)90156-9 – volume: 74 start-page: 101 year: 2019 ident: 2021103110133894500_awab236-B86 article-title: In vivo visualization of age-related differences in the locus coeruleus publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2018.10.014 – volume: 155 start-page: 15 issue: 1 year: 1974 ident: 2021103110133894500_awab236-B30 article-title: A radioautographic study of the efferent pathways of the nucleus locus coeruleus publication-title: J Comp Neurol doi: 10.1002/cne.901550103 – volume: 47 start-page: 1261 issue: 4 year: 2009 ident: 2021103110133894500_awab236-B42 article-title: In vivo mapping of the human locus coeruleus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.012 – volume: 539 start-page: 207 issue: 7628 year: 2016 ident: 2021103110133894500_awab236-B66 article-title: Defects in trafficking bridge Parkinson’s disease pathology and genetics publication-title: Nature doi: 10.1038/nature20414 – volume: 29 start-page: 444 issue: 2 year: 2009 ident: 2021103110133894500_awab236-B58 article-title: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4029-08.2009 – volume: 30 start-page: 365 issue: 3 year: 1991 ident: 2021103110133894500_awab236-B51 article-title: Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease publication-title: Ann Neurol doi: 10.1002/ana.410300308 – volume: 34 start-page: 884 issue: 6 year: 2019 ident: 2021103110133894500_awab236-B77 article-title: Mild cognitive impairment in de novo Parkinson’s disease: A neuromelanin MRI study in locus coeruleus publication-title: Mov Disord doi: 10.1002/mds.27682 – volume: 27 start-page: 1618 issue: 13 year: 2012 ident: 2021103110133894500_awab236-B49 article-title: Thalamic noradrenaline in Parkinson’s disease: Deficits suggest role in motor and non-motor symptoms publication-title: Mov Disord doi: 10.1002/mds.25109 – volume: 24 start-page: 197 issue: 2 year: 2003 ident: 2021103110133894500_awab236-B52 article-title: Staging of brain pathology related to sporadic Parkinson’s disease publication-title: Neurobiol Aging doi: 10.1016/S0197-4580(02)00065-9 – volume: 30 start-page: 175 issue: 2-3 year: 1977 ident: 2021103110133894500_awab236-B31 article-title: Noradrenaline innervation of the spinal cord studied by the horseradish peroxidase method combined with monoamine oxidase staining publication-title: Exp Brain Res – volume: 17 start-page: 618 issue: 7 year: 2018 ident: 2021103110133894500_awab236-B16 article-title: In-vivo staging of pathology in REM sleep behaviour disorder: A multimodality imaging case-control study publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30162-5 – volume: 21 start-page: 644 issue: 11 year: 2020 ident: 2021103110133894500_awab236-B7 article-title: Locus coeruleus: A new look at the blue spot publication-title: Nat Rev Neurosci doi: 10.1038/s41583-020-0360-9 – volume: 31 start-page: 259 issue: 2 year: 2006 ident: 2021103110133894500_awab236-B10 article-title: Locus coeruleus lesions decrease oxytocin and vasopressin release induced by hemorrhage publication-title: Neurochem Res doi: 10.1007/s11064-005-9015-5 – volume: 13 start-page: 236 issue: 3 year: 2017 ident: 2021103110133894500_awab236-B3 article-title: Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery publication-title: Alzheimer’s Dement doi: 10.1016/j.jalz.2016.06.2362 – volume: 142 start-page: 2023 issue: 7 year: 2019 ident: 2021103110133894500_awab236-B73 article-title: Relationship between neuromelanin and dopamine terminals within the Parkinson’s nigrostriatal system publication-title: Brain doi: 10.1093/brain/awz120 – volume: 56 start-page: 9 year: 2018 ident: 2021103110133894500_awab236-B54 article-title: Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson’s disease publication-title: Parkinson Related Disord doi: 10.1016/j.parkreldis.2018.06.025 – volume: 32 start-page: 667 issue: 5 year: 1992 ident: 2021103110133894500_awab236-B32 article-title: Disease-specific patterns of locus coeruleus cell loss publication-title: Ann Neurol doi: 10.1002/ana.410320510 – volume: 187 start-page: 703 issue: 4 year: 1979 ident: 2021103110133894500_awab236-B29 article-title: Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase publication-title: J Comp Neurol doi: 10.1002/cne.901870405 – volume: 25 start-page: 949 issue: 7 year: 2018 ident: 2021103110133894500_awab236-B82 article-title: Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes publication-title: Eur J Neurol doi: 10.1111/ene.13628 – volume: 541 start-page: 93 year: 2013 ident: 2021103110133894500_awab236-B81 article-title: Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging publication-title: Neurosci Lett doi: 10.1016/j.neulet.2013.02.012 – volume: 97 start-page: 11869 issue: 22 year: 2000 ident: 2021103110133894500_awab236-B37 article-title: Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.22.11869 – volume: 11 start-page: 760 issue: 11 year: 2010 ident: 2021103110133894500_awab236-B76 article-title: Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn2915 – volume: 225 start-page: 117487 year: 2021 ident: 2021103110133894500_awab236-B79 article-title: An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117487 – volume: 142 start-page: 2558 issue: 9 year: 2019 ident: 2021103110133894500_awab236-B21 article-title: Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases publication-title: Brain doi: 10.1093/brain/awz193 – volume: 153 start-page: 47 year: 2019 ident: 2021103110133894500_awab236-B8 article-title: The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer’s disease publication-title: Brain Res Bull doi: 10.1016/j.brainresbull.2019.08.007 – volume: 136 start-page: 2120 issue: Pt 7 year: 2013 ident: 2021103110133894500_awab236-B41 article-title: The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease publication-title: Brain doi: 10.1093/brain/awt152 – volume: 89 start-page: 55 year: 2016 ident: 2021103110133894500_awab236-B64 article-title: Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson’s disease – volume: 139 start-page: 2039 issue: Pt 7 year: 2016 ident: 2021103110133894500_awab236-B55 article-title: In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET publication-title: Brain doi: 10.1093/brain/aww098 – volume: 83 start-page: 325 year: 2017 ident: 2021103110133894500_awab236-B19 article-title: Magnetic resonance imaging of the human locus coeruleus: A systematic review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.10.023 – volume: 31 start-page: 1116 issue: 3 year: 2006 ident: 2021103110133894500_awab236-B43 article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 40 start-page: 502 issue: 5 year: 2020 ident: 2021103110133894500_awab236-B67 article-title: The "Sick-but-not-Dead" phenomenon applied to catecholamine deficiency in neurodegenerative diseases publication-title: Semin Neurol doi: 10.1055/s-0040-1713874 – volume: 224 start-page: 117409 year: 2021 ident: 2021103110133894500_awab236-B80 article-title: Uncovering the locus coeruleus: Comparison of localization methods for functional analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117409 – volume: 58 start-page: 351 issue: 4 year: 2016 ident: 2021103110133894500_awab236-B69 article-title: Correlation between neuromelanin-sensitive MR imaging and 123I-FP-CIT SPECT in patients with parkinsonism publication-title: Neuroradiology doi: 10.1007/s00234-016-1644-7 – volume: 30 start-page: 85 issue: 2 year: 2003 ident: 2021103110133894500_awab236-B87 article-title: Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter publication-title: Nucl Med Biol doi: 10.1016/S0969-8051(02)00420-1 – volume: 91 start-page: 975 issue: 5 year: 2016 ident: 2021103110133894500_awab236-B59 article-title: High-throughput mapping of single-neuron projections by sequencing of barcoded RNA publication-title: Neuron doi: 10.1016/j.neuron.2016.07.036 – volume: 25 start-page: R1051 issue: 21 year: 2015 ident: 2021103110133894500_awab236-B6 article-title: Organization of the Locus Coeruleus-Norepinephrine system publication-title: Current Biology doi: 10.1016/j.cub.2015.09.039 – volume: 5 start-page: 8 issue: 1 year: 2017 ident: 2021103110133894500_awab236-B14 article-title: Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease publication-title: Acta Neuropathol Commun doi: 10.1186/s40478-017-0411-2 – volume: 29 start-page: 1767 issue: 14 year: 2014 ident: 2021103110133894500_awab236-B70 article-title: Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts: Correlation of DAT Imaging with SN Cell Counts publication-title: Mov Disord doi: 10.1002/mds.25975 – volume: 88 start-page: 1461 issue: 15 year: 2017 ident: 2021103110133894500_awab236-B68 article-title: Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease publication-title: Neurology doi: 10.1212/WNL.0000000000003810 – volume: 20 start-page: 45 issue: 1 year: 2001 ident: 2021103110133894500_awab236-B38 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – reference: 34382062 - Brain. 2021 Oct 22;144(9):2562-2564 |
SSID | ssj0014326 |
Score | 2.5632236 |
Snippet | Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers... Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2732 |
SubjectTerms | Aged Aged, 80 and over Female Humans Locus Coeruleus - diagnostic imaging Locus Coeruleus - metabolism Magnetic Resonance Imaging - methods Male Middle Aged Multimodal Imaging - methods Norepinephrine Plasma Membrane Transport Proteins - metabolism Parkinson Disease - diagnostic imaging Parkinson Disease - metabolism Positron-Emission Tomography - methods |
Title | Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34196700 https://www.proquest.com/docview/2547540775 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IO6Um4yE4KFka2zn9oig02AaD2iT9hY5zslUVNLSJELa3-APc3yJm4pVAl6iKElt1efTsc_x-T4T8rpSU6gEJEGYpjEGKLIMMox-AiHDEJiMhJxq7vDZl_jkQny-jC5Ho1-DqqWuLQ7V9Y28kv-xKj5Du2qW7D9Y1jeKD_Ae7YtXtDBe_8rGX-HKZvJwRuoarfOx7haAdyVcGTlpW8nYTHDyWnarBS4uDZ2kRrtrBjes0e9NXD2MbqUx1bGaCe1IYUmztYXjlZDkvL7xMBCbYUiTdJBh-LjEla7jG26kDCazzY7UqTkArFs58lCLjfudIC2NYKsVdalg7WcRrR7p8Da7hh_d3NX-uwwGMyV0lox8CNbrihifhFZh3Ltlqwvp8JcNnWxiU6J_eH-rjFWsTU7lWP6UBbPqKgMsrL4bMGgZO81Q2kyDvjixf3WL3GYYe5g4_dOp35oSuOB1Yq3Y35Hp7cj1dUD2-19vr3N2BC9mEXN-l9xx0Qd9b6F0j4ygvk_2z1x9xQPyrUcUNYiiHlF0iCg6b6hHFNWIoluIoj2iqEYUndfUI-ottmTx9JBcHM_OP5wE7jSOQHHO2gDwHzKRKhnJTCcvS66khJAzhS5eFGlchiKBUAekquAYJWBgW5YFr6qYKRCKPyJ79bKGJ4ROVSVDDolKgYusSrMorTRPKStSljFVjcm7fuxy5aTq9Ykpi9yWTPDcjHruRn1M3vjPV1ajZdeHr3pD5OhF9daYrGHZNTmLRKKlKJNoTB5bC_mmeos-3fnmGTnY4Po52WvXHbzAtWpbvDTY-Q1gwJol |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+locus+coeruleus+degeneration+is+uncoupled+from+noradrenergic+terminal+loss+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Doppler%2C+Christopher+E+J&rft.au=Kinnerup%2C+Martin+B&rft.au=Brune%2C+Corinna&rft.au=Farrher%2C+Ezequiel&rft.date=2021-10-22&rft.eissn=1460-2156&rft.volume=144&rft.issue=9&rft.spage=2732&rft_id=info:doi/10.1093%2Fbrain%2Fawab236&rft_id=info%3Apmid%2F34196700&rft.externalDocID=34196700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |