White upconversion emission and color tunability of Y2O3:R(R=Yb3+, Er3+, Tm3+) nanophosphors

The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 39; pp. 190 - 195
Main Authors Noh, Hyeon Mi, Oh, Ju Hyun, Jeong, Jung Hyun, Park, Sung Heum, Choi, Byung Chun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2022
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
DOI10.1016/j.cap.2022.05.002

Cover

Loading…
Abstract The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence. [Display omitted] •Er3+/Yb3+/Tm3+ tri-doped Y2O3 nanophosphors were prepared.•Their UC emission spectra include the white light area.•These novel materials can be used in display devices and biomedical applications.
AbstractList The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 ◦ C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm-1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 ◦C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence. KCI Citation Count: 0
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence. [Display omitted] •Er3+/Yb3+/Tm3+ tri-doped Y2O3 nanophosphors were prepared.•Their UC emission spectra include the white light area.•These novel materials can be used in display devices and biomedical applications.
Author Choi, Byung Chun
Oh, Ju Hyun
Noh, Hyeon Mi
Park, Sung Heum
Jeong, Jung Hyun
Author_xml – sequence: 1
  givenname: Hyeon Mi
  surname: Noh
  fullname: Noh, Hyeon Mi
– sequence: 2
  givenname: Ju Hyun
  surname: Oh
  fullname: Oh, Ju Hyun
– sequence: 3
  givenname: Jung Hyun
  surname: Jeong
  fullname: Jeong, Jung Hyun
– sequence: 4
  givenname: Sung Heum
  surname: Park
  fullname: Park, Sung Heum
– sequence: 5
  givenname: Byung Chun
  orcidid: 0000-0001-7581-1607
  surname: Choi
  fullname: Choi, Byung Chun
  email: bcchoi@pknu.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002863254$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kEtLAzEUhYNUsFV_gLtZqnXGPOZVxUURH4VCoVSkIIQkc8emj6Qk04L_3rR15aKLe89dnO_COR3UMtYAQlcEJwST_H6eKLFOKKY0wVmCMT1BbVIWZUzyImuFO8uLmBSsd4Y63s9xYFKcttHX50w3EG3WypotOK-tiWCl_f4QpoqUXVoXNRsjpF7q5ieydTSlI_Ywvh4_TSXr3kUvbrcnK9a9iYwwdj2zPozzF-i0FksPl396jj5eXybP7_Fw9DZ47g9jxRhtYlUCYFmoHGdpEFEWKVMgU0oUMAlQpT1SS1ZKoJJCWWOcM9aDWlYlFKnI2Tm6Pfw1ruYLpbkVeq_fli8c748nA05CJz2S78zFwayc9d5BzZVuRBPyNk7oZTDyXaN8zkOjfNcoxxkPdCDJP3Lt9Eq4n6PM44GBkH-rwXGvNBgFlXagGl5ZfYT-Bbuaj0U
CitedBy_id crossref_primary_10_1016_j_optmat_2023_114094
crossref_primary_10_1016_j_omx_2023_100260
crossref_primary_10_1007_s40042_023_00988_3
crossref_primary_10_1016_j_ceramint_2024_11_480
crossref_primary_10_1016_j_cap_2023_09_007
crossref_primary_10_1016_j_ceramint_2023_08_043
crossref_primary_10_1039_D2DT01962K
Cites_doi 10.1166/jnn.2010.2909
10.1039/C4NJ00163J
10.1166/jnn.2010.2077
10.1103/PhysRevB.75.195204
10.1063/1.1739523
10.1149/2.104206jes
10.1002/smll.201000418
10.1021/jp048072q
10.1088/0022-3727/42/6/065104
10.1016/j.optmat.2009.11.013
10.1063/1.1315341
10.1021/jp052192w
10.1016/j.optmat.2010.04.034
10.1021/cm8030768
10.1039/c3nr03642a
10.1016/j.optmat.2010.11.017
10.1063/1.3088881
10.1103/PhysRevB.45.10902
10.1016/j.optmat.2004.10.021
10.1016/j.materresbull.2013.02.064
10.1016/j.cap.2017.03.021
ContentType Journal Article
Copyright 2022 Korean Physical Society
Copyright_xml – notice: 2022 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2022.05.002
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 195
ExternalDocumentID oai_kci_go_kr_ARTI_10029166
10_1016_j_cap_2022_05_002
S1567173922001110
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ABPIF
ABPTK
ACYCR
ID FETCH-LOGICAL-c332t-c8ee0b7c6054b7ca8743ceb421ce3beed491fb38be2b2e8f006339efbd8e74a63
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Fri Nov 17 19:26:37 EST 2023
Tue Jul 01 01:06:12 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:40:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy transfer
Nanophosphors
White upconversion emission
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-c8ee0b7c6054b7ca8743ceb421ce3beed491fb38be2b2e8f006339efbd8e74a63
ORCID 0000-0001-7581-1607
PageCount 6
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10029166
crossref_citationtrail_10_1016_j_cap_2022_05_002
crossref_primary_10_1016_j_cap_2022_05_002
elsevier_sciencedirect_doi_10_1016_j_cap_2022_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
2022-07
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2022
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Tong, Li, Hua, Cheng, Sun, Zhang, Xu, Zheng, Zhang, Chen (bib13) 2017; 17
Suyver, Aebischer, Biner, Gerner, Grimm, Heer, Krämer, Reinhard, Güdel (bib5) 2005; 27
Reisfeld (bib3) 2010; 32
Pandozzi, Vetrone, Boyer, Naccache, Capobianco, Speghini, Bettinelli (bib23) 2005; 109
Pavitra, Raju, Oh, Yu (bib12) 2014; 38
Prasad (bib11) 2004
Noh, Choi, Kim, Moon, Jung, Jeong (bib14) 2010; 10
Gong, Yang, Zhao, Pun, Lin (bib20) 2010; 32
Chen, Somesfalean, Liu, Zhang, Sun, Wang (bib21) 2007; 75
Singh, Rai, Ledoux-Rak, Watanabe, Rao, Chubaci, Badie, Pelle, Ivanova (bib10) 2009; 42
Bachmann, Ronda, Meijerink (bib1) 2009; 21
Liu, Xu, Yang (bib8) 2009; 105
Passuello, Piccinelli, Pedroni, Bettinelli, Mangiarini, Naccache, Vetrone, Capobianco, Speghini (bib4) 2011; 33
Vetrone, Boyer, Capobianco, Speghini, Bettinelli (bib22) 2004; 96
Park, Moon, Kim, Byeon, Kim, Suh (bib16) 2000; 77
Yang, Moon, Choi, Jeong, Kim (bib17) 2012; 159
Rai, Dey, Kumar (bib19) 2013; 48
Qiu, Zhou, Chen, Zhang, Gao, Cui (bib6) 2013; 5
Zheng, Qin, Wang, Wei, Zhang, Wang, Kim, Liu, Ding, Xue, Jiang, Yang (bib7) 2010; 10
vander Ende, Aarts, Meijerink (bib2) 2009; 11
Chatterjee, Gnanasammandhan, Zhang (bib9) 2010; 6
Misbra, Berkowitz, Johnson, Schmidt (bib15) 1992; 45
Guo, Dong, Yin, Zhang, Lou, Xia (bib18) 2004; 108
vander Ende (10.1016/j.cap.2022.05.002_bib2) 2009; 11
Liu (10.1016/j.cap.2022.05.002_bib8) 2009; 105
Guo (10.1016/j.cap.2022.05.002_bib18) 2004; 108
Chen (10.1016/j.cap.2022.05.002_bib21) 2007; 75
Suyver (10.1016/j.cap.2022.05.002_bib5) 2005; 27
Pavitra (10.1016/j.cap.2022.05.002_bib12) 2014; 38
Misbra (10.1016/j.cap.2022.05.002_bib15) 1992; 45
Gong (10.1016/j.cap.2022.05.002_bib20) 2010; 32
Reisfeld (10.1016/j.cap.2022.05.002_bib3) 2010; 32
Rai (10.1016/j.cap.2022.05.002_bib19) 2013; 48
Vetrone (10.1016/j.cap.2022.05.002_bib22) 2004; 96
Passuello (10.1016/j.cap.2022.05.002_bib4) 2011; 33
Prasad (10.1016/j.cap.2022.05.002_bib11) 2004
Bachmann (10.1016/j.cap.2022.05.002_bib1) 2009; 21
Noh (10.1016/j.cap.2022.05.002_bib14) 2010; 10
Zheng (10.1016/j.cap.2022.05.002_bib7) 2010; 10
Singh (10.1016/j.cap.2022.05.002_bib10) 2009; 42
Qiu (10.1016/j.cap.2022.05.002_bib6) 2013; 5
Pandozzi (10.1016/j.cap.2022.05.002_bib23) 2005; 109
Tong (10.1016/j.cap.2022.05.002_bib13) 2017; 17
Yang (10.1016/j.cap.2022.05.002_bib17) 2012; 159
Chatterjee (10.1016/j.cap.2022.05.002_bib9) 2010; 6
Park (10.1016/j.cap.2022.05.002_bib16) 2000; 77
References_xml – volume: 33
  start-page: 643
  year: 2011
  end-page: 646
  ident: bib4
  publication-title: Opt. Mater.
– volume: 105
  start-page: 84701
  year: 2009
  end-page: 84707
  ident: bib8
  publication-title: J. Appl. Phys.
– volume: 42
  start-page: 65104
  year: 2009
  end-page: 65112
  ident: bib10
  publication-title: J. Appl. Phys. D
– volume: 48
  start-page: 2232
  year: 2013
  end-page: 2236
  ident: bib19
  publication-title: Mater. Res. Bull.
– volume: 6
  start-page: 2781
  year: 2010
  end-page: 2795
  ident: bib9
  publication-title: Small
– volume: 38
  start-page: 3413
  year: 2014
  end-page: 3420
  ident: bib12
  publication-title: New J. Chem.
– volume: 27
  start-page: 1111
  year: 2005
  end-page: 1130
  ident: bib5
  publication-title: Opt. Mater.
– year: 2004
  ident: bib11
  article-title: Nanophotonics
– volume: 17
  start-page: 999
  year: 2017
  end-page: 1004
  ident: bib13
  publication-title: Curr. Appl. Phys.
– volume: 45
  start-page: 10902
  year: 1992
  end-page: 10906
  ident: bib15
  publication-title: Phys. Rev. B Condens. Matter
– volume: 159
  start-page: J227
  year: 2012
  end-page: J230
  ident: bib17
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 11512
  year: 2013
  end-page: 11525
  ident: bib6
  publication-title: Nanoscale
– volume: 11
  start-page: 11081
  year: 2009
  end-page: 11095
  ident: bib2
  publication-title: Chem. Phys.
– volume: 108
  start-page: 19205
  year: 2004
  end-page: 19209
  ident: bib18
  publication-title: J. Phys. Chem. B
– volume: 96
  start-page: 661
  year: 2004
  end-page: 667
  ident: bib22
  publication-title: J. Appl. Phys.
– volume: 10
  start-page: 7328
  year: 2010
  end-page: 7332
  ident: bib14
  publication-title: J. Nanosci. Nanotechnol.
– volume: 10
  start-page: 1920
  year: 2010
  end-page: 1923
  ident: bib7
  publication-title: J. Nanosci. Nanotechnol.
– volume: 32
  start-page: 554
  year: 2010
  end-page: 559
  ident: bib20
  publication-title: Opt. Mater.
– volume: 77
  start-page: 2162
  year: 2000
  end-page: 2164
  ident: bib16
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 850
  year: 2010
  end-page: 856
  ident: bib3
  publication-title: Opt. Mater.
– volume: 109
  start-page: 17400
  year: 2005
  end-page: 17405
  ident: bib23
  publication-title: J. Phys. Chem. B
– volume: 75
  start-page: 195204
  year: 2007
  end-page: 195209
  ident: bib21
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 2077
  year: 2009
  end-page: 2084
  ident: bib1
  publication-title: Chem. Mater.
– volume: 10
  start-page: 7328
  year: 2010
  ident: 10.1016/j.cap.2022.05.002_bib14
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2909
– volume: 38
  start-page: 3413
  year: 2014
  ident: 10.1016/j.cap.2022.05.002_bib12
  publication-title: New J. Chem.
  doi: 10.1039/C4NJ00163J
– volume: 10
  start-page: 1920
  year: 2010
  ident: 10.1016/j.cap.2022.05.002_bib7
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2010.2077
– volume: 75
  start-page: 195204
  year: 2007
  ident: 10.1016/j.cap.2022.05.002_bib21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.195204
– volume: 96
  start-page: 661
  year: 2004
  ident: 10.1016/j.cap.2022.05.002_bib22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1739523
– volume: 159
  start-page: J227
  year: 2012
  ident: 10.1016/j.cap.2022.05.002_bib17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.104206jes
– volume: 6
  start-page: 2781
  year: 2010
  ident: 10.1016/j.cap.2022.05.002_bib9
  publication-title: Small
  doi: 10.1002/smll.201000418
– volume: 108
  start-page: 19205
  year: 2004
  ident: 10.1016/j.cap.2022.05.002_bib18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp048072q
– volume: 42
  start-page: 65104
  year: 2009
  ident: 10.1016/j.cap.2022.05.002_bib10
  publication-title: J. Appl. Phys. D
  doi: 10.1088/0022-3727/42/6/065104
– volume: 32
  start-page: 554
  year: 2010
  ident: 10.1016/j.cap.2022.05.002_bib20
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2009.11.013
– volume: 11
  start-page: 11081
  year: 2009
  ident: 10.1016/j.cap.2022.05.002_bib2
  publication-title: Chem. Phys.
– year: 2004
  ident: 10.1016/j.cap.2022.05.002_bib11
– volume: 77
  start-page: 2162
  year: 2000
  ident: 10.1016/j.cap.2022.05.002_bib16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1315341
– volume: 109
  start-page: 17400
  year: 2005
  ident: 10.1016/j.cap.2022.05.002_bib23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052192w
– volume: 32
  start-page: 850
  year: 2010
  ident: 10.1016/j.cap.2022.05.002_bib3
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2010.04.034
– volume: 21
  start-page: 2077
  year: 2009
  ident: 10.1016/j.cap.2022.05.002_bib1
  publication-title: Chem. Mater.
  doi: 10.1021/cm8030768
– volume: 5
  start-page: 11512
  year: 2013
  ident: 10.1016/j.cap.2022.05.002_bib6
  publication-title: Nanoscale
  doi: 10.1039/c3nr03642a
– volume: 33
  start-page: 643
  year: 2011
  ident: 10.1016/j.cap.2022.05.002_bib4
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2010.11.017
– volume: 105
  start-page: 84701
  year: 2009
  ident: 10.1016/j.cap.2022.05.002_bib8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3088881
– volume: 45
  start-page: 10902
  year: 1992
  ident: 10.1016/j.cap.2022.05.002_bib15
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.45.10902
– volume: 27
  start-page: 1111
  year: 2005
  ident: 10.1016/j.cap.2022.05.002_bib5
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2004.10.021
– volume: 48
  start-page: 2232
  year: 2013
  ident: 10.1016/j.cap.2022.05.002_bib19
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.02.064
– volume: 17
  start-page: 999
  year: 2017
  ident: 10.1016/j.cap.2022.05.002_bib13
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2017.03.021
SSID ssj0016404
Score 2.3570106
Snippet The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was...
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 190
SubjectTerms Energy transfer
Nanophosphors
White upconversion emission
물리학
Title White upconversion emission and color tunability of Y2O3:R(R=Yb3+, Er3+, Tm3+) nanophosphors
URI https://dx.doi.org/10.1016/j.cap.2022.05.002
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002863254
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2022, 39(0), , pp.190-195
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5OGexlqJtMpxLQh21ab5ukPyL4IKJcFR04BYVBaNJE75ztpffeB1_82z0nbUVBfPChP0lK-ZKenJN8_Q4h64koZGJMFMShhQCFQ1vk1sRBJAse6lS4wmt3npwm_QtxdBlfTpG97l8YpFW2tr-x6d5at3d6LZq94WDQ-wORBy4hS8Z8wnSM24VIUT9_6-GJ5gHRgE8hiIUDLN2tbHqOl8lRspKxrWczK6-MTR_K2j0bdQ5myefWXaS7zRvNkSlbzpOPnrZpRl_IX5_fjk6GnjzuZ74oJnDzJ3lZUNSkrul4UjZy3Pe0cvSK_ebbZz_Odq4039ik-zXuz-_4xk9a5mU1vKlGsNWjr-TiYP98rx-0-RICwzkbByazFvA1EKEIOOQZeAfGasEiY7mGwVDIyGmeacs0s5lD94RL63SR2VTkCV8g02VV2m-ESulckeooSw0XTMeZdrmMY_j84yLXMlwkYYeUMq2YOOa0-K861tg_BeAqBFeFsQJwF8mvpyrDRknjrcKig1-96A4KLP1b1dagqdStGSiUzcbjdaVuawXBwSHKMzPwhpOl9z38O_mEVw1Xd5lMj-uJXQGPZKxXfZdbJTO7h8f900eQVNzH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6ui6wv4u4q620N6MO6WqfNpW2EfRBRxvWyoCMoLIQmTXS8tENn5sEXf7snaSsuLD740AttUsqX9OSc5Ot3EFqPWS5iraOAhwYCFAptkRnNg0jkNFQJs7nX7jw5jbsX7Pclv5xAe-2_MI5W2dj-2qZ7a91c6TRodgb9fuccIg-3hCwI8QnTIW7_yDhNXNfefnrheUA44HMIutKBK94ubXqSl86cZiUh26-mVv4zOH0oKvtq2DmYRTONv4h361f6jCZM8QVNed6mHn5Ff32COzweePa4n_rCLoObP8mKHDtR6gqPxkWtx_2IS4uvyB-6c_bj7NeVoptbeL9y-94D3dzARVaUg5tyCFs1nEMXB_u9vW7QJEwINKVkFOjUGABYQ4jC4JCl4B5ooxiJtKEKRkMmIqtoqgxRxKTW-SdUGKvy1CQsi-k8mizKwnxDWAhr80RFaaIpI4qnymaCc_j-eZ4pES6gsEVK6kZN3CW1uJctbexWArjSgStDLgHcBfTzpcqgltJ4qzBr4Zf_9AcJpv6tamvQVPJO96XTzXbH61LeVRKig0Onz0zAHY4X3_fwVfSp2zs5lseHp0dLaNrdqYm7y2hyVI3NCrgnI_Xdd79nzzveXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+upconversion+emission+and+color+tunability+of+Y2O3%3AR%28R%3DYb3%2B%2C+Er3%2B%2C+Tm3%2B%29+nanophosphors&rft.jtitle=Current+applied+physics&rft.au=Noh%2C+Hyeon+Mi&rft.au=Oh%2C+Ju+Hyun&rft.au=Jeong%2C+Jung+Hyun&rft.au=Park%2C+Sung+Heum&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=39&rft.spage=190&rft.epage=195&rft_id=info:doi/10.1016%2Fj.cap.2022.05.002&rft.externalDocID=S1567173922001110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon