Effect of Data Augmentation of F-18-Florbetaben Positron-Emission Tomography Images by Using Deep Learning Convolutional Neural Network Architecture for Amyloid Positive Patients
Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive im...
Saved in:
Published in | Journal of the Korean Physical Society Vol. 75; no. 8; pp. 597 - 604 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Physical Society
01.10.2019
Springer Nature B.V 한국물리학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant. |
---|---|
AbstractList | Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant. Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a convolutional neural network to classify the brain positron-emission tomography (PET) image of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) in a normal control (NC). The purpose of this study is to investigate the influence of the data increment method and the number of data for the best accuracy in the convolutional neural network (CNN) by using the AlexNet algorithm with amyloid PET images. All subjects had an intravenous injection of 300 MBq of F-18-Florbetaben (F-18-FBB, Piramal Imaging, Berlin), and PET acquisition was started 90 min after the radio-tracer injection. The image data were classified into NC, MCI and AD based on the findings of the neurologist. We performed data augmentation using a method such as flip, rotation, and GAN, in addition to pre-processing and data augmentation for AlexNet, in order to supplement a number of deficient data. Artificial intelligence (AI) learning was simulated using the Mini-batch Stochastic Gradient Descent (MSGD) algorithm, and the learning rate was 5e-5, and the epoch was 100. Using a CNN and the ‘AlexNet’ architecture, we successfully classified F-18-FBB PET images of AD from NC where the accuracy of the test data on trained data reached 98.14%. In this work, the CNN, which is a deep learning neural network architecture, was used in order to distinguish AD and MCI from the NC. Accuracy was 98.33%, NC recall was 99.16%, MCI recall was 95.83% and AD recall was 98.16% after learning the data by using rotation and LR flip to increase the number of data. The accuracy was increased by 4.96%, NC recall was increased by 10.68%, MCI recall was decreased by 0.23%, and AD recall was increased by 9.65% after learning the data by using DCGAN to increase the number of data to 4020. Accuracy and recall were improved when data were learned through data augmentation by rotation and by left and right reversal. However, the effect of learning data by increasing the data by using up-down reversal and data augmentation through DCGAN was almost insignificant. KCI Citation Count: 0 |
Author | Jeong, Ji Eun Ha, Seong-Wook Kang, Do-Young Choi, Go Eun Yeo, Kang Kuk Jeong, Young Jin Park, Kyung Won Yoon, Hyun Jin Kang, Hyun |
Author_xml | – sequence: 1 givenname: Hyun Jin surname: Yoon fullname: Yoon, Hyun Jin organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University – sequence: 2 givenname: Young Jin surname: Jeong fullname: Jeong, Young Jin organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University – sequence: 3 givenname: Do-Young surname: Kang fullname: Kang, Do-Young email: dykang@dau.ac.kr organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, Institute of Convergence Bio-Health, Dong-A University – sequence: 4 givenname: Hyun surname: Kang fullname: Kang, Hyun organization: Institute of Convergence Bio-Health, Dong-A University – sequence: 5 givenname: Kang Kuk surname: Yeo fullname: Yeo, Kang Kuk organization: Institute of Convergence Bio-Health, Dong-A University – sequence: 6 givenname: Ji Eun surname: Jeong fullname: Jeong, Ji Eun organization: Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine – sequence: 7 givenname: Kyung Won surname: Park fullname: Park, Kyung Won organization: Institute of Convergence Bio-Health, Dong-A University, Department of Neurology, Cognitive Disorders and Dementia Center, College of Medicine, Dong-A University – sequence: 8 givenname: Go Eun surname: Choi fullname: Choi, Go Eun organization: Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan – sequence: 9 givenname: Seong-Wook surname: Ha fullname: Ha, Seong-Wook organization: Sarada R&D Center, Saradakorea |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002517822$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp1kdGK1DAUhoOs4OzqlS8Q8Ercjk3TNullmZ3RgUEXmb0OaZp0M9MmNUlX5rV8QtOtIIhe_ZzwnZP_nP8aXBlrJABvUbrGFaYfT-fRr0mxLiryAqxQRcqEFll-BVYpJnmSU5q_Atfen9I0x5iUK_Bzq5QUAVoF73jgsJ66QZrAg7ZmftwliCa73rpGBt5IA--t18FZk2wH7f1MHe1gO8fHxwvcD7yTHjYX-OC16eCdlCM8SO7MXG2sebL9NI_mPfwiJ_cs4Yd1Z1g78ahDtDI5CZV1sB4uvdXt8qF-kvA-morW_GvwUvHeyze_9QY87LbHzefk8PXTflMfEoFxFpKW5CXBKO5dpihr00I0FVJtq4QgSLalokJI1Ih4iUyqMm95U6mmamkjcNFWCt-A98tc4xQ7C80s18_aWXZ2rP523LMSEUQKFNl3Czs6-32SPrCTnVxc07MMp5SWqMAkUmihhLPeO6mY0Mupg-O6Zyhlc4xsjpGRgsUYY8-Hv3pGpwfuLv-hbxfaR8p00v3x8S_8F8OptH4 |
CitedBy_id | crossref_primary_10_14347_kadt_2020_42_1_1 crossref_primary_10_3390_app12157355 crossref_primary_10_3390_app13063453 crossref_primary_10_1007_s11042_022_13506_7 crossref_primary_10_1016_j_artmed_2022_102332 |
Cites_doi | 10.1016/j.psychres.2009.06.012 10.1016/j.nicl.2016.10.008 10.1056/NEJMra0909142 10.1016/j.pscychresns.2011.12.007 10.1002/mp.12828 10.1016/j.jalz.2012.02.001 10.3348/kjr.2017.18.4.570 10.1016/j.neuroimage.2015.05.018 10.1016/j.ins.2009.05.012 10.21817/ijet/2017/v9i3/1709030158 10.1212/WNL.34.7.939 10.1101/070441 10.1111/j.1365-2796.2004.01388.x 10.1148/radiol.2017162326 10.1016/j.neubiorev.2017.01.002 |
ContentType | Journal Article |
Copyright | The Korean Physical Society 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: The Korean Physical Society 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.3938/jkps.75.597 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1976-8524 |
EndPage | 604 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6171751 10_3938_jkps_75_597 |
GroupedDBID | -EM 06D 0R~ 0VY 203 29~ 2LR 2WC 30V 4.4 406 408 5GY 87A 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACCUX ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AUKKA AXYYD AYJHY BGNMA C1A CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HMJXF HRMNR HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J OK1 P2P PT4 ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7R Z7V Z7X Z7Y Z7Z Z83 Z88 ZMTXR ZZE ~02 ~A9 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC |
ID | FETCH-LOGICAL-c332t-d7467313746012d05cb91fddfcc71ed6f8cce1bc0432ef64dab9fb9d8bc35d9f3 |
IEDL.DBID | U2A |
ISSN | 0374-4884 |
IngestDate | Tue Nov 21 21:39:42 EST 2023 Mon Jul 14 07:30:38 EDT 2025 Tue Jul 01 02:52:08 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 87.57.Gg Alzheimer’s disease (AD) 87.57.Ce Amyloid PET Artificial intelligence (AI) Mild cognitive impairment (MCI) F-18-Florbetaben (F-18-FBB) Convolutional neural network (CNN) 87.58.-b |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-d7467313746012d05cb91fddfcc71ed6f8cce1bc0432ef64dab9fb9d8bc35d9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2308861537 |
PQPubID | 2044318 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6171751 proquest_journals_2308861537 crossref_citationtrail_10_3938_jkps_75_597 crossref_primary_10_3938_jkps_75_597 springer_journals_10_3938_jkps_75_597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Journal of the Korean Physical Society |
PublicationTitleAbbrev | J. Korean Phys. Soc |
PublicationYear | 2019 |
Publisher | The Korean Physical Society Springer Nature B.V 한국물리학회 |
Publisher_xml | – name: The Korean Physical Society – name: Springer Nature B.V – name: 한국물리학회 |
References | LiuSJ. Nucl. Med.2014552028 LakhaniPSundaramBRadiol.201728457410.1148/radiol.2017162326 G. Smith, Z. Stoyanov, D. Vukadinovic Greetham, P. Grindrod and D. Saddy, http://centaur.reading.ac.uk/37130 (2014). PetersenRJ. Intern. Med.200425618310.1111/j.1365-2796.2004.01388.x A. Krizhevsky, I. Sutskever and G. E. Hinton, Advances in Neural Information Processing Systems (2012), pp. 1097–1105. YoshidaHPsychiatry Res.201118521110.1016/j.psychres.2009.06.012 RamírezJInf. Sci.20132375910.1016/j.ins.2009.05.012 C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, USA, 2017). E. M. Alkabawi, A. R. Hilal and O. A. Basir, Medical Measurements and Applications (MeMeA), 2017 IEEE International Symposium on (Rochester, USA, 2017). C. Szegedy et al., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, USA, 2015). A. K. Ambastha, National University of Singapore (2015), https://www.comp.nus.edu.sg/~abhinit/grp.pdf. A. Payan and G. Montana, arXiv preprint arXiv:1502.02506 (2015). ParkK WPsychiatry Res. Neuroimaging201220320110.1016/j.pscychresns.2011.12.007 Genetics of dementia, https://www.alzheimers.org.uk/site/scripts/documents_index.php (2007). G. Litjens et al., arXiv preprint arXiv:1702.05747 (2017). McKhannGNeurology19843493910.1212/WNL.34.7.939 S. Sarraf and G. Tofighi, arXiv preprint arXiv:1603.08631 (2016). BurghV dNeuroimage Clin.20171336110.1016/j.nicl.2016.10.008 S. Sarraf, DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI (2016), https://www.biorxiv.org/content/biorxiv/early/2017/01/14/070441.full.pdf. A. Canziani, A. Paszke, E. Culurciello, arXiv preprint arXiv:1605.07678 (2016). KumarS SNandhiniMInt. J. Eng. Technol.20179192510.21817/ijet/2017/v9i3/1709030158 DCMTK Ver. 3.6.4, https://support.dcmtk.org/docs/class-DicomImage.html#ac1b5118cbae9e797aa55940fcd60258e. Alzheimer’s AssociationAlzheimer’s & Dementia2012813110.1016/j.jalz.2012.02.001 E. Hosseini Asl, R. Keynton and A. El Baz, 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 126–130. LeeJKorean J. Radiol.20171857010.3348/kjr.2017.18.4.570 KimJCalhounV DShimELeeJNeuroimage201612412710.1016/j.neuroimage.2015.05.018 LeeHHongHKimJJungD CMed. Phys.201845155010.1002/mp.12828 QuerfurthH WLaFerlaF MN. Engl. J. Med.201036232910.1056/NEJMra0909142 E. Hosseini-Asl, G. Gimel’farb and A. El-Baz, arXiv preprint arXiv:1607.00556 (2016). VieiraSPinayaW H LMechelliANeurosci. Biobehav. Rev.2017745810.1016/j.neubiorev.2017.01.002 MunozD GFeldmanHCan. Med. Assoc. J.200016265 A. Farooq, S. Anwar, M. Awais and M. Alnowami, Smart Cities Conference (ISC2) (Wuxi, China, 2017) D G Munoz (4219_CR5) 2000; 162 S Liu (4219_CR6) 2014; 55 K W Park (4219_CR33) 2012; 203 H Yoshida (4219_CR32) 2011; 185 4219_CR30 4219_CR31 4219_CR12 4219_CR34 4219_CR11 4219_CR14 4219_CR13 S S Kumar (4219_CR21) 2017; 9 S Vieira (4219_CR19) 2017; 74 J Ramírez (4219_CR23) 2013; 237 4219_CR18 G McKhann (4219_CR2) 1984; 34 J Ramírez (4219_CR1) 2013; 237 4219_CR4 4219_CR9 H Lee (4219_CR15) 2018; 45 4219_CR8 H W Querfurth (4219_CR7) 2010; 362 G McKhann (4219_CR16) 1984; 34 4219_CR20 4219_CR22 R Petersen (4219_CR17) 2004; 256 4219_CR25 4219_CR24 P Lakhani (4219_CR27) 2017; 284 J Kim (4219_CR28) 2016; 124 V d Burgh (4219_CR26) 2017; 13 4219_CR29 Alzheimer’s Association (4219_CR3) 2012; 8 J Lee (4219_CR10) 2017; 18 |
References_xml | – reference: QuerfurthH WLaFerlaF MN. Engl. J. Med.201036232910.1056/NEJMra0909142 – reference: LeeHHongHKimJJungD CMed. Phys.201845155010.1002/mp.12828 – reference: LiuSJ. Nucl. Med.2014552028 – reference: C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, USA, 2017). – reference: G. Litjens et al., arXiv preprint arXiv:1702.05747 (2017). – reference: A. Payan and G. Montana, arXiv preprint arXiv:1502.02506 (2015). – reference: YoshidaHPsychiatry Res.201118521110.1016/j.psychres.2009.06.012 – reference: A. Canziani, A. Paszke, E. Culurciello, arXiv preprint arXiv:1605.07678 (2016). – reference: ParkK WPsychiatry Res. Neuroimaging201220320110.1016/j.pscychresns.2011.12.007 – reference: LakhaniPSundaramBRadiol.201728457410.1148/radiol.2017162326 – reference: E. Hosseini-Asl, G. Gimel’farb and A. El-Baz, arXiv preprint arXiv:1607.00556 (2016). – reference: E. Hosseini Asl, R. Keynton and A. El Baz, 2016 IEEE International Conference on Image Processing, ICIP, 2016, pp. 126–130. – reference: LeeJKorean J. Radiol.20171857010.3348/kjr.2017.18.4.570 – reference: S. Sarraf and G. Tofighi, arXiv preprint arXiv:1603.08631 (2016). – reference: McKhannGNeurology19843493910.1212/WNL.34.7.939 – reference: DCMTK Ver. 3.6.4, https://support.dcmtk.org/docs/class-DicomImage.html#ac1b5118cbae9e797aa55940fcd60258e. – reference: VieiraSPinayaW H LMechelliANeurosci. Biobehav. Rev.2017745810.1016/j.neubiorev.2017.01.002 – reference: MunozD GFeldmanHCan. Med. Assoc. J.200016265 – reference: C. Szegedy et al., Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Boston, USA, 2015). – reference: PetersenRJ. Intern. Med.200425618310.1111/j.1365-2796.2004.01388.x – reference: KimJCalhounV DShimELeeJNeuroimage201612412710.1016/j.neuroimage.2015.05.018 – reference: A. Krizhevsky, I. Sutskever and G. E. Hinton, Advances in Neural Information Processing Systems (2012), pp. 1097–1105. – reference: S. Sarraf, DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI (2016), https://www.biorxiv.org/content/biorxiv/early/2017/01/14/070441.full.pdf. – reference: BurghV dNeuroimage Clin.20171336110.1016/j.nicl.2016.10.008 – reference: E. M. Alkabawi, A. R. Hilal and O. A. Basir, Medical Measurements and Applications (MeMeA), 2017 IEEE International Symposium on (Rochester, USA, 2017). – reference: Alzheimer’s AssociationAlzheimer’s & Dementia2012813110.1016/j.jalz.2012.02.001 – reference: A. K. Ambastha, National University of Singapore (2015), https://www.comp.nus.edu.sg/~abhinit/grp.pdf. – reference: KumarS SNandhiniMInt. J. Eng. Technol.20179192510.21817/ijet/2017/v9i3/1709030158 – reference: RamírezJInf. Sci.20132375910.1016/j.ins.2009.05.012 – reference: Genetics of dementia, https://www.alzheimers.org.uk/site/scripts/documents_index.php (2007). – reference: A. Farooq, S. Anwar, M. Awais and M. Alnowami, Smart Cities Conference (ISC2) (Wuxi, China, 2017) – reference: G. Smith, Z. Stoyanov, D. Vukadinovic Greetham, P. Grindrod and D. Saddy, http://centaur.reading.ac.uk/37130 (2014). – ident: 4219_CR9 – volume: 185 start-page: 211 year: 2011 ident: 4219_CR32 publication-title: Psychiatry Res. doi: 10.1016/j.psychres.2009.06.012 – ident: 4219_CR29 – volume: 13 start-page: 361 year: 2017 ident: 4219_CR26 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2016.10.008 – ident: 4219_CR14 – ident: 4219_CR4 – volume: 362 start-page: 329 year: 2010 ident: 4219_CR7 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0909142 – volume: 55 start-page: 2028 year: 2014 ident: 4219_CR6 publication-title: J. Nucl. Med. – ident: 4219_CR12 – volume: 203 start-page: 201 year: 2012 ident: 4219_CR33 publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2011.12.007 – volume: 45 start-page: 1550 year: 2018 ident: 4219_CR15 publication-title: Med. Phys. doi: 10.1002/mp.12828 – volume: 8 start-page: 131 year: 2012 ident: 4219_CR3 publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2012.02.001 – volume: 18 start-page: 570 year: 2017 ident: 4219_CR10 publication-title: Korean J. Radiol. doi: 10.3348/kjr.2017.18.4.570 – ident: 4219_CR31 – ident: 4219_CR18 – volume: 162 start-page: 65 year: 2000 ident: 4219_CR5 publication-title: Can. Med. Assoc. J. – ident: 4219_CR24 – ident: 4219_CR30 – volume: 124 start-page: 127 year: 2016 ident: 4219_CR28 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.018 – volume: 237 start-page: 59 year: 2013 ident: 4219_CR1 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.05.012 – ident: 4219_CR8 – volume: 9 start-page: 1925 year: 2017 ident: 4219_CR21 publication-title: Int. J. Eng. Technol. doi: 10.21817/ijet/2017/v9i3/1709030158 – ident: 4219_CR20 – ident: 4219_CR22 – volume: 34 start-page: 939 year: 1984 ident: 4219_CR2 publication-title: Neurology doi: 10.1212/WNL.34.7.939 – ident: 4219_CR25 doi: 10.1101/070441 – volume: 237 start-page: 59 year: 2013 ident: 4219_CR23 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.05.012 – volume: 256 start-page: 183 year: 2004 ident: 4219_CR17 publication-title: J. Intern. Med. doi: 10.1111/j.1365-2796.2004.01388.x – volume: 284 start-page: 574 year: 2017 ident: 4219_CR27 publication-title: Radiol. doi: 10.1148/radiol.2017162326 – volume: 34 start-page: 939 year: 1984 ident: 4219_CR16 publication-title: Neurology doi: 10.1212/WNL.34.7.939 – ident: 4219_CR13 – volume: 74 start-page: 58 year: 2017 ident: 4219_CR19 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.01.002 – ident: 4219_CR11 – ident: 4219_CR34 |
SSID | ssj0043376 |
Score | 2.2026267 |
Snippet | Early diagnosis of dementia helps in finding suitable treatments that reduce or even prevent future cognitive dysfunction of patients. In this paper, we use a... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 597 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Computer simulation Data augmentation Deep learning Disease control Fluorine isotopes Image acquisition Image classification Machine learning Mathematical and Computational Physics Medical imaging Neural networks Particle and Nuclear Physics Physics Physics and Astronomy Positron emission Radioisotopes Recall Rotation Theoretical Tomography 물리학 |
Title | Effect of Data Augmentation of F-18-Florbetaben Positron-Emission Tomography Images by Using Deep Learning Convolutional Neural Network Architecture for Amyloid Positive Patients |
URI | https://link.springer.com/article/10.3938/jkps.75.597 https://www.proquest.com/docview/2308861537 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002517822 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Korean Physical Society, 2019, 75(8), , pp.597-604 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKqFIvVVuKuhSQVcGlkmG9cdbJMcCm0KqIAyvRk-WPyQqWTVabUKl_q7-QceK0BXHoyVLi2FGeM3mTmXkmZF86AAupZtINBRNuZJkea8OQ_EppkNAPh75Q-PvF-Gwqvl7H16FYve6z3fuQZGupvV-ZRsnR7XxZH8r4EBnwGtmIvdOOy3c6ynrDK6JIdqFJibMmiejK8Z5e_OgDtFauikfc8kk4tP3K5G_I60APadbh-Za8gPIdedmmadp6k_zuxIZpVdBT3Wia3c8WoXio9AdzxhOWowtuoNEGSnrpc7JWVckmiKf_MUavqkVQqabnCzQmNTW_aJs4QE8BljQIrs7oSVX-DOsS78iLeLRNmzVOs3_iDxR5L80W6PnfuG5CtKD0shNsrd-TaT65OjljYdcFZqNo1DDnNyCJOD5E9NVGbhhbk_LCucJaycGNi8Ra4MZ6LT8oxsJpkxYmdYmxUezSItoi62VVwgdCrePagWtV0QS3QoOwIB2OCVJzAwPyuYdC2SBJ7nfGuFPomnjclMdNyVghbgOy_6fzslPieL7bJ8RUze2N8srZvp1Var5S6B-cK-RryJf4gOz0kKvwztYKnbEk8fwXxzjol8Hf08_Mtf2f_T6SV8iz0i4HcIesN6t72EUu05g9spHlx8cXvv3y49tkr13RD_6E-ec |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoEYIL4lNsKWChckFyWW-ctXOM2q52oa162JV6s_wxWZVlk9UmrcTf4hcyThygVQ-cLCWOHeU5kzeZmWdCDqQHcJAZJv1QMOFHjpmxsQzJr5QWCf1wGAqFz87H04X4eplexmL1us9270OSraUOfmWWqC_fV5v6UKaHyIB3yENkASpkcC1GeW94RZLILjQpcValRFeOd_fiWx-gnXJb3OKWd8Kh7Vdm8ow8jfSQ5h2ez8kDKF-QR22apqtfkl-d2DCtCnpsGkPz6-U6Fg-V4eCEccUm6IJbaIyFkl6EnKxtVbITxDP8GKPzah1VqulsjcakpvYnbRMH6DHAhkbB1SU9qsqbuC7xjoKIR9u0WeM0_yf-QJH30nyNnv-V7yZEC0ovOsHW-hVZTE7mR1MWd11gLklGDfNhA5KE40NEX23kh6mzGS-8L5yTHPy4UM4Bty5o-UExFt7YrLCZV9Ylqc-K5DXZLasS3hDqPDcefKuKJrgTBoQD6XFMkIZbGJDPPRTaRUnysDPGD42uScBNB9y0TDXiNiAHfzpvOiWO-7t9REz1yl3poJwd2mWlV1uN_sFMI19DvsQHZL-HXMd3ttbojCkV-C-O8alfBn9P3zPX3n_2-0AeT-dnp_p0dv7tLXmCnCvr8gH3yW6zvYZ3yGsa-75dzb8BRFL5yg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYKVateUJ_qtpRaFb1UMqw3zjo5RiwR2wfaAytxs_xc0WWd1SZU4m_xCzuOkxYQB06REse2MuPxN_HMNwjtc2Ottrkk3AwZYWakiRxLRQD8cq4A0A-HIVH41-n4ZM6-n6fnt0t9hWj3_kgy5jQElibfHK6NC0s8yZPs8PdyXR_w9ADQ8BZ6CnaYBoWej4reCLMk4fGYksMMsozF1Lz7L9_ZjLb8xt3BmfeORtsdp3yJdjqoiIso21foifWv0bM2ZFPXb9BNJB7GlcMT2UhcXC1WXSKRDzdLQjNSgjuubCOV9XgW4rM2lSfHINvwkwyfVauOsRpPV2BYaqyucRtEgCfWrnFHvrrAR5X_0-kozCgQerSXNoIcF7fOIjBgYFysri-rCxMHBGuKZ5G8tX6L5uXx2dEJ6SowEJ0ko4aYUIwkofARwW8bmWGqVU6dMU5rTq0Zu0xrS5UOvH7WjZmRKncqN5nSSWpyl7xD277y9j3C2lBprGkZ0hjVTFqmLTfQp-WSKjtA33pRCN3Rk4cqGZcC3JQgNxHkJngqQG4DtP-v8Tqycjzc7AvIVCz1hQgs2uG6qMRyI8BXmArAboCd6ADt9iIX3fqtBThmWRawMPTxtVeD_48fGOvDI9t9Rs9nk1L8nJ7--IheAPzKY2jgLtpuNlf2E0CcRu21yvwX7Lf-Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Data+Augmentation+of+F-18-Florbetaben+Positron-Emission+Tomography+Images+by+Using+Deep+Learning+Convolutional+Neural+Network+Architecture+for+Amyloid+Positive+Patients&rft.jtitle=Journal+of+the+Korean+Physical+Society&rft.au=Yoon%2C+Hyun+Jin&rft.au=Jeong%2C+Young+Jin&rft.au=Kang%2C+Do-Young&rft.au=Kang%2C+Hyun&rft.date=2019-10-01&rft.issn=0374-4884&rft.eissn=1976-8524&rft.volume=75&rft.issue=8&rft.spage=597&rft.epage=604&rft_id=info:doi/10.3938%2Fjkps.75.597&rft.externalDBID=n%2Fa&rft.externalDocID=10_3938_jkps_75_597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-4884&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-4884&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-4884&client=summon |