White upconversion emission and color tunability of Y2O3:R(R=Yb3+, Er3+, Tm3+) nanophosphors
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1...
Saved in:
Published in | Current applied physics Vol. 39; pp. 190 - 195 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2022
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 |
DOI | 10.1016/j.cap.2022.05.002 |
Cover
Loading…
Abstract | The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.
[Display omitted]
•Er3+/Yb3+/Tm3+ tri-doped Y2O3 nanophosphors were prepared.•Their UC emission spectra include the white light area.•These novel materials can be used in display devices and biomedical applications. |
---|---|
AbstractList | The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 ◦ C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm-1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 ◦C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence. KCI Citation Count: 0 The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence. [Display omitted] •Er3+/Yb3+/Tm3+ tri-doped Y2O3 nanophosphors were prepared.•Their UC emission spectra include the white light area.•These novel materials can be used in display devices and biomedical applications. |
Author | Choi, Byung Chun Oh, Ju Hyun Noh, Hyeon Mi Park, Sung Heum Jeong, Jung Hyun |
Author_xml | – sequence: 1 givenname: Hyeon Mi surname: Noh fullname: Noh, Hyeon Mi – sequence: 2 givenname: Ju Hyun surname: Oh fullname: Oh, Ju Hyun – sequence: 3 givenname: Jung Hyun surname: Jeong fullname: Jeong, Jung Hyun – sequence: 4 givenname: Sung Heum surname: Park fullname: Park, Sung Heum – sequence: 5 givenname: Byung Chun orcidid: 0000-0001-7581-1607 surname: Choi fullname: Choi, Byung Chun email: bcchoi@pknu.ac.kr |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002863254$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kEtLAzEUhYNUsFV_gLtZqnXGPOZVxUURH4VCoVSkIIQkc8emj6Qk04L_3rR15aKLe89dnO_COR3UMtYAQlcEJwST_H6eKLFOKKY0wVmCMT1BbVIWZUzyImuFO8uLmBSsd4Y63s9xYFKcttHX50w3EG3WypotOK-tiWCl_f4QpoqUXVoXNRsjpF7q5ieydTSlI_Ywvh4_TSXr3kUvbrcnK9a9iYwwdj2zPozzF-i0FksPl396jj5eXybP7_Fw9DZ47g9jxRhtYlUCYFmoHGdpEFEWKVMgU0oUMAlQpT1SS1ZKoJJCWWOcM9aDWlYlFKnI2Tm6Pfw1ruYLpbkVeq_fli8c748nA05CJz2S78zFwayc9d5BzZVuRBPyNk7oZTDyXaN8zkOjfNcoxxkPdCDJP3Lt9Eq4n6PM44GBkH-rwXGvNBgFlXagGl5ZfYT-Bbuaj0U |
CitedBy_id | crossref_primary_10_1016_j_optmat_2023_114094 crossref_primary_10_1016_j_omx_2023_100260 crossref_primary_10_1007_s40042_023_00988_3 crossref_primary_10_1016_j_ceramint_2024_11_480 crossref_primary_10_1016_j_cap_2023_09_007 crossref_primary_10_1016_j_ceramint_2023_08_043 crossref_primary_10_1039_D2DT01962K |
Cites_doi | 10.1166/jnn.2010.2909 10.1039/C4NJ00163J 10.1166/jnn.2010.2077 10.1103/PhysRevB.75.195204 10.1063/1.1739523 10.1149/2.104206jes 10.1002/smll.201000418 10.1021/jp048072q 10.1088/0022-3727/42/6/065104 10.1016/j.optmat.2009.11.013 10.1063/1.1315341 10.1021/jp052192w 10.1016/j.optmat.2010.04.034 10.1021/cm8030768 10.1039/c3nr03642a 10.1016/j.optmat.2010.11.017 10.1063/1.3088881 10.1103/PhysRevB.45.10902 10.1016/j.optmat.2004.10.021 10.1016/j.materresbull.2013.02.064 10.1016/j.cap.2017.03.021 |
ContentType | Journal Article |
Copyright | 2022 Korean Physical Society |
Copyright_xml | – notice: 2022 Korean Physical Society |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2022.05.002 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 |
EndPage | 195 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10029166 10_1016_j_cap_2022_05_002 S1567173922001110 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH ABPIF ABPTK ACYCR |
ID | FETCH-LOGICAL-c332t-c8ee0b7c6054b7ca8743ceb421ce3beed491fb38be2b2e8f006339efbd8e74a63 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Fri Nov 17 19:26:37 EST 2023 Tue Jul 01 01:06:12 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:40:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy transfer Nanophosphors White upconversion emission |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-c8ee0b7c6054b7ca8743ceb421ce3beed491fb38be2b2e8f006339efbd8e74a63 |
ORCID | 0000-0001-7581-1607 |
PageCount | 6 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10029166 crossref_citationtrail_10_1016_j_cap_2022_05_002 crossref_primary_10_1016_j_cap_2022_05_002 elsevier_sciencedirect_doi_10_1016_j_cap_2022_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2022 2022-07-00 2022-07 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationTitle | Current applied physics |
PublicationYear | 2022 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Tong, Li, Hua, Cheng, Sun, Zhang, Xu, Zheng, Zhang, Chen (bib13) 2017; 17 Suyver, Aebischer, Biner, Gerner, Grimm, Heer, Krämer, Reinhard, Güdel (bib5) 2005; 27 Reisfeld (bib3) 2010; 32 Pandozzi, Vetrone, Boyer, Naccache, Capobianco, Speghini, Bettinelli (bib23) 2005; 109 Pavitra, Raju, Oh, Yu (bib12) 2014; 38 Prasad (bib11) 2004 Noh, Choi, Kim, Moon, Jung, Jeong (bib14) 2010; 10 Gong, Yang, Zhao, Pun, Lin (bib20) 2010; 32 Chen, Somesfalean, Liu, Zhang, Sun, Wang (bib21) 2007; 75 Singh, Rai, Ledoux-Rak, Watanabe, Rao, Chubaci, Badie, Pelle, Ivanova (bib10) 2009; 42 Bachmann, Ronda, Meijerink (bib1) 2009; 21 Liu, Xu, Yang (bib8) 2009; 105 Passuello, Piccinelli, Pedroni, Bettinelli, Mangiarini, Naccache, Vetrone, Capobianco, Speghini (bib4) 2011; 33 Vetrone, Boyer, Capobianco, Speghini, Bettinelli (bib22) 2004; 96 Park, Moon, Kim, Byeon, Kim, Suh (bib16) 2000; 77 Yang, Moon, Choi, Jeong, Kim (bib17) 2012; 159 Rai, Dey, Kumar (bib19) 2013; 48 Qiu, Zhou, Chen, Zhang, Gao, Cui (bib6) 2013; 5 Zheng, Qin, Wang, Wei, Zhang, Wang, Kim, Liu, Ding, Xue, Jiang, Yang (bib7) 2010; 10 vander Ende, Aarts, Meijerink (bib2) 2009; 11 Chatterjee, Gnanasammandhan, Zhang (bib9) 2010; 6 Misbra, Berkowitz, Johnson, Schmidt (bib15) 1992; 45 Guo, Dong, Yin, Zhang, Lou, Xia (bib18) 2004; 108 vander Ende (10.1016/j.cap.2022.05.002_bib2) 2009; 11 Liu (10.1016/j.cap.2022.05.002_bib8) 2009; 105 Guo (10.1016/j.cap.2022.05.002_bib18) 2004; 108 Chen (10.1016/j.cap.2022.05.002_bib21) 2007; 75 Suyver (10.1016/j.cap.2022.05.002_bib5) 2005; 27 Pavitra (10.1016/j.cap.2022.05.002_bib12) 2014; 38 Misbra (10.1016/j.cap.2022.05.002_bib15) 1992; 45 Gong (10.1016/j.cap.2022.05.002_bib20) 2010; 32 Reisfeld (10.1016/j.cap.2022.05.002_bib3) 2010; 32 Rai (10.1016/j.cap.2022.05.002_bib19) 2013; 48 Vetrone (10.1016/j.cap.2022.05.002_bib22) 2004; 96 Passuello (10.1016/j.cap.2022.05.002_bib4) 2011; 33 Prasad (10.1016/j.cap.2022.05.002_bib11) 2004 Bachmann (10.1016/j.cap.2022.05.002_bib1) 2009; 21 Noh (10.1016/j.cap.2022.05.002_bib14) 2010; 10 Zheng (10.1016/j.cap.2022.05.002_bib7) 2010; 10 Singh (10.1016/j.cap.2022.05.002_bib10) 2009; 42 Qiu (10.1016/j.cap.2022.05.002_bib6) 2013; 5 Pandozzi (10.1016/j.cap.2022.05.002_bib23) 2005; 109 Tong (10.1016/j.cap.2022.05.002_bib13) 2017; 17 Yang (10.1016/j.cap.2022.05.002_bib17) 2012; 159 Chatterjee (10.1016/j.cap.2022.05.002_bib9) 2010; 6 Park (10.1016/j.cap.2022.05.002_bib16) 2000; 77 |
References_xml | – volume: 33 start-page: 643 year: 2011 end-page: 646 ident: bib4 publication-title: Opt. Mater. – volume: 105 start-page: 84701 year: 2009 end-page: 84707 ident: bib8 publication-title: J. Appl. Phys. – volume: 42 start-page: 65104 year: 2009 end-page: 65112 ident: bib10 publication-title: J. Appl. Phys. D – volume: 48 start-page: 2232 year: 2013 end-page: 2236 ident: bib19 publication-title: Mater. Res. Bull. – volume: 6 start-page: 2781 year: 2010 end-page: 2795 ident: bib9 publication-title: Small – volume: 38 start-page: 3413 year: 2014 end-page: 3420 ident: bib12 publication-title: New J. Chem. – volume: 27 start-page: 1111 year: 2005 end-page: 1130 ident: bib5 publication-title: Opt. Mater. – year: 2004 ident: bib11 article-title: Nanophotonics – volume: 17 start-page: 999 year: 2017 end-page: 1004 ident: bib13 publication-title: Curr. Appl. Phys. – volume: 45 start-page: 10902 year: 1992 end-page: 10906 ident: bib15 publication-title: Phys. Rev. B Condens. Matter – volume: 159 start-page: J227 year: 2012 end-page: J230 ident: bib17 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 11512 year: 2013 end-page: 11525 ident: bib6 publication-title: Nanoscale – volume: 11 start-page: 11081 year: 2009 end-page: 11095 ident: bib2 publication-title: Chem. Phys. – volume: 108 start-page: 19205 year: 2004 end-page: 19209 ident: bib18 publication-title: J. Phys. Chem. B – volume: 96 start-page: 661 year: 2004 end-page: 667 ident: bib22 publication-title: J. Appl. Phys. – volume: 10 start-page: 7328 year: 2010 end-page: 7332 ident: bib14 publication-title: J. Nanosci. Nanotechnol. – volume: 10 start-page: 1920 year: 2010 end-page: 1923 ident: bib7 publication-title: J. Nanosci. Nanotechnol. – volume: 32 start-page: 554 year: 2010 end-page: 559 ident: bib20 publication-title: Opt. Mater. – volume: 77 start-page: 2162 year: 2000 end-page: 2164 ident: bib16 publication-title: Appl. Phys. Lett. – volume: 32 start-page: 850 year: 2010 end-page: 856 ident: bib3 publication-title: Opt. Mater. – volume: 109 start-page: 17400 year: 2005 end-page: 17405 ident: bib23 publication-title: J. Phys. Chem. B – volume: 75 start-page: 195204 year: 2007 end-page: 195209 ident: bib21 publication-title: Phys. Rev. B – volume: 21 start-page: 2077 year: 2009 end-page: 2084 ident: bib1 publication-title: Chem. Mater. – volume: 10 start-page: 7328 year: 2010 ident: 10.1016/j.cap.2022.05.002_bib14 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2909 – volume: 38 start-page: 3413 year: 2014 ident: 10.1016/j.cap.2022.05.002_bib12 publication-title: New J. Chem. doi: 10.1039/C4NJ00163J – volume: 10 start-page: 1920 year: 2010 ident: 10.1016/j.cap.2022.05.002_bib7 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2010.2077 – volume: 75 start-page: 195204 year: 2007 ident: 10.1016/j.cap.2022.05.002_bib21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.195204 – volume: 96 start-page: 661 year: 2004 ident: 10.1016/j.cap.2022.05.002_bib22 publication-title: J. Appl. Phys. doi: 10.1063/1.1739523 – volume: 159 start-page: J227 year: 2012 ident: 10.1016/j.cap.2022.05.002_bib17 publication-title: J. Electrochem. Soc. doi: 10.1149/2.104206jes – volume: 6 start-page: 2781 year: 2010 ident: 10.1016/j.cap.2022.05.002_bib9 publication-title: Small doi: 10.1002/smll.201000418 – volume: 108 start-page: 19205 year: 2004 ident: 10.1016/j.cap.2022.05.002_bib18 publication-title: J. Phys. Chem. B doi: 10.1021/jp048072q – volume: 42 start-page: 65104 year: 2009 ident: 10.1016/j.cap.2022.05.002_bib10 publication-title: J. Appl. Phys. D doi: 10.1088/0022-3727/42/6/065104 – volume: 32 start-page: 554 year: 2010 ident: 10.1016/j.cap.2022.05.002_bib20 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2009.11.013 – volume: 11 start-page: 11081 year: 2009 ident: 10.1016/j.cap.2022.05.002_bib2 publication-title: Chem. Phys. – year: 2004 ident: 10.1016/j.cap.2022.05.002_bib11 – volume: 77 start-page: 2162 year: 2000 ident: 10.1016/j.cap.2022.05.002_bib16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1315341 – volume: 109 start-page: 17400 year: 2005 ident: 10.1016/j.cap.2022.05.002_bib23 publication-title: J. Phys. Chem. B doi: 10.1021/jp052192w – volume: 32 start-page: 850 year: 2010 ident: 10.1016/j.cap.2022.05.002_bib3 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.04.034 – volume: 21 start-page: 2077 year: 2009 ident: 10.1016/j.cap.2022.05.002_bib1 publication-title: Chem. Mater. doi: 10.1021/cm8030768 – volume: 5 start-page: 11512 year: 2013 ident: 10.1016/j.cap.2022.05.002_bib6 publication-title: Nanoscale doi: 10.1039/c3nr03642a – volume: 33 start-page: 643 year: 2011 ident: 10.1016/j.cap.2022.05.002_bib4 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2010.11.017 – volume: 105 start-page: 84701 year: 2009 ident: 10.1016/j.cap.2022.05.002_bib8 publication-title: J. Appl. Phys. doi: 10.1063/1.3088881 – volume: 45 start-page: 10902 year: 1992 ident: 10.1016/j.cap.2022.05.002_bib15 publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.45.10902 – volume: 27 start-page: 1111 year: 2005 ident: 10.1016/j.cap.2022.05.002_bib5 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2004.10.021 – volume: 48 start-page: 2232 year: 2013 ident: 10.1016/j.cap.2022.05.002_bib19 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.02.064 – volume: 17 start-page: 999 year: 2017 ident: 10.1016/j.cap.2022.05.002_bib13 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2017.03.021 |
SSID | ssj0016404 |
Score | 2.3570106 |
Snippet | The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was... The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 190 |
SubjectTerms | Energy transfer Nanophosphors White upconversion emission 물리학 |
Title | White upconversion emission and color tunability of Y2O3:R(R=Yb3+, Er3+, Tm3+) nanophosphors |
URI | https://dx.doi.org/10.1016/j.cap.2022.05.002 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002863254 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2022, 39(0), , pp.190-195 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFA5OGexlqJtMpxLQh21ab5ukPyL4IKJcFR04BYVBaNJE75ztpffeB1_82z0nbUVBfPChP0lK-ZKenJN8_Q4h64koZGJMFMShhQCFQ1vk1sRBJAse6lS4wmt3npwm_QtxdBlfTpG97l8YpFW2tr-x6d5at3d6LZq94WDQ-wORBy4hS8Z8wnSM24VIUT9_6-GJ5gHRgE8hiIUDLN2tbHqOl8lRspKxrWczK6-MTR_K2j0bdQ5myefWXaS7zRvNkSlbzpOPnrZpRl_IX5_fjk6GnjzuZ74oJnDzJ3lZUNSkrul4UjZy3Pe0cvSK_ebbZz_Odq4039ik-zXuz-_4xk9a5mU1vKlGsNWjr-TiYP98rx-0-RICwzkbByazFvA1EKEIOOQZeAfGasEiY7mGwVDIyGmeacs0s5lD94RL63SR2VTkCV8g02VV2m-ESulckeooSw0XTMeZdrmMY_j84yLXMlwkYYeUMq2YOOa0-K861tg_BeAqBFeFsQJwF8mvpyrDRknjrcKig1-96A4KLP1b1dagqdStGSiUzcbjdaVuawXBwSHKMzPwhpOl9z38O_mEVw1Xd5lMj-uJXQGPZKxXfZdbJTO7h8f900eQVNzH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6ui6wv4u4q620N6MO6WqfNpW2EfRBRxvWyoCMoLIQmTXS8tENn5sEXf7snaSsuLD740AttUsqX9OSc5Ot3EFqPWS5iraOAhwYCFAptkRnNg0jkNFQJs7nX7jw5jbsX7Pclv5xAe-2_MI5W2dj-2qZ7a91c6TRodgb9fuccIg-3hCwI8QnTIW7_yDhNXNfefnrheUA44HMIutKBK94ubXqSl86cZiUh26-mVv4zOH0oKvtq2DmYRTONv4h361f6jCZM8QVNed6mHn5Ff32COzweePa4n_rCLoObP8mKHDtR6gqPxkWtx_2IS4uvyB-6c_bj7NeVoptbeL9y-94D3dzARVaUg5tyCFs1nEMXB_u9vW7QJEwINKVkFOjUGABYQ4jC4JCl4B5ooxiJtKEKRkMmIqtoqgxRxKTW-SdUGKvy1CQsi-k8mizKwnxDWAhr80RFaaIpI4qnymaCc_j-eZ4pES6gsEVK6kZN3CW1uJctbexWArjSgStDLgHcBfTzpcqgltJ4qzBr4Zf_9AcJpv6tamvQVPJO96XTzXbH61LeVRKig0Onz0zAHY4X3_fwVfSp2zs5lseHp0dLaNrdqYm7y2hyVI3NCrgnI_Xdd79nzzveXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+upconversion+emission+and+color+tunability+of+Y2O3%3AR%28R%3DYb3%2B%2C+Er3%2B%2C+Tm3%2B%29+nanophosphors&rft.jtitle=Current+applied+physics&rft.au=Noh%2C+Hyeon+Mi&rft.au=Oh%2C+Ju+Hyun&rft.au=Jeong%2C+Jung+Hyun&rft.au=Park%2C+Sung+Heum&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1567-1739&rft.eissn=1878-1675&rft.volume=39&rft.spage=190&rft.epage=195&rft_id=info:doi/10.1016%2Fj.cap.2022.05.002&rft.externalDocID=S1567173922001110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |