Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease

Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 144; no. 9; pp. 2732 - 2744
Main Authors Doppler, Christopher E J, Kinnerup, Martin B, Brune, Corinna, Farrher, Ezequiel, Betts, Matthew, Fedorova, Tatyana D, Schaldemose, Jeppe L, Knudsen, Karoline, Ismail, Rola, Seger, Aline D, Hansen, Allan K, Stær, Kristian, Fink, Gereon R, Brooks, David J, Nahimi, Adjmal, Borghammer, Per, Sommerauer, Michael
Format Journal Article
LanguageEnglish
Published England 22.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson’s disease. We examined 93 subjects (40 healthy controls and 53 Parkinson’s disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson’s disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson’s diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson’s disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson’s disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson’s disease, which may eventually direct research towards potential novel treatment approaches.
AbstractList Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches.Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches.
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson's disease. We examined 93 subjects (40 healthy controls and 53 Parkinson's disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson's disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson's diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson's disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson's disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson's disease, which may eventually direct research towards potential novel treatment approaches.
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers have become available to visualize the cell bodies in the locus coeruleus and the density of noradrenergic terminal transporters. Combining these methods, we investigated the relationship of neurodegeneration in these distinct compartments in Parkinson’s disease. We examined 93 subjects (40 healthy controls and 53 Parkinson’s disease patients) with neuromelanin-sensitive turbo spin-echo MRI and calculated locus coeruleus-to-pons signal contrasts. Voxels with the highest intensities were extracted from published locus coeruleus coordinates transformed to individual MRI. To also investigate a potential spatial pattern of locus coeruleus degeneration, we extracted the highest signal intensities from the rostral, middle, and caudal third of the locus coeruleus. Additionally, a study-specific probabilistic map of the locus coeruleus was created and used to extract mean MRI contrast from the entire locus coeruleus and each rostro-caudal subdivision. Locus coeruleus volumes were measured using manual segmentations. A subset of 73 subjects had 11C-MeNER PET to determine noradrenaline transporter density, and distribution volume ratios of noradrenaline transporter-rich regions were computed. Patients with Parkinson’s disease showed reduced locus coeruleus MRI contrast independently of the selected method (voxel approaches: P < 0.0001, P < 0.001; probabilistic map: P < 0.05), specifically on the clinically-defined most affected side (P < 0.05), and reduced locus coeruleus volume (P < 0.0001). Reduced MRI contrast was confined to the middle and caudal locus coeruleus (voxel approach, rostral: P = 0.48, middle: P < 0.0001, and caudal: P < 0.05; probabilistic map, rostral: P = 0.90, middle: P < 0.01, and caudal: P < 0.05). The noradrenaline transporter density was lower in patients with Parkinson’s diseasein all examined regions (group effect P < 0.0001). No significant correlation was observed between locus coeruleus MRI contrast and noradrenaline transporter density. In contrast, the individual ratios of noradrenaline transporter density and locus coeruleus MRI contrast were lower in Parkinson’s disease patients in all examined regions (group effect P < 0.001). Our multimodal imaging approach revealed pronounced noradrenergic terminal loss relative to cellular locus coeruleus degeneration in Parkinson’s disease; the latter followed a distinct spatial pattern with the middle-caudal portion being more affected than the rostral part. The data shed first light on the interaction between the axonal and cell body compartments and their differential susceptibility to neurodegeneration in Parkinson’s disease, which may eventually direct research towards potential novel treatment approaches.
Author Kinnerup, Martin B
Seger, Aline D
Betts, Matthew
Fink, Gereon R
Borghammer, Per
Doppler, Christopher E J
Stær, Kristian
Sommerauer, Michael
Fedorova, Tatyana D
Knudsen, Karoline
Brune, Corinna
Farrher, Ezequiel
Ismail, Rola
Brooks, David J
Nahimi, Adjmal
Hansen, Allan K
Schaldemose, Jeppe L
Author_xml – sequence: 1
  givenname: Christopher E J
  orcidid: 0000-0002-1341-0389
  surname: Doppler
  fullname: Doppler, Christopher E J
  organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany
– sequence: 2
  givenname: Martin B
  surname: Kinnerup
  fullname: Kinnerup, Martin B
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 3
  givenname: Corinna
  surname: Brune
  fullname: Brune, Corinna
  organization: Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany
– sequence: 4
  givenname: Ezequiel
  surname: Farrher
  fullname: Farrher, Ezequiel
  organization: Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
– sequence: 5
  givenname: Matthew
  surname: Betts
  fullname: Betts, Matthew
  organization: German Center for Neurodegenerative Diseases (DZNE), D-39120 Magdeburg, Germany, Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany, Center for Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
– sequence: 6
  givenname: Tatyana D
  surname: Fedorova
  fullname: Fedorova, Tatyana D
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 7
  givenname: Jeppe L
  surname: Schaldemose
  fullname: Schaldemose, Jeppe L
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 8
  givenname: Karoline
  surname: Knudsen
  fullname: Knudsen, Karoline
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 9
  givenname: Rola
  surname: Ismail
  fullname: Ismail, Rola
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 10
  givenname: Aline D
  surname: Seger
  fullname: Seger, Aline D
  organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany
– sequence: 11
  givenname: Allan K
  surname: Hansen
  fullname: Hansen, Allan K
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 12
  givenname: Kristian
  surname: Stær
  fullname: Stær, Kristian
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 13
  givenname: Gereon R
  surname: Fink
  fullname: Fink, Gereon R
  organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany
– sequence: 14
  givenname: David J
  orcidid: 0000-0003-2602-2518
  surname: Brooks
  fullname: Brooks, David J
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK, Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
– sequence: 15
  givenname: Adjmal
  surname: Nahimi
  fullname: Nahimi, Adjmal
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 16
  givenname: Per
  orcidid: 0000-0001-6391-8052
  surname: Borghammer
  fullname: Borghammer, Per
  organization: Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
– sequence: 17
  givenname: Michael
  orcidid: 0000-0001-5723-9766
  surname: Sommerauer
  fullname: Sommerauer, Michael
  organization: Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, D-52425 Jülich, Germany, Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, D-50937 Köln, Germany, Department of Nuclear Medicine and PET, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34196700$$D View this record in MEDLINE/PubMed
BookMark eNptkc1KxDAUhYMoOqMu3UqWbqr5azpdivgHgiK6Dml6O0TTZExaxJ2v4ev5JGacmY24uhfudw-cc6Zo2wcPCB1RckpJzc-aqK0_0--6YVxuoQkVkhSMlnIbTQghspjVJdlD05ReCKGCM7mL9rigtawImSD3CHMbvHbYBTMmbALE0UHeWpiDh6iHfMY24dGbMC4ctLiLocc-RN3GJTG3Bg8Qe7tSSQlbjx90fLU-Bf_9-ZW1bAKd4ADtdNolOFzPffR8dfl0cVPc3V_fXpzfFYZzNhSQvTAxM7rUNWU1abnRGihnpqq5aGaypaKCbJFy0_BSSsFmbdvwrpPMgDB8H52sdBcxvI2QBtXbZMA57SGMSbFSVKUgVVVm9HiNjk0PrVpE2-v4oTYJZYCvABOztQidMnb4DWXIyTtFiVr2oH57UOse8lfx52sj_D__A_1Bj_k
CitedBy_id crossref_primary_10_1212_WNL_0000000000206736
crossref_primary_10_2174_1567205020666230721144603
crossref_primary_10_1016_j_nicl_2023_103479
crossref_primary_10_7554_eLife_87188
crossref_primary_10_1016_j_arr_2022_101840
crossref_primary_10_1523_ENEURO_0483_22_2022
crossref_primary_10_1016_j_neubiorev_2023_105311
crossref_primary_10_1016_j_neuint_2022_105302
crossref_primary_10_1038_s41380_023_02177_x
crossref_primary_10_3389_fnagi_2023_1236335
crossref_primary_10_3390_ijms241713039
crossref_primary_10_1002_mds_30058
crossref_primary_10_1002_alz_12937
crossref_primary_10_1016_j_ejphar_2023_175944
crossref_primary_10_1002_mds_28945
crossref_primary_10_1186_s13063_024_08265_9
crossref_primary_10_1186_s40035_023_00347_z
crossref_primary_10_1007_s00702_023_02721_7
crossref_primary_10_1038_s41582_023_00802_5
crossref_primary_10_1002_mds_29072
crossref_primary_10_1038_s41583_021_00542_9
crossref_primary_10_1016_j_physbeh_2025_114887
crossref_primary_10_1016_j_neubiorev_2023_105287
crossref_primary_10_1038_s41386_022_01269_6
crossref_primary_10_1093_brain_awad192
crossref_primary_10_1523_JNEUROSCI_0289_22_2023
crossref_primary_10_3233_JPD_230385
crossref_primary_10_1016_j_tins_2022_05_006
crossref_primary_10_3390_cells11172640
crossref_primary_10_1016_j_nicl_2023_103420
crossref_primary_10_3390_brainsci12091146
crossref_primary_10_1002_hbm_70013
crossref_primary_10_1093_brain_awab286
crossref_primary_10_3390_antiox14030255
crossref_primary_10_3389_fnins_2024_1296161
crossref_primary_10_3390_brainsci14010100
crossref_primary_10_1002_jmri_28414
crossref_primary_10_1016_j_neuroimage_2022_119658
crossref_primary_10_3390_biology13010058
crossref_primary_10_3390_ijms23158586
crossref_primary_10_7554_eLife_87188_3
crossref_primary_10_1007_s10286_022_00859_0
crossref_primary_10_1007_s12035_025_04706_x
crossref_primary_10_3390_cells12212529
crossref_primary_10_1097_WCO_0000000000001042
crossref_primary_10_1093_brain_awad338
crossref_primary_10_1007_s10286_023_00987_1
crossref_primary_10_37871_jbres1408
crossref_primary_10_1186_s40035_024_00400_5
crossref_primary_10_1093_brain_awae069
Cites_doi 10.1093/brain/awt192
10.1038/s41531-018-0047-3
10.3233/JPD-202481
10.1093/brain/aws211
10.1002/ana.21995
10.1002/syn.20133
10.3389/fncel.2016.00293
10.1186/s12883-020-02007-5
10.1016/j.neuroimage.2017.09.042
10.1002/mds.25135
10.1002/mds.27823
10.1016/j.neuroscience.2011.01.038
10.1093/brain/aww006
10.1186/s40478-015-0222-2
10.1001/archneur.1984.04210080020007
10.1002/mds.26424
10.1002/mds.23429
10.1002/mds.22340
10.1016/j.neuroimage.2011.09.015
10.1016/j.parkreldis.2008.01.017
10.1002/mds.27921
10.3389/fnbeh.2012.00048
10.1016/j.neuron.2010.11.032
10.1007/s004010000247
10.1038/nn.4642
10.18637/jss.v067.i01
10.1038/nature14600
10.1016/j.neuroimage.2015.03.020
10.1016/j.neuroimage.2010.09.025
10.1093/brain/awaa238
10.1093/brain/awx348
10.2967/jnumed.117.190975
10.1212/WNL.0b013e3181fc29c9
10.1038/nrn.2016.178
10.1016/j.neurobiolaging.2019.03.014
10.1038/s41562-019-0715-2
10.1186/s12974-019-1632-z
10.1186/s12974-019-1608-z
10.1109/TMI.2018.2872852
10.1093/brain/awaa216
10.1016/j.neuroimage.2017.07.045
10.1002/mds.27411
10.1002/mds.28124
10.1016/S0969-8051(03)00079-9
10.1016/0306-4522(86)90156-9
10.1016/j.neurobiolaging.2018.10.014
10.1002/cne.901550103
10.1016/j.neuroimage.2009.06.012
10.1038/nature20414
10.1523/JNEUROSCI.4029-08.2009
10.1002/ana.410300308
10.1002/mds.27682
10.1002/mds.25109
10.1016/S0197-4580(02)00065-9
10.1016/S1474-4422(18)30162-5
10.1038/s41583-020-0360-9
10.1007/s11064-005-9015-5
10.1016/j.jalz.2016.06.2362
10.1093/brain/awz120
10.1016/j.parkreldis.2018.06.025
10.1002/ana.410320510
10.1002/cne.901870405
10.1111/ene.13628
10.1016/j.neulet.2013.02.012
10.1073/pnas.97.22.11869
10.1038/nrn2915
10.1016/j.neuroimage.2020.117487
10.1093/brain/awz193
10.1016/j.brainresbull.2019.08.007
10.1093/brain/awt152
10.1093/brain/aww098
10.1016/j.neubiorev.2017.10.023
10.1016/j.neuroimage.2006.01.015
10.1055/s-0040-1713874
10.1016/j.neuroimage.2020.117409
10.1007/s00234-016-1644-7
10.1016/S0969-8051(02)00420-1
10.1016/j.neuron.2016.07.036
10.1016/j.cub.2015.09.039
10.1186/s40478-017-0411-2
10.1002/mds.25975
10.1212/WNL.0000000000003810
10.1109/42.906424
ContentType Journal Article
Copyright The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awab236
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 2744
ExternalDocumentID 34196700
10_1093_brain_awab236
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAWTL
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CITATION
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
ADJQC
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c332t-eab2248ca5a91290d3caae132c7934b86d147e15613cb3566428ddb3ff62ce4c3
ISSN 0006-8950
1460-2156
IngestDate Fri Jul 11 08:47:27 EDT 2025
Wed Feb 19 02:27:17 EST 2025
Thu Apr 24 23:04:03 EDT 2025
Tue Jul 01 00:46:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords noradrenaline
positron emission tomography
Parkinson’s disease
neuromelanin
MeNER
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-eab2248ca5a91290d3caae132c7934b86d147e15613cb3566428ddb3ff62ce4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5723-9766
0000-0001-6391-8052
0000-0003-2602-2518
0000-0002-1341-0389
OpenAccessLink https://academic.oup.com/brain/article-pdf/144/9/2732/40880287/awab236.pdf
PMID 34196700
PQID 2547540775
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2547540775
pubmed_primary_34196700
crossref_citationtrail_10_1093_brain_awab236
crossref_primary_10_1093_brain_awab236
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-22
  day: 22
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2021
References Kebschull (2021103110133894500_awab236-B59) 2016; 91
Schwarz (2021103110133894500_awab236-B75) 2015; 524
Ohtsuka (2021103110133894500_awab236-B81) 2013; 541
Yushkevich (2021103110133894500_awab236-B43) 2006; 31
German (2021103110133894500_awab236-B32) 1992; 32
Li (2021103110133894500_awab236-B77) 2019; 34
Giorgi (2021103110133894500_awab236-B8) 2019; 153
Grosch (2021103110133894500_awab236-B26) 2016; 10
Ghose (2021103110133894500_awab236-B88) 2005; 56
Keren (2021103110133894500_awab236-B42) 2009; 47
Wilson (2021103110133894500_awab236-B87) 2003; 30
Cheng (2021103110133894500_awab236-B24) 2010; 67
Matsuda (2021103110133894500_awab236-B58) 2009; 29
Sugama (2021103110133894500_awab236-B13) 2019; 16
Avants (2021103110133894500_awab236-B44) 2011; 54
Knudsen (2021103110133894500_awab236-B16) 2018; 17
Satoh (2021103110133894500_awab236-B31) 1977; 30
Lenth (2021103110133894500_awab236-B47) 2021
Yust-Katz (2021103110133894500_awab236-B36) 2008; 14
Goldstein (2021103110133894500_awab236-B67) 2020; 40
Nahimi (2021103110133894500_awab236-B22) 2018; 59
Postuma (2021103110133894500_awab236-B33) 2015; 30
Saari (2021103110133894500_awab236-B68) 2017; 88
Braak (2021103110133894500_awab236-B17) 2001; 101
Poe (2021103110133894500_awab236-B7) 2020; 21
O'Keeffe (2021103110133894500_awab236-B54) 2018; 56
Kuya (2021103110133894500_awab236-B69) 2016; 58
Arcuri (2021103110133894500_awab236-B64) 2016; 89
Schwarz (2021103110133894500_awab236-B6) 2015; 25
Liu (2021103110133894500_awab236-B19) 2017; 83
García-Lorenzo (2021103110133894500_awab236-B41) 2013; 136
Sulzer (2021103110133894500_awab236-B5) 2018; 4
Schou (2021103110133894500_awab236-B89) 2003; 30
Betts (2021103110133894500_awab236-B20) 2019; 11
Cao (2021103110133894500_awab236-B9) 2019; 16
Ariz (2021103110133894500_awab236-B83) 2019; 38
Jenkinson (2021103110133894500_awab236-B39) 2012; 62
Surmeier (2021103110133894500_awab236-B57) 2017; 18
Kraemmer (2021103110133894500_awab236-B70) 2014; 29
Theofilas (2021103110133894500_awab236-B3) 2017; 13
Hansen (2021103110133894500_awab236-B55) 2016; 139
Priovoulos (2021103110133894500_awab236-B18) 2018; 168
Bates (2021103110133894500_awab236-B46) 2015; 67
Ehrminger (2021103110133894500_awab236-B40) 2016; 139
Rodovalho (2021103110133894500_awab236-B10) 2006; 31
Dalrymple-Alford (2021103110133894500_awab236-B48) 2010; 75
Ye (2021103110133894500_awab236-B79) 2021; 225
Saper (2021103110133894500_awab236-B11) 2010; 68
Gaspar (2021103110133894500_awab236-B51) 1991; 30
Pérez -Taboada (2021103110133894500_awab236-B65) 2020; 35
Redgrave (2021103110133894500_awab236-B76) 2010; 11
Wang (2021103110133894500_awab236-B82) 2018; 25
Kish (2021103110133894500_awab236-B50) 1984; 41
Loughlin (2021103110133894500_awab236-B28) 1986; 18
Sulzer (2021103110133894500_awab236-B37) 2000; 97
Kelly (2021103110133894500_awab236-B14) 2017; 5
Mäki-Marttunen (2021103110133894500_awab236-B80) 2021; 224
Liu (2021103110133894500_awab236-B86) 2019; 74
Mason (2021103110133894500_awab236-B29) 1979; 187
Bourdenx (2021103110133894500_awab236-B63) 2015; 3
Sommerauer (2021103110133894500_awab236-B15) 2018; 141
Martín-Bastida (2021103110133894500_awab236-B73) 2019; 142
Monje (2021103110133894500_awab236-B61) 2020; 35
Vazey (2021103110133894500_awab236-B12) 2012; 6
Goetz (2021103110133894500_awab236-B35) 2008; 23
Zhang (2021103110133894500_awab236-B38) 2001; 20
Simões (2021103110133894500_awab236-B84) 2020; 20
Braak (2021103110133894500_awab236-B52) 2003; 24
Bolam (2021103110133894500_awab236-B56) 2012; 27
Tomlinson (2021103110133894500_awab236-B34) 2010; 25
Tagliaferro (2021103110133894500_awab236-B53) 2016; 6
Kordower (2021103110133894500_awab236-B60) 2013; 136
Betts (2021103110133894500_awab236-B2) 2017; 163
Mulcahy (2021103110133894500_awab236-B62) 2011; 181
Uematsu (2021103110133894500_awab236-B74) 2017; 20
Isaias (2021103110133894500_awab236-B72) 2016; 8
Horsager (2021103110133894500_awab236-B85) 2020; 143
Pifl (2021103110133894500_awab236-B49) 2012; 27
Betts (2021103110133894500_awab236-B21) 2019; 142
Wihan (2021103110133894500_awab236-B27) 2019; 80
Biondetti (2021103110133894500_awab236-B45) 2020; 143
Pickel (2021103110133894500_awab236-B30) 1974; 155
Colloby (2021103110133894500_awab236-B71) 2012; 135
Sommerauer (2021103110133894500_awab236-B23) 2018; 33
Abeliovich (2021103110133894500_awab236-B66) 2016; 539
Dahl (2021103110133894500_awab236-B4) 2019; 3
Keren (2021103110133894500_awab236-B1) 2015; 113
Borghammer (2021103110133894500_awab236-B78) 2021; 11
Wong (2021103110133894500_awab236-B25) 2019; 34
34382062 - Brain. 2021 Oct 22;144(9):2562-2564
References_xml – volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 2021103110133894500_awab236-B53
  article-title: Retrograde axonal degeneration in Parkinson disease
– volume: 136
  start-page: 2419
  issue: Pt 8
  year: 2013
  ident: 2021103110133894500_awab236-B60
  article-title: Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awt192
– volume: 4
  start-page: 11
  issue: 1
  year: 2018
  ident: 2021103110133894500_awab236-B5
  article-title: Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson’s disease
  publication-title: NPJ Parkinson’s Disease
  doi: 10.1038/s41531-018-0047-3
– volume: 11
  start-page: 455
  issue: 2
  year: 2021
  ident: 2021103110133894500_awab236-B78
  article-title: The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson’s disease: Explaining motor asymmetry, non-motor phenotypes, and cognitive decline
  publication-title: J Parkinsons Dis
  doi: 10.3233/JPD-202481
– volume: 135
  start-page: 2798
  issue: Pt 9
  year: 2012
  ident: 2021103110133894500_awab236-B71
  article-title: Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias
  publication-title: Brain
  doi: 10.1093/brain/aws211
– volume: 67
  start-page: 715
  issue: 6
  year: 2010
  ident: 2021103110133894500_awab236-B24
  article-title: Clinical progression in Parkinson disease and the neurobiology of axons
  publication-title: Ann Neurol
  doi: 10.1002/ana.21995
– volume: 56
  start-page: 100
  issue: 2
  year: 2005
  ident: 2021103110133894500_awab236-B88
  article-title: Specific in vitro binding of (S,S)-[3H]MeNER to norepinephrine transporters
  publication-title: Synapse
  doi: 10.1002/syn.20133
– volume: 11
  start-page: 281
  issue: 1
  year: 2019
  ident: 2021103110133894500_awab236-B20
  article-title: Locus coeruleus MRI contrast is reduced in Alzheimer’s disease dementia and correlates with CSF Aβ levels
  publication-title: Alzheimer’s Dement
– volume: 10
  year: 2016
  ident: 2021103110133894500_awab236-B26
  article-title: Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in Parkinson’s disease
  publication-title: . Front Cell Neurosci
  doi: 10.3389/fncel.2016.00293
– volume: 20
  start-page: 432
  issue: 1
  year: 2020
  ident: 2021103110133894500_awab236-B84
  article-title: A distinct neuromelanin magnetic resonance imaging pattern in Parkinsonian multiple system atrophy
  publication-title: BMC Neurol
  doi: 10.1186/s12883-020-02007-5
– volume: 163
  start-page: 150
  year: 2017
  ident: 2021103110133894500_awab236-B2
  article-title: In vivo MRI assessment of the human locus coeruleus along its rostrocaudal extent in young and older adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.09.042
– volume: 27
  start-page: 1478
  issue: 12
  year: 2012
  ident: 2021103110133894500_awab236-B56
  article-title: Living on the edge with too many mouths to feed: Why dopamine neurons die
  publication-title: Mov Disord
  doi: 10.1002/mds.25135
– volume: 8
  issue: 196
  year: 2016
  ident: 2021103110133894500_awab236-B72
  article-title: Neuromelanin imaging and dopaminergic loss in Parkinson’s Disease
  publication-title: Front Aging Neurosci
– volume: 34
  start-page: 1406
  issue: 10
  year: 2019
  ident: 2021103110133894500_awab236-B25
  article-title: Neuronal vulnerability in Parkinson disease: Should the focus be on axons and synaptic terminals?
  publication-title: Mov Disord
  doi: 10.1002/mds.27823
– volume: 181
  start-page: 234
  year: 2011
  ident: 2021103110133894500_awab236-B62
  article-title: Characterisation of a novel model of Parkinson’s disease by intra-striatal infusion of the pesticide rotenone
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.01.038
– volume: 139
  start-page: 1180
  issue: Pt 4
  year: 2016
  ident: 2021103110133894500_awab236-B40
  article-title: The coeruleus/subcoeruleus complex in idiopathic rapid eye movement sleep behaviour disorder
  publication-title: Brain
  doi: 10.1093/brain/aww006
– volume: 3
  start-page: 46
  issue: 1
  year: 2015
  ident: 2021103110133894500_awab236-B63
  article-title: Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-015-0222-2
– volume: 41
  start-page: 612
  issue: 6
  year: 1984
  ident: 2021103110133894500_awab236-B50
  article-title: Cerebellar Norepinephrine in Patients With Parkinson’s Disease and Control Subjects
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1984.04210080020007
– volume: 30
  start-page: 1591
  issue: 12
  year: 2015
  ident: 2021103110133894500_awab236-B33
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria
  publication-title: Mov Disord
  doi: 10.1002/mds.26424
– volume: 25
  start-page: 2649
  issue: 15
  year: 2010
  ident: 2021103110133894500_awab236-B34
  article-title: Systematic review of levodopa dose equivalency reporting in Parkinson’s disease: Systematic Review of LED Reporting in PD
  publication-title: Mov Disord
  doi: 10.1002/mds.23429
– volume: 23
  start-page: 2129
  issue: 15
  year: 2008
  ident: 2021103110133894500_awab236-B35
  article-title: Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results: MDS-UPDRS: Clinimetric Assessment
  publication-title: Mov Disord
  doi: 10.1002/mds.22340
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 2021103110133894500_awab236-B39
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 14
  start-page: 633
  issue: 8
  year: 2008
  ident: 2021103110133894500_awab236-B36
  article-title: Handedness as a predictor of side of onset of Parkinson’s disease
  publication-title: Parkinson Relat Disord
  doi: 10.1016/j.parkreldis.2008.01.017
– volume: 35
  start-page: 419
  issue: 3
  year: 2020
  ident: 2021103110133894500_awab236-B61
  article-title: Changes in thalamic dopamine innervation in a progressive Parkinson’s disease model in monkeys
  publication-title: Mov Disord
  doi: 10.1002/mds.27921
– volume: 6
  year: 2012
  ident: 2021103110133894500_awab236-B12
  article-title: The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease
  publication-title: Front Behav Neurosci
  doi: 10.3389/fnbeh.2012.00048
– volume: 68
  start-page: 1023
  issue: 6
  year: 2010
  ident: 2021103110133894500_awab236-B11
  article-title: Sleep state switching
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.11.032
– volume: 101
  start-page: 195
  issue: 3
  year: 2001
  ident: 2021103110133894500_awab236-B17
  article-title: Alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei
  publication-title: Acta Neuropathol
  doi: 10.1007/s004010000247
– volume: 20
  start-page: 1602
  issue: 11
  year: 2017
  ident: 2021103110133894500_awab236-B74
  article-title: Modular organization of the brainstem noradrenaline system coordinates opposing learning states
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4642
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  ident: 2021103110133894500_awab236-B46
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
– volume: 524
  start-page: 88
  issue: 7563
  year: 2015
  ident: 2021103110133894500_awab236-B75
  article-title: Viral-genetic tracing of the input–output organization of a central noradrenaline circuit
  publication-title: Nature
  doi: 10.1038/nature14600
– volume: 113
  start-page: 235
  year: 2015
  ident: 2021103110133894500_awab236-B1
  article-title: Histologic validation of locus coeruleus MRI contrast in post-mortem tissue
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.020
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 2021103110133894500_awab236-B44
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 143
  start-page: 3077
  issue: 10
  year: 2020
  ident: 2021103110133894500_awab236-B85
  article-title: Brain-first versus body-first Parkinson’s disease: A multimodal imaging case-control study
  publication-title: Brain
  doi: 10.1093/brain/awaa238
– volume: 141
  start-page: 496
  issue: 2
  year: 2018
  ident: 2021103110133894500_awab236-B15
  article-title: Evaluation of the noradrenergic system in Parkinson’s disease: An 11C-MeNER PET and neuromelanin MRI study
  publication-title: Brain
  doi: 10.1093/brain/awx348
– volume: 59
  start-page: 659
  issue: 4
  year: 2018
  ident: 2021103110133894500_awab236-B22
  article-title: Noradrenergic deficits in Parkinson disease imaged with 11C-MeNER
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.117.190975
– volume: 75
  start-page: 1717
  issue: 19
  year: 2010
  ident: 2021103110133894500_awab236-B48
  article-title: The MoCA: Well-suited screen for cognitive impairment in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181fc29c9
– volume: 18
  start-page: 101
  issue: 2
  year: 2017
  ident: 2021103110133894500_awab236-B57
  article-title: Selective neuronal vulnerability in Parkinson disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2016.178
– volume: 80
  start-page: 29
  year: 2019
  ident: 2021103110133894500_awab236-B27
  article-title: Layer-specific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T α-synuclein–expressing mice
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2019.03.014
– volume: 3
  start-page: 1203
  issue: 11
  year: 2019
  ident: 2021103110133894500_awab236-B4
  article-title: Rostral locus coeruleus integrity is associated with better memory performance in older adults
  publication-title: Nat Hum Behav
  doi: 10.1038/s41562-019-0715-2
– volume: 16
  start-page: 266
  issue: 1
  year: 2019
  ident: 2021103110133894500_awab236-B13
  article-title: Stress-induced microglial activation occurs through β-adrenergic receptor: Noradrenaline as a key neurotransmitter in microglial activation
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-019-1632-z
– volume: 16
  start-page: 204
  issue: 1
  year: 2019
  ident: 2021103110133894500_awab236-B9
  article-title: The link between chronic pain and Alzheimer’s disease
  publication-title: J Neuroinflamm
  doi: 10.1186/s12974-019-1608-z
– volume: 38
  start-page: 813
  issue: 3
  year: 2019
  ident: 2021103110133894500_awab236-B83
  article-title: Dynamic atlas-based segmentation and quantification of neuromelanin-rich brainstem structures in Parkinson disease
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2018.2872852
– year: 2021
  ident: 2021103110133894500_awab236-B47
– volume: 143
  start-page: 2757
  issue: 9
  year: 2020
  ident: 2021103110133894500_awab236-B45
  article-title: Spatiotemporal changes in substantia nigra neuromelanin content in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awaa216
– volume: 168
  start-page: 427
  year: 2018
  ident: 2021103110133894500_awab236-B18
  article-title: High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.045
– volume: 33
  start-page: 1006
  issue: 6
  year: 2018
  ident: 2021103110133894500_awab236-B23
  article-title: Decreased noradrenaline transporter density in the motor cortex of Parkinson’s disease patients: Cortical Noradrenaline Transporter
  publication-title: Mov Disord
  doi: 10.1002/mds.27411
– volume: 35
  start-page: 1636
  issue: 9
  year: 2020
  ident: 2021103110133894500_awab236-B65
  article-title: Diabetes causes dysfunctional dopamine neurotransmission favoring nigrostriatal degeneration in mice
  publication-title: Mov Disord
  doi: 10.1002/mds.28124
– volume: 30
  start-page: 707
  issue: 7
  year: 2003
  ident: 2021103110133894500_awab236-B89
  article-title: Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER
  publication-title: Nuclear Med Biol
  doi: 10.1016/S0969-8051(03)00079-9
– volume: 18
  start-page: 307
  issue: 2
  year: 1986
  ident: 2021103110133894500_awab236-B28
  article-title: Efferent projections of nucleus locus coeruleus: Morphologic subpopulations have different efferent targets
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(86)90156-9
– volume: 74
  start-page: 101
  year: 2019
  ident: 2021103110133894500_awab236-B86
  article-title: In vivo visualization of age-related differences in the locus coeruleus
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2018.10.014
– volume: 155
  start-page: 15
  issue: 1
  year: 1974
  ident: 2021103110133894500_awab236-B30
  article-title: A radioautographic study of the efferent pathways of the nucleus locus coeruleus
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901550103
– volume: 47
  start-page: 1261
  issue: 4
  year: 2009
  ident: 2021103110133894500_awab236-B42
  article-title: In vivo mapping of the human locus coeruleus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.012
– volume: 539
  start-page: 207
  issue: 7628
  year: 2016
  ident: 2021103110133894500_awab236-B66
  article-title: Defects in trafficking bridge Parkinson’s disease pathology and genetics
  publication-title: Nature
  doi: 10.1038/nature20414
– volume: 29
  start-page: 444
  issue: 2
  year: 2009
  ident: 2021103110133894500_awab236-B58
  article-title: Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4029-08.2009
– volume: 30
  start-page: 365
  issue: 3
  year: 1991
  ident: 2021103110133894500_awab236-B51
  article-title: Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson’s disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.410300308
– volume: 34
  start-page: 884
  issue: 6
  year: 2019
  ident: 2021103110133894500_awab236-B77
  article-title: Mild cognitive impairment in de novo Parkinson’s disease: A neuromelanin MRI study in locus coeruleus
  publication-title: Mov Disord
  doi: 10.1002/mds.27682
– volume: 27
  start-page: 1618
  issue: 13
  year: 2012
  ident: 2021103110133894500_awab236-B49
  article-title: Thalamic noradrenaline in Parkinson’s disease: Deficits suggest role in motor and non-motor symptoms
  publication-title: Mov Disord
  doi: 10.1002/mds.25109
– volume: 24
  start-page: 197
  issue: 2
  year: 2003
  ident: 2021103110133894500_awab236-B52
  article-title: Staging of brain pathology related to sporadic Parkinson’s disease
  publication-title: Neurobiol Aging
  doi: 10.1016/S0197-4580(02)00065-9
– volume: 30
  start-page: 175
  issue: 2-3
  year: 1977
  ident: 2021103110133894500_awab236-B31
  article-title: Noradrenaline innervation of the spinal cord studied by the horseradish peroxidase method combined with monoamine oxidase staining
  publication-title: Exp Brain Res
– volume: 17
  start-page: 618
  issue: 7
  year: 2018
  ident: 2021103110133894500_awab236-B16
  article-title: In-vivo staging of pathology in REM sleep behaviour disorder: A multimodality imaging case-control study
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30162-5
– volume: 21
  start-page: 644
  issue: 11
  year: 2020
  ident: 2021103110133894500_awab236-B7
  article-title: Locus coeruleus: A new look at the blue spot
  publication-title: Nat Rev Neurosci
  doi: 10.1038/s41583-020-0360-9
– volume: 31
  start-page: 259
  issue: 2
  year: 2006
  ident: 2021103110133894500_awab236-B10
  article-title: Locus coeruleus lesions decrease oxytocin and vasopressin release induced by hemorrhage
  publication-title: Neurochem Res
  doi: 10.1007/s11064-005-9015-5
– volume: 13
  start-page: 236
  issue: 3
  year: 2017
  ident: 2021103110133894500_awab236-B3
  article-title: Locus coeruleus volume and cell population changes during Alzheimer’s disease progression: A stereological study in human postmortem brains with potential implication for early-stage biomarker discovery
  publication-title: Alzheimer’s Dement
  doi: 10.1016/j.jalz.2016.06.2362
– volume: 142
  start-page: 2023
  issue: 7
  year: 2019
  ident: 2021103110133894500_awab236-B73
  article-title: Relationship between neuromelanin and dopamine terminals within the Parkinson’s nigrostriatal system
  publication-title: Brain
  doi: 10.1093/brain/awz120
– volume: 56
  start-page: 9
  year: 2018
  ident: 2021103110133894500_awab236-B54
  article-title: Evidence for dopaminergic axonal degeneration as an early pathological process in Parkinson’s disease
  publication-title: Parkinson Related Disord
  doi: 10.1016/j.parkreldis.2018.06.025
– volume: 32
  start-page: 667
  issue: 5
  year: 1992
  ident: 2021103110133894500_awab236-B32
  article-title: Disease-specific patterns of locus coeruleus cell loss
  publication-title: Ann Neurol
  doi: 10.1002/ana.410320510
– volume: 187
  start-page: 703
  issue: 4
  year: 1979
  ident: 2021103110133894500_awab236-B29
  article-title: Regional topography within noradrenergic locus coeruleus as revealed by retrograde transport of horseradish peroxidase
  publication-title: J Comp Neurol
  doi: 10.1002/cne.901870405
– volume: 25
  start-page: 949
  issue: 7
  year: 2018
  ident: 2021103110133894500_awab236-B82
  article-title: Neuromelanin-sensitive magnetic resonance imaging features of the substantia nigra and locus coeruleus in de novo Parkinson’s disease and its phenotypes
  publication-title: Eur J Neurol
  doi: 10.1111/ene.13628
– volume: 541
  start-page: 93
  year: 2013
  ident: 2021103110133894500_awab236-B81
  article-title: Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2013.02.012
– volume: 97
  start-page: 11869
  issue: 22
  year: 2000
  ident: 2021103110133894500_awab236-B37
  article-title: Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.22.11869
– volume: 11
  start-page: 760
  issue: 11
  year: 2010
  ident: 2021103110133894500_awab236-B76
  article-title: Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2915
– volume: 225
  start-page: 117487
  year: 2021
  ident: 2021103110133894500_awab236-B79
  article-title: An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117487
– volume: 142
  start-page: 2558
  issue: 9
  year: 2019
  ident: 2021103110133894500_awab236-B21
  article-title: Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases
  publication-title: Brain
  doi: 10.1093/brain/awz193
– volume: 153
  start-page: 47
  year: 2019
  ident: 2021103110133894500_awab236-B8
  article-title: The role of Locus Coeruleus in neuroinflammation occurring in Alzheimer’s disease
  publication-title: Brain Res Bull
  doi: 10.1016/j.brainresbull.2019.08.007
– volume: 136
  start-page: 2120
  issue: Pt 7
  year: 2013
  ident: 2021103110133894500_awab236-B41
  article-title: The coeruleus/subcoeruleus complex in rapid eye movement sleep behaviour disorders in Parkinson’s disease
  publication-title: Brain
  doi: 10.1093/brain/awt152
– volume: 89
  start-page: 55
  year: 2016
  ident: 2021103110133894500_awab236-B64
  article-title: Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson’s disease
– volume: 139
  start-page: 2039
  issue: Pt 7
  year: 2016
  ident: 2021103110133894500_awab236-B55
  article-title: In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET
  publication-title: Brain
  doi: 10.1093/brain/aww098
– volume: 83
  start-page: 325
  year: 2017
  ident: 2021103110133894500_awab236-B19
  article-title: Magnetic resonance imaging of the human locus coeruleus: A systematic review
  publication-title: Neurosci Biobehav Rev
  doi: 10.1016/j.neubiorev.2017.10.023
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 2021103110133894500_awab236-B43
  article-title: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 40
  start-page: 502
  issue: 5
  year: 2020
  ident: 2021103110133894500_awab236-B67
  article-title: The "Sick-but-not-Dead" phenomenon applied to catecholamine deficiency in neurodegenerative diseases
  publication-title: Semin Neurol
  doi: 10.1055/s-0040-1713874
– volume: 224
  start-page: 117409
  year: 2021
  ident: 2021103110133894500_awab236-B80
  article-title: Uncovering the locus coeruleus: Comparison of localization methods for functional analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117409
– volume: 58
  start-page: 351
  issue: 4
  year: 2016
  ident: 2021103110133894500_awab236-B69
  article-title: Correlation between neuromelanin-sensitive MR imaging and 123I-FP-CIT SPECT in patients with parkinsonism
  publication-title: Neuroradiology
  doi: 10.1007/s00234-016-1644-7
– volume: 30
  start-page: 85
  issue: 2
  year: 2003
  ident: 2021103110133894500_awab236-B87
  article-title: Synthesis and in vivo evaluation of novel radiotracers for the in vivo imaging of the norepinephrine transporter
  publication-title: Nucl Med Biol
  doi: 10.1016/S0969-8051(02)00420-1
– volume: 91
  start-page: 975
  issue: 5
  year: 2016
  ident: 2021103110133894500_awab236-B59
  article-title: High-throughput mapping of single-neuron projections by sequencing of barcoded RNA
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.07.036
– volume: 25
  start-page: R1051
  issue: 21
  year: 2015
  ident: 2021103110133894500_awab236-B6
  article-title: Organization of the Locus Coeruleus-Norepinephrine system
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.09.039
– volume: 5
  start-page: 8
  issue: 1
  year: 2017
  ident: 2021103110133894500_awab236-B14
  article-title: Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease
  publication-title: Acta Neuropathol Commun
  doi: 10.1186/s40478-017-0411-2
– volume: 29
  start-page: 1767
  issue: 14
  year: 2014
  ident: 2021103110133894500_awab236-B70
  article-title: Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts: Correlation of DAT Imaging with SN Cell Counts
  publication-title: Mov Disord
  doi: 10.1002/mds.25975
– volume: 88
  start-page: 1461
  issue: 15
  year: 2017
  ident: 2021103110133894500_awab236-B68
  article-title: Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003810
– volume: 20
  start-page: 45
  issue: 1
  year: 2001
  ident: 2021103110133894500_awab236-B38
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– reference: 34382062 - Brain. 2021 Oct 22;144(9):2562-2564
SSID ssj0014326
Score 2.5632236
Snippet Previous studies have reported substantial involvement of the noradrenergic system in Parkinson’s disease. Neuromelanin-sensitive MRI sequences and PET tracers...
Previous studies have reported substantial involvement of the noradrenergic system in Parkinson's disease. Neuromelanin-sensitive MRI sequences and PET tracers...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2732
SubjectTerms Aged
Aged, 80 and over
Female
Humans
Locus Coeruleus - diagnostic imaging
Locus Coeruleus - metabolism
Magnetic Resonance Imaging - methods
Male
Middle Aged
Multimodal Imaging - methods
Norepinephrine Plasma Membrane Transport Proteins - metabolism
Parkinson Disease - diagnostic imaging
Parkinson Disease - metabolism
Positron-Emission Tomography - methods
Title Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease
URI https://www.ncbi.nlm.nih.gov/pubmed/34196700
https://www.proquest.com/docview/2547540775
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9IO6Um4yE4KFka2zn9oig02AaD2iT9hY5zslUVNLSJELa3-APc3yJm4pVAl6iKElt1efTsc_x-T4T8rpSU6gEJEGYpjEGKLIMMox-AiHDEJiMhJxq7vDZl_jkQny-jC5Ho1-DqqWuLQ7V9Y28kv-xKj5Du2qW7D9Y1jeKD_Ae7YtXtDBe_8rGX-HKZvJwRuoarfOx7haAdyVcGTlpW8nYTHDyWnarBS4uDZ2kRrtrBjes0e9NXD2MbqUx1bGaCe1IYUmztYXjlZDkvL7xMBCbYUiTdJBh-LjEla7jG26kDCazzY7UqTkArFs58lCLjfudIC2NYKsVdalg7WcRrR7p8Da7hh_d3NX-uwwGMyV0lox8CNbrihifhFZh3Ltlqwvp8JcNnWxiU6J_eH-rjFWsTU7lWP6UBbPqKgMsrL4bMGgZO81Q2kyDvjixf3WL3GYYe5g4_dOp35oSuOB1Yq3Y35Hp7cj1dUD2-19vr3N2BC9mEXN-l9xx0Qd9b6F0j4ygvk_2z1x9xQPyrUcUNYiiHlF0iCg6b6hHFNWIoluIoj2iqEYUndfUI-ottmTx9JBcHM_OP5wE7jSOQHHO2gDwHzKRKhnJTCcvS66khJAzhS5eFGlchiKBUAekquAYJWBgW5YFr6qYKRCKPyJ79bKGJ4ROVSVDDolKgYusSrMorTRPKStSljFVjcm7fuxy5aTq9Ykpi9yWTPDcjHruRn1M3vjPV1ajZdeHr3pD5OhF9daYrGHZNTmLRKKlKJNoTB5bC_mmeos-3fnmGTnY4Po52WvXHbzAtWpbvDTY-Q1gwJol
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+locus+coeruleus+degeneration+is+uncoupled+from+noradrenergic+terminal+loss+in+Parkinson%27s+disease&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Doppler%2C+Christopher+E+J&rft.au=Kinnerup%2C+Martin+B&rft.au=Brune%2C+Corinna&rft.au=Farrher%2C+Ezequiel&rft.date=2021-10-22&rft.eissn=1460-2156&rft.volume=144&rft.issue=9&rft.spage=2732&rft_id=info:doi/10.1093%2Fbrain%2Fawab236&rft_id=info%3Apmid%2F34196700&rft.externalDocID=34196700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon