Effect of Data Augmentation of F-18-Florbetaben Positron-Emission Tomography Images by Using Deep Learning Convolutional Neural Network Architecture for Amyloid Positive Patients

Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive im...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Physical Society Vol. 75; no. 8; pp. 597 - 604
Main Authors Yoon, Hyun Jin, Jeong, Young Jin, Kang, Do-Young, Kang, Hyun, Yeo, Kang Kuk, Jeong, Ji Eun, Park, Kyung Won, Choi, Go Eun, Ha, Seong-Wook
Format Journal Article
LanguageEnglish
Published Seoul The Korean Physical Society 01.10.2019
Springer Nature B.V
한국물리학회
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant.
AbstractList Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant.
Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant. KCI Citation Count: 0
Author Jeong, Ji Eun
Ha, Seong-Wook
Kang, Do-Young
Choi, Go Eun
Yeo, Kang Kuk
Jeong, Young Jin
Park, Kyung Won
Yoon, Hyun Jin
Kang, Hyun
Author_xml – sequence: 1
  givenname: Hyun Jin
  surname: Yoon
  fullname: Yoon, Hyun Jin
  organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University
– sequence: 2
  givenname: Young Jin
  surname: Jeong
  fullname: Jeong, Young Jin
  organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University
– sequence: 3
  givenname: Do-Young
  surname: Kang
  fullname: Kang, Do-Young
  email: dykang@dau.ac.kr
  organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University
– sequence: 4
  givenname: Hyun
  surname: Kang
  fullname: Kang, Hyun
  organization: Institute of Convergence Bio-Health, Dong-A University
– sequence: 5
  givenname: Kang Kuk
  surname: Yeo
  fullname: Yeo, Kang Kuk
  organization: Institute of Convergence Bio-Health, Dong-A University
– sequence: 6
  givenname: Ji Eun
  surname: Jeong
  fullname: Jeong, Ji Eun
  organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine
– sequence: 7
  givenname: Kyung Won
  surname: Park
  fullname: Park, Kyung Won
  organization: Institute of Convergence Bio-Health, Dong-A University, Department of Neurology, Cognitive Disorders and Dementia Center, College of Medicine, Dong-A University
– sequence: 8
  givenname: Go Eun
  surname: Choi
  fullname: Choi, Go Eun
  organization: Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan
– sequence: 9
  givenname: Seong-Wook
  surname: Ha
  fullname: Ha, Seong-Wook
  organization: Sarada R&D Center, Saradakorea
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002517822$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp1kdGK1DAUhoOs4OzqlS8Q8Ercjk3TNullmZ3RgUEXmb0OaZp0M9MmNUlX5rV8QtOtIIhe_ZzwnZP_nP8aXBlrJABvUbrGFaYfT-fRr0mxLiryAqxQRcqEFll-BVYpJnmSU5q_Atfen9I0x5iUK_Bzq5QUAVoF73jgsJ66QZrAg7ZmftwliCa73rpGBt5IA--t18FZk2wH7f1MHe1gO8fHxwvcD7yTHjYX-OC16eCdlCM8SO7MXG2sebL9NI_mPfwiJ_cs4Yd1Z1g78ahDtDI5CZV1sB4uvdXt8qF-kvA-morW_GvwUvHeyze_9QY87LbHzefk8PXTflMfEoFxFpKW5CXBKO5dpihr00I0FVJtq4QgSLalokJI1Ih4iUyqMm95U6mmamkjcNFWCt-A98tc4xQ7C80s18_aWXZ2rP523LMSEUQKFNl3Czs6-32SPrCTnVxc07MMp5SWqMAkUmihhLPeO6mY0Mupg-O6Zyhlc4xsjpGRgsUYY8-Hv3pGpwfuLv-hbxfaR8p00v3x8S_8F8OptH4
CitedBy_id crossref_primary_10_14347_kadt_2020_42_1_1
crossref_primary_10_3390_app12157355
crossref_primary_10_3390_app13063453
crossref_primary_10_1007_s11042_022_13506_7
crossref_primary_10_1016_j_artmed_2022_102332
Cites_doi 10.1016/j.psychres.2009.06.012
10.1016/j.nicl.2016.10.008
10.1056/NEJMra0909142
10.1016/j.pscychresns.2011.12.007
10.1002/mp.12828
10.1016/j.jalz.2012.02.001
10.3348/kjr.2017.18.4.570
10.1016/j.neuroimage.2015.05.018
10.1016/j.ins.2009.05.012
10.21817/ijet/2017/v9i3/1709030158
10.1212/WNL.34.7.939
10.1101/070441
10.1111/j.1365-2796.2004.01388.x
10.1148/radiol.2017162326
10.1016/j.neubiorev.2017.01.002
ContentType Journal Article
Copyright The Korean Physical Society 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: The Korean Physical Society 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.3938/jkps.75.597
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1976-8524
EndPage 604
ExternalDocumentID oai_kci_go_kr_ARTI_6171751
10_3938_jkps_75_597
GroupedDBID -EM
06D
0R~
0VY
203
29~
2LR
2WC
30V
4.4
406
408
5GY
87A
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AUKKA
AXYYD
AYJHY
BGNMA
C1A
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
PT4
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z88
ZMTXR
ZZE
~02
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
ID FETCH-LOGICAL-c332t-d7467313746012d05cb91fddfcc71ed6f8cce1bc0432ef64dab9fb9d8bc35d9f3
IEDL.DBID U2A
ISSN 0374-4884
IngestDate Tue Nov 21 21:39:42 EST 2023
Mon Jul 14 07:30:38 EDT 2025
Tue Jul 01 02:52:08 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 87.57.Gg
Alzheimer’s disease (AD)
87.57.Ce
Amyloid PET
Artificial intelligence (AI)
Mild cognitive impairment (MCI)
F-18-Florbetaben (F-18-FBB)
Convolutional neural network (CNN)
87.58.-b
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-d7467313746012d05cb91fddfcc71ed6f8cce1bc0432ef64dab9fb9d8bc35d9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2308861537
PQPubID 2044318
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6171751
proquest_journals_2308861537
crossref_citationtrail_10_3938_jkps_75_597
crossref_primary_10_3938_jkps_75_597
springer_journals_10_3938_jkps_75_597
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Journal of the Korean Physical Society
PublicationTitleAbbrev J. Korean Phys. Soc
PublicationYear 2019
Publisher The Korean Physical Society
Springer Nature B.V
한국물리학회
Publisher_xml – name: The Korean Physical Society
– name: Springer Nature B.V
– name: 한국물리학회
References LiuSJ. Nucl. Med.2014552028
LakhaniPSundaramBRadiol.201728457410.1148/radiol.2017162326
G. Smith, Z. Stoyanov, D. Vukadinovic Greetham, P. Grindrod and D. Saddy, http://centaur.reading.ac.uk/37130 (2014).
PetersenRJ. Intern. Med.200425618310.1111/j.1365-2796.2004.01388.x
A. Krizhevsky, I. Sutskever and G. E. Hinton, Advances in Neural Information Processing Systems (2012), pp. 1097–1105.
YoshidaHPsychiatry Res.201118521110.1016/j.psychres.2009.06.012
RamírezJInf. Sci.20132375910.1016/j.ins.2009.05.012
C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, USA, 2017).
E. M. Alkabawi, A. R. Hilal and O. A. Basir, Medical Measurements and Applications (MeMeA), 2017 IEEE International Symposium on (Rochester, USA, 2017).
C. Szegedy et al., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, USA, 2015).
A. K. Ambastha, National University of Singapore (2015), https://www.comp.nus.edu.sg/~abhinit/grp.pdf.
A. Payan and G. Montana, arXiv preprint arXiv:1502.02506 (2015).
ParkK WPsychiatry Res. Neuroimaging201220320110.1016/j.pscychresns.2011.12.007
Genetics of dementia, https://www.alzheimers.org.uk/site/scripts/documents_index.php (2007).
G. Litjens et al., arXiv preprint arXiv:1702.05747 (2017).
McKhannGNeurology19843493910.1212/WNL.34.7.939
S. Sarraf and G. Tofighi, arXiv preprint arXiv:1603.08631 (2016).
BurghV dNeuroimage Clin.20171336110.1016/j.nicl.2016.10.008
S. Sarraf, DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI (2016), https://www.biorxiv.org/content/biorxiv/early/2017/01/14/070441.full.pdf.
A. Canziani, A. Paszke, E. Culurciello, arXiv preprint arXiv:1605.07678 (2016).
KumarS SNandhiniMInt. J. Eng. Technol.20179192510.21817/ijet/2017/v9i3/1709030158
DCMTK Ver. 3.6.4, https://support.dcmtk.org/docs/class-DicomImage.html#ac1b5118cbae9e797aa55940fcd60258e.
Alzheimer’s AssociationAlzheimer’s & Dementia2012813110.1016/j.jalz.2012.02.001
E. Hosseini Asl, R. Keynton and A. El Baz, 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 126–130.
LeeJKorean J. Radiol.20171857010.3348/kjr.2017.18.4.570
KimJCalhounV DShimELeeJNeuroimage201612412710.1016/j.neuroimage.2015.05.018
LeeHHongHKimJJungD CMed. Phys.201845155010.1002/mp.12828
QuerfurthH WLaFerlaF MN. Engl. J. Med.201036232910.1056/NEJMra0909142
E. Hosseini-Asl, G. Gimel’farb and A. El-Baz, arXiv preprint arXiv:1607.00556 (2016).
VieiraSPinayaW H LMechelliANeurosci. Biobehav. Rev.2017745810.1016/j.neubiorev.2017.01.002
MunozD GFeldmanHCan. Med. Assoc. J.200016265
A. Farooq, S. Anwar, M. Awais and M. Alnowami, Smart Cities Conference (ISC2) (Wuxi, China, 2017)
D G Munoz (4219_CR5) 2000; 162
S Liu (4219_CR6) 2014; 55
K W Park (4219_CR33) 2012; 203
H Yoshida (4219_CR32) 2011; 185
4219_CR30
4219_CR31
4219_CR12
4219_CR34
4219_CR11
4219_CR14
4219_CR13
S S Kumar (4219_CR21) 2017; 9
S Vieira (4219_CR19) 2017; 74
J Ramírez (4219_CR23) 2013; 237
4219_CR18
G McKhann (4219_CR2) 1984; 34
J Ramírez (4219_CR1) 2013; 237
4219_CR4
4219_CR9
H Lee (4219_CR15) 2018; 45
4219_CR8
H W Querfurth (4219_CR7) 2010; 362
G McKhann (4219_CR16) 1984; 34
4219_CR20
4219_CR22
R Petersen (4219_CR17) 2004; 256
4219_CR25
4219_CR24
P Lakhani (4219_CR27) 2017; 284
J Kim (4219_CR28) 2016; 124
V d Burgh (4219_CR26) 2017; 13
4219_CR29
Alzheimer’s Association (4219_CR3) 2012; 8
J Lee (4219_CR10) 2017; 18
References_xml – reference: QuerfurthH WLaFerlaF MN. Engl. J. Med.201036232910.1056/NEJMra0909142
– reference: LeeHHongHKimJJungD CMed. Phys.201845155010.1002/mp.12828
– reference: LiuSJ. Nucl. Med.2014552028
– reference: C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, USA, 2017).
– reference: G. Litjens et al., arXiv preprint arXiv:1702.05747 (2017).
– reference: A. Payan and G. Montana, arXiv preprint arXiv:1502.02506 (2015).
– reference: YoshidaHPsychiatry Res.201118521110.1016/j.psychres.2009.06.012
– reference: A. Canziani, A. Paszke, E. Culurciello, arXiv preprint arXiv:1605.07678 (2016).
– reference: ParkK WPsychiatry Res. Neuroimaging201220320110.1016/j.pscychresns.2011.12.007
– reference: LakhaniPSundaramBRadiol.201728457410.1148/radiol.2017162326
– reference: E. Hosseini-Asl, G. Gimel’farb and A. El-Baz, arXiv preprint arXiv:1607.00556 (2016).
– reference: E. Hosseini Asl, R. Keynton and A. El Baz, 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 126–130.
– reference: LeeJKorean J. Radiol.20171857010.3348/kjr.2017.18.4.570
– reference: S. Sarraf and G. Tofighi, arXiv preprint arXiv:1603.08631 (2016).
– reference: McKhannGNeurology19843493910.1212/WNL.34.7.939
– reference: DCMTK Ver. 3.6.4, https://support.dcmtk.org/docs/class-DicomImage.html#ac1b5118cbae9e797aa55940fcd60258e.
– reference: VieiraSPinayaW H LMechelliANeurosci. Biobehav. Rev.2017745810.1016/j.neubiorev.2017.01.002
– reference: MunozD GFeldmanHCan. Med. Assoc. J.200016265
– reference: C. Szegedy et al., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, USA, 2015).
– reference: PetersenRJ. Intern. Med.200425618310.1111/j.1365-2796.2004.01388.x
– reference: KimJCalhounV DShimELeeJNeuroimage201612412710.1016/j.neuroimage.2015.05.018
– reference: A. Krizhevsky, I. Sutskever and G. E. Hinton, Advances in Neural Information Processing Systems (2012), pp. 1097–1105.
– reference: S. Sarraf, DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI (2016), https://www.biorxiv.org/content/biorxiv/early/2017/01/14/070441.full.pdf.
– reference: BurghV dNeuroimage Clin.20171336110.1016/j.nicl.2016.10.008
– reference: E. M. Alkabawi, A. R. Hilal and O. A. Basir, Medical Measurements and Applications (MeMeA), 2017 IEEE International Symposium on (Rochester, USA, 2017).
– reference: Alzheimer’s AssociationAlzheimer’s & Dementia2012813110.1016/j.jalz.2012.02.001
– reference: A. K. Ambastha, National University of Singapore (2015), https://www.comp.nus.edu.sg/~abhinit/grp.pdf.
– reference: KumarS SNandhiniMInt. J. Eng. Technol.20179192510.21817/ijet/2017/v9i3/1709030158
– reference: RamírezJInf. Sci.20132375910.1016/j.ins.2009.05.012
– reference: Genetics of dementia, https://www.alzheimers.org.uk/site/scripts/documents_index.php (2007).
– reference: A. Farooq, S. Anwar, M. Awais and M. Alnowami, Smart Cities Conference (ISC2) (Wuxi, China, 2017)
– reference: G. Smith, Z. Stoyanov, D. Vukadinovic Greetham, P. Grindrod and D. Saddy, http://centaur.reading.ac.uk/37130 (2014).
– ident: 4219_CR9
– volume: 185
  start-page: 211
  year: 2011
  ident: 4219_CR32
  publication-title: Psychiatry Res.
  doi: 10.1016/j.psychres.2009.06.012
– ident: 4219_CR29
– volume: 13
  start-page: 361
  year: 2017
  ident: 4219_CR26
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2016.10.008
– ident: 4219_CR14
– ident: 4219_CR4
– volume: 362
  start-page: 329
  year: 2010
  ident: 4219_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0909142
– volume: 55
  start-page: 2028
  year: 2014
  ident: 4219_CR6
  publication-title: J. Nucl. Med.
– ident: 4219_CR12
– volume: 203
  start-page: 201
  year: 2012
  ident: 4219_CR33
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2011.12.007
– volume: 45
  start-page: 1550
  year: 2018
  ident: 4219_CR15
  publication-title: Med. Phys.
  doi: 10.1002/mp.12828
– volume: 8
  start-page: 131
  year: 2012
  ident: 4219_CR3
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2012.02.001
– volume: 18
  start-page: 570
  year: 2017
  ident: 4219_CR10
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2017.18.4.570
– ident: 4219_CR31
– ident: 4219_CR18
– volume: 162
  start-page: 65
  year: 2000
  ident: 4219_CR5
  publication-title: Can. Med. Assoc. J.
– ident: 4219_CR24
– ident: 4219_CR30
– volume: 124
  start-page: 127
  year: 2016
  ident: 4219_CR28
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.018
– volume: 237
  start-page: 59
  year: 2013
  ident: 4219_CR1
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.05.012
– ident: 4219_CR8
– volume: 9
  start-page: 1925
  year: 2017
  ident: 4219_CR21
  publication-title: Int. J. Eng. Technol.
  doi: 10.21817/ijet/2017/v9i3/1709030158
– ident: 4219_CR20
– ident: 4219_CR22
– volume: 34
  start-page: 939
  year: 1984
  ident: 4219_CR2
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– ident: 4219_CR25
  doi: 10.1101/070441
– volume: 237
  start-page: 59
  year: 2013
  ident: 4219_CR23
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.05.012
– volume: 256
  start-page: 183
  year: 2004
  ident: 4219_CR17
  publication-title: J. Intern. Med.
  doi: 10.1111/j.1365-2796.2004.01388.x
– volume: 284
  start-page: 574
  year: 2017
  ident: 4219_CR27
  publication-title: Radiol.
  doi: 10.1148/radiol.2017162326
– volume: 34
  start-page: 939
  year: 1984
  ident: 4219_CR16
  publication-title: Neurology
  doi: 10.1212/WNL.34.7.939
– ident: 4219_CR13
– volume: 74
  start-page: 58
  year: 2017
  ident: 4219_CR19
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.01.002
– ident: 4219_CR11
– ident: 4219_CR34
SSID ssj0043376
Score 2.2026267
Snippet Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 597
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Computer simulation
Data augmentation
Deep learning
Disease control
Fluorine isotopes
Image acquisition
Image classification
Machine learning
Mathematical and Computational Physics
Medical imaging
Neural networks
Particle and Nuclear Physics
Physics
Physics and Astronomy
Positron emission
Radioisotopes
Recall
Rotation
Theoretical
Tomography
물리학
Title Effect of Data Augmentation of F-18-Florbetaben Positron-Emission Tomography Images by Using Deep Learning Convolutional Neural Network Architecture for Amyloid Positive Patients
URI https://link.springer.com/article/10.3938/jkps.75.597
https://www.proquest.com/docview/2308861537
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002517822
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Korean Physical Society, 2019, 75(8), , pp.597-604
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKqFIvVVuKuhSQVcGlkmG9cdbJMcCm0KqIAyvRk-WPyQqWTVabUKl_q7-QceK0BXHoyVLi2FGeM3mTmXkmZF86AAupZtINBRNuZJkea8OQ_EppkNAPh75Q-PvF-Gwqvl7H16FYve6z3fuQZGupvV-ZRsnR7XxZH8r4EBnwGtmIvdOOy3c6ynrDK6JIdqFJibMmiejK8Z5e_OgDtFauikfc8kk4tP3K5G_I60APadbh-Za8gPIdedmmadp6k_zuxIZpVdBT3Wia3c8WoXio9AdzxhOWowtuoNEGSnrpc7JWVckmiKf_MUavqkVQqabnCzQmNTW_aJs4QE8BljQIrs7oSVX-DOsS78iLeLRNmzVOs3_iDxR5L80W6PnfuG5CtKD0shNsrd-TaT65OjljYdcFZqNo1DDnNyCJOD5E9NVGbhhbk_LCucJaycGNi8Ra4MZ6LT8oxsJpkxYmdYmxUezSItoi62VVwgdCrePagWtV0QS3QoOwIB2OCVJzAwPyuYdC2SBJ7nfGuFPomnjclMdNyVghbgOy_6fzslPieL7bJ8RUze2N8srZvp1Var5S6B-cK-RryJf4gOz0kKvwztYKnbEk8fwXxzjol8Hf08_Mtf2f_T6SV8iz0i4HcIesN6t72EUu05g9spHlx8cXvv3y49tkr13RD_6E-ec
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoEYIL4lNsKWChckFyWW-ctXOM2q52oa162JV6s_wxWZVlk9UmrcTf4hcyThygVQ-cLCWOHeU5kzeZmWdCDqQHcJAZJv1QMOFHjpmxsQzJr5QWCf1wGAqFz87H04X4eplexmL1us9270OSraUOfmWWqC_fV5v6UKaHyIB3yENkASpkcC1GeW94RZLILjQpcValRFeOd_fiWx-gnXJb3OKWd8Kh7Vdm8ow8jfSQ5h2ez8kDKF-QR22apqtfkl-d2DCtCnpsGkPz6-U6Fg-V4eCEccUm6IJbaIyFkl6EnKxtVbITxDP8GKPzah1VqulsjcakpvYnbRMH6DHAhkbB1SU9qsqbuC7xjoKIR9u0WeM0_yf-QJH30nyNnv-V7yZEC0ovOsHW-hVZTE7mR1MWd11gLklGDfNhA5KE40NEX23kh6mzGS-8L5yTHPy4UM4Bty5o-UExFt7YrLCZV9Ylqc-K5DXZLasS3hDqPDcefKuKJrgTBoQD6XFMkIZbGJDPPRTaRUnysDPGD42uScBNB9y0TDXiNiAHfzpvOiWO-7t9REz1yl3poJwd2mWlV1uN_sFMI19DvsQHZL-HXMd3ttbojCkV-C-O8alfBn9P3zPX3n_2-0AeT-dnp_p0dv7tLXmCnCvr8gH3yW6zvYZ3yGsa-75dzb8BRFL5yg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKVateUJ_qtpRaFb1UMqw3zjo5RiwR2wfaAytxs_xc0WWd1SZU4m_xCzuOkxYQB06REse2MuPxN_HMNwjtc2Ottrkk3AwZYWakiRxLRQD8cq4A0A-HIVH41-n4ZM6-n6fnt0t9hWj3_kgy5jQElibfHK6NC0s8yZPs8PdyXR_w9ADQ8BZ6CnaYBoWej4reCLMk4fGYksMMsozF1Lz7L9_ZjLb8xt3BmfeORtsdp3yJdjqoiIso21foifWv0bM2ZFPXb9BNJB7GlcMT2UhcXC1WXSKRDzdLQjNSgjuubCOV9XgW4rM2lSfHINvwkwyfVauOsRpPV2BYaqyucRtEgCfWrnFHvrrAR5X_0-kozCgQerSXNoIcF7fOIjBgYFysri-rCxMHBGuKZ5G8tX6L5uXx2dEJ6SowEJ0ko4aYUIwkofARwW8bmWGqVU6dMU5rTq0Zu0xrS5UOvH7WjZmRKncqN5nSSWpyl7xD277y9j3C2lBprGkZ0hjVTFqmLTfQp-WSKjtA33pRCN3Rk4cqGZcC3JQgNxHkJngqQG4DtP-v8Tqycjzc7AvIVCz1hQgs2uG6qMRyI8BXmArAboCd6ADt9iIX3fqtBThmWRawMPTxtVeD_48fGOvDI9t9Rs9nk1L8nJ7--IheAPzKY2jgLtpuNlf2E0CcRu21yvwX7Lf-Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Data+Augmentation+of+F-18-Florbetaben+Positron-Emission+Tomography+Images+by+Using+Deep+Learning+Convolutional+Neural+Network+Architecture+for+Amyloid+Positive+Patients&rft.jtitle=Journal+of+the+Korean+Physical+Society&rft.au=Yoon%2C+Hyun+Jin&rft.au=Jeong%2C+Young+Jin&rft.au=Kang%2C+Do-Young&rft.au=Kang%2C+Hyun&rft.date=2019-10-01&rft.issn=0374-4884&rft.eissn=1976-8524&rft.volume=75&rft.issue=8&rft.spage=597&rft.epage=604&rft_id=info:doi/10.3938%2Fjkps.75.597&rft.externalDBID=n%2Fa&rft.externalDocID=10_3938_jkps_75_597
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-4884&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-4884&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-4884&client=summon