Structure-Function Relationships With Spectral-Domain Optical Coherence Tomography Retinal Nerve Fiber Layer and Optic Nerve Head Measurements
To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with g...
Saved in:
Published in | Investigative ophthalmology & visual science Vol. 55; no. 5; p. 2953 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
02.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT).
Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter.
We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma.
The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL. |
---|---|
AbstractList | To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT).PURPOSETo evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT).Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter.METHODSProspective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter.We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma.RESULTSWe included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma.The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.CONCLUSIONSThe structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL. To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL. |
Author | Aptel, Florent Chiquet, Christophe Pollet-Villard, Frédéric Noel, Christian Romanet, Jean-Paul |
Author_xml | – sequence: 1 givenname: Frédéric surname: Pollet-Villard fullname: Pollet-Villard, Frédéric organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France – sequence: 2 givenname: Christophe surname: Chiquet fullname: Chiquet, Christophe organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France 2INSERM U1042, Hypoxia and Physiopathology Laboratory, Joseph Fourier University, Grenoble, France – sequence: 3 givenname: Jean-Paul surname: Romanet fullname: Romanet, Jean-Paul organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France – sequence: 4 givenname: Christian surname: Noel fullname: Noel, Christian organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France – sequence: 5 givenname: Florent surname: Aptel fullname: Aptel, Florent organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France 2INSERM U1042, Hypoxia and Physiopathology Laboratory, Joseph Fourier University, Grenoble, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24692125$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU9v1DAQxS1U1P9HrshHLikee-OkR7R0KdJCpbaIo-XYE9YosYPtVNovwWfG291KCHGxR5rfm9G8d0aOfPBIyBtgVwCyee_CU7oCUYFYtPwVOYW65lXdtOLor_qEnKX0kzEOwNkxOeELec2B16fk90OOs8lzxGo1e5Nd8PQeB70r0sZNiX53eUMfJjQ56qH6GEbtPL2bsjN6oMuwwYjeIH0MY_gR9bTZFn12vjS_YnxCunIdRrrW2_Jqb_fSQ-8WtaVfUKeyf0Sf0wV53esh4eXhPyffVjePy9tqfffp8_LDujJC8Fw10NtygoGuZx0XtpNWCiwXFUtAy6bvJHDNWg1StpZfN9jX1rIFaETJuRHn5N1-7hTDrxlTVqNLBodBewxzUlBzELzlTBT07QGduxGtmqIbddyqFw8LIPaAiSGliL0yLj8bWBxzgwKmdkmpXVIKhHpOqqiqf1Qvg__P_wHM65fc |
CitedBy_id | crossref_primary_10_1177_11206721211054967 crossref_primary_10_1111_aos_13914 crossref_primary_10_3390_diagnostics11122203 crossref_primary_10_1097_ICU_0000000000000231 crossref_primary_10_1586_17469899_2015_1003544 crossref_primary_10_1080_02713683_2018_1563195 crossref_primary_10_1016_j_oftal_2015_02_007 crossref_primary_10_1097_IJG_0000000000000875 crossref_primary_10_1007_s00417_019_04557_y crossref_primary_10_1167_iovs_19_26891 crossref_primary_10_1097_IJG_0000000000001604 crossref_primary_10_1167_tvst_7_4_14 crossref_primary_10_1016_j_ajo_2019_07_009 crossref_primary_10_1016_j_mexoft_2016_05_001 crossref_primary_10_1007_s10384_018_0620_7 crossref_primary_10_1167_tvst_13_6_10 crossref_primary_10_5301_ejo_5001033 crossref_primary_10_1016_j_ajo_2017_01_001 crossref_primary_10_1016_j_jfo_2015_06_011 crossref_primary_10_1117_1_JBO_23_10_106004 crossref_primary_10_1007_s10792_018_0836_z crossref_primary_10_1007_s00347_017_0616_6 crossref_primary_10_1097_WNO_0000000000000768 crossref_primary_10_1111_aos_13464 crossref_primary_10_1111_aos_13698 crossref_primary_10_3390_jcm10194414 crossref_primary_10_1167_iovs_18_24283 crossref_primary_10_1167_tvst_12_11_5 crossref_primary_10_1016_j_ophtha_2015_06_001 crossref_primary_10_1159_000508952 crossref_primary_10_1007_s00347_015_0107_6 crossref_primary_10_1136_bjophthalmol_2016_310111 crossref_primary_10_1038_s41433_019_0525_9 crossref_primary_10_1097_IJG_0000000000002156 crossref_primary_10_1016_j_ophtha_2021_07_032 crossref_primary_10_1097_IJG_0000000000000532 crossref_primary_10_3341_jkos_2022_63_2_191 crossref_primary_10_1007_s10792_021_02181_6 crossref_primary_10_1038_eye_2016_251 crossref_primary_10_1016_j_survophthal_2020_03_002 crossref_primary_10_1016_j_ajo_2016_06_028 crossref_primary_10_1186_s12886_019_1054_9 crossref_primary_10_1016_j_ajo_2016_10_022 crossref_primary_10_1016_j_ajo_2015_09_019 crossref_primary_10_3389_fmed_2022_923096 crossref_primary_10_3390_jcm8091362 crossref_primary_10_1167_tvst_9_10_10 crossref_primary_10_1016_j_ophtha_2019_09_036 crossref_primary_10_1038_s41598_020_76154_7 crossref_primary_10_1097_IJG_0000000000000647 crossref_primary_10_1016_j_ajo_2018_01_035 crossref_primary_10_1016_j_jcjo_2018_05_007 crossref_primary_10_1016_j_ajo_2020_03_051 crossref_primary_10_1167_tvst_10_6_28 crossref_primary_10_1136_bjophthalmol_2021_320509 crossref_primary_10_1016_j_ajo_2022_08_030 crossref_primary_10_1109_TIM_2024_3400305 crossref_primary_10_1155_2017_8963267 crossref_primary_10_1364_BOE_9_006497 crossref_primary_10_1089_neu_2021_0182 crossref_primary_10_1097_IJG_0000000000001485 crossref_primary_10_36299_jkgs_2020_9_1_24 crossref_primary_10_1016_j_oftale_2015_05_001 crossref_primary_10_1097_IJG_0000000000000675 crossref_primary_10_1016_j_ogla_2021_12_003 crossref_primary_10_1016_j_ophtha_2021_04_022 crossref_primary_10_1038_s41433_020_01367_z crossref_primary_10_3341_jkos_2017_58_7_836 crossref_primary_10_1016_j_exer_2020_108348 crossref_primary_10_1016_j_ogla_2025_02_005 crossref_primary_10_1007_s00417_018_4187_2 crossref_primary_10_1097_IJG_0000000000002042 crossref_primary_10_1097_IJG_0000000000000787 crossref_primary_10_1016_j_ajo_2022_10_013 crossref_primary_10_1038_s41598_018_32499_8 crossref_primary_10_1038_s41598_021_87844_1 crossref_primary_10_1136_bjophthalmol_2016_308957 crossref_primary_10_1038_s41598_023_43104_y crossref_primary_10_1016_j_ophtha_2018_01_026 crossref_primary_10_3390_jcm10112240 crossref_primary_10_1055_a_2460_0147 crossref_primary_10_1111_aos_13657 crossref_primary_10_3389_fmed_2022_1037647 crossref_primary_10_1016_j_ajo_2019_01_011 crossref_primary_10_1371_journal_pone_0122347 crossref_primary_10_1097_IJG_0000000000002471 crossref_primary_10_1371_journal_pone_0234816 crossref_primary_10_1155_2024_9978354 crossref_primary_10_1016_j_jfo_2014_10_004 crossref_primary_10_1097_IJG_0000000000001947 crossref_primary_10_1007_s00347_015_0098_3 crossref_primary_10_1016_j_ajo_2019_04_034 crossref_primary_10_1038_eye_2017_306 crossref_primary_10_3390_bioengineering12030321 crossref_primary_10_1016_j_ajo_2024_02_007 crossref_primary_10_1038_s41598_023_39701_6 crossref_primary_10_1016_j_ophtha_2016_01_052 crossref_primary_10_1016_j_ogla_2019_02_008 crossref_primary_10_1186_s12886_020_1322_8 crossref_primary_10_1167_iovs_17_23454 crossref_primary_10_1136_bjophthalmol_2018_313595 crossref_primary_10_1186_s12886_021_01906_6 crossref_primary_10_1097_IJG_0000000000001934 crossref_primary_10_1038_s41598_019_55926_w crossref_primary_10_3390_jcm9082321 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1167/iovs.13-13482 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1552-5783 |
ExternalDocumentID | 24692125 10_1167_iovs_13_13482 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 18M 2WC 34G 39C 5GY 5RE AAYXX ACGFO ACNCT ADBBV AENEX AFOSN ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 N9A OK1 P2P RPM SJN TR2 TRV W8F WH7 WOQ WOW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c332t-71fd469c1bf0b23db6d63e2121161a67fb612a08a1668d297ef5dd041aee622c3 |
ISSN | 1552-5783 |
IngestDate | Thu Jul 10 23:39:58 EDT 2025 Thu Apr 03 06:59:15 EDT 2025 Thu Apr 24 23:08:04 EDT 2025 Tue Jul 01 02:30:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | visual field optical coherence tomography glaucoma structure–function |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c332t-71fd469c1bf0b23db6d63e2121161a67fb612a08a1668d297ef5dd041aee622c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://iovs.arvojournals.org/arvo/content_public/journal/iovs/932989/i1552-5783-55-5-2953.pdf |
PMID | 24692125 |
PQID | 1521328203 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_1521328203 pubmed_primary_24692125 crossref_citationtrail_10_1167_iovs_13_13482 crossref_primary_10_1167_iovs_13_13482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-May-02 |
PublicationDateYYYYMMDD | 2014-05-02 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-May-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Investigative ophthalmology & visual science |
PublicationTitleAlternate | Invest Ophthalmol Vis Sci |
PublicationYear | 2014 |
SSID | ssj0021120 |
Score | 2.4811084 |
Snippet | To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2953 |
SubjectTerms | Aged Aged, 80 and over Analysis of Variance Cross-Sectional Studies Female Glaucoma - diagnosis Glaucoma - physiopathology Humans Male Middle Aged Nerve Fibers - pathology Optic Disk - pathology Prospective Studies Tomography, Optical Coherence - methods Visual Fields - physiology |
Title | Structure-Function Relationships With Spectral-Domain Optical Coherence Tomography Retinal Nerve Fiber Layer and Optic Nerve Head Measurements |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24692125 https://www.proquest.com/docview/1521328203 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiPeWl4yEuBSX2E6czRGhrRbYXZBoUW9RHDtqpSap2nQP_Aj-En-NseM8yu5KC5e0cmwr6Xwdz3jG3yD0hmUUjAAhSaADTmA9lkSCHiRRxiJPUS6pNBHds3NxMvM_z4P5YPC7l7W0q-Q4_XnluZL_kSq0gVzNKdl_kGw7KTTAd5AvXEHCcL2RjL9b8tfdRhOzPFlJbprktsVy7U6u2cOUm2RFVJknSzAP15WjBVk4jtmqzB1z9cgcajQGamEyIUeZyScZrRKwy22UwQ5190CLq1HebTFu-3Zuj74DupbrRbVIVnnN92TAdrHc7prjmB22vpldjIr8MJWQ6pT7iYvkq_pjs0y7fATDPFvtEyR04aM8KVyYRScF6ec_mmTeblTz73AbH9S3aYasr6sD8KPDug7OWF_R5hR8zQPsgBz0tXVUExVfXkaECWQvy4vtmHJCDQFQt142OQLnX-PJ7PQ0nh7Pp7fQbQZ-ivXpP31pPX5a84K2T9WQvIrw_d7k-0bRNZ6OtXim99E956rgDzXuHqCBLh6iO2cuGeMR-nUZfngPftjAD_8FP-zgh1v44Q5-2MEPW4hhCz9s4YcBfvVQd8_AD_fh9xjNJsfTjyfElfcgKeesIiHNlC-ilMrMk4wrKZTgmhnOQUETEWYSrO_EO0qoEEeKRaHOAqU8nyZaC8ZS_gQdFGWhDxFOI1OP0TfVFEKfMS1THSbM81Xqac0VHaJ3ze8bp4773pRgWcXWBxZhbMQRUx5bcQzR27b7uiZ9ua7j60ZYMahlE2sDdJc76AFmMWdgXvMhelpLsZ2KwVvDawbPbjD6ObrbYf8FOgDB6pdgBlfylYXaH9QVvbA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-function+relationships+with+spectral-domain+optical+coherence+tomography+retinal+nerve+fiber+layer+and+optic+nerve+head+measurements&rft.jtitle=Investigative+ophthalmology+%26+visual+science&rft.au=Pollet-Villard%2C+Fr%C3%A9d%C3%A9ric&rft.au=Chiquet%2C+Christophe&rft.au=Romanet%2C+Jean-Paul&rft.au=Noel%2C+Christian&rft.date=2014-05-02&rft.issn=1552-5783&rft.eissn=1552-5783&rft.volume=55&rft.issue=5&rft.spage=2953&rft_id=info:doi/10.1167%2Fiovs.13-13482&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5783&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5783&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5783&client=summon |