Structure-Function Relationships With Spectral-Domain Optical Coherence Tomography Retinal Nerve Fiber Layer and Optic Nerve Head Measurements

To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with g...

Full description

Saved in:
Bibliographic Details
Published inInvestigative ophthalmology & visual science Vol. 55; no. 5; p. 2953
Main Authors Pollet-Villard, Frédéric, Chiquet, Christophe, Romanet, Jean-Paul, Noel, Christian, Aptel, Florent
Format Journal Article
LanguageEnglish
Published United States 02.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.
AbstractList To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT).PURPOSETo evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT).Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter.METHODSProspective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter.We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma.RESULTSWe included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma.The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.CONCLUSIONSThe structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.
To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head (ONH) measurements using spectral-domain optical coherence tomography (SD-OCT). Prospective cross-sectional study conducted on patients with glaucoma, suspected glaucoma, and healthy subjects. Eyes were tested on Cirrus OCT and standard achromatic perimetry. RNFL thickness of 12 peripapillary 30° sectors, neuroretinal rim thickness extracted from 36 neuroretinal rim scans, and Bruch membrane opening minimum rim width (BMO-MRW)-a recently defined parameter-extracted from 36 neuroretinal rim scans were obtained. Correlations between peripapillary RNFL thickness, neuroretinal rim thickness, all six sectors of BMO-MRW, and visual field sensitivity in the six corresponding areas were evaluated using logarithmic regression analysis. Receiver operating curve areas were calculated for each RNFL, ONH, and macular ganglion cell analysis parameter. We included 142 eyes of 142 subjects. The correlations (r(2)) between RNFL thickness, Cirrus-based neuroretinal rim thickness, BMO-MRW and visual field sensitivity ranged from 0.07 to 0.60, 0.15 to 0.49, and 0.24 to 0.66, respectively. The structure-function correlations were stronger with BMO-MRW than with Cirrus-based neuroretinal rim thickness. The largest areas under the receiver operating curve were seen for rim area (0.926 [95% confidence interval 0.875, 0.977]; P < 0.001) in eyes with glaucoma and for average RNFL (0.863 [0.769, 0.957]; P < 0.01) in eyes with suspected glaucoma. The structure-function relationship was significantly stronger with BMO-MRW than other ONH SD-OCT parameters. The best diagnostic capabilities were seen with rim area and average RNFL.
Author Aptel, Florent
Chiquet, Christophe
Pollet-Villard, Frédéric
Noel, Christian
Romanet, Jean-Paul
Author_xml – sequence: 1
  givenname: Frédéric
  surname: Pollet-Villard
  fullname: Pollet-Villard, Frédéric
  organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France
– sequence: 2
  givenname: Christophe
  surname: Chiquet
  fullname: Chiquet, Christophe
  organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France 2INSERM U1042, Hypoxia and Physiopathology Laboratory, Joseph Fourier University, Grenoble, France
– sequence: 3
  givenname: Jean-Paul
  surname: Romanet
  fullname: Romanet, Jean-Paul
  organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France
– sequence: 4
  givenname: Christian
  surname: Noel
  fullname: Noel, Christian
  organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France
– sequence: 5
  givenname: Florent
  surname: Aptel
  fullname: Aptel, Florent
  organization: Department of Ophthalmology, University Hospital, CHU Grenoble, Grenoble, France 2INSERM U1042, Hypoxia and Physiopathology Laboratory, Joseph Fourier University, Grenoble, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24692125$$D View this record in MEDLINE/PubMed
BookMark eNptkU9v1DAQxS1U1P9HrshHLikee-OkR7R0KdJCpbaIo-XYE9YosYPtVNovwWfG291KCHGxR5rfm9G8d0aOfPBIyBtgVwCyee_CU7oCUYFYtPwVOYW65lXdtOLor_qEnKX0kzEOwNkxOeELec2B16fk90OOs8lzxGo1e5Nd8PQeB70r0sZNiX53eUMfJjQ56qH6GEbtPL2bsjN6oMuwwYjeIH0MY_gR9bTZFn12vjS_YnxCunIdRrrW2_Jqb_fSQ-8WtaVfUKeyf0Sf0wV53esh4eXhPyffVjePy9tqfffp8_LDujJC8Fw10NtygoGuZx0XtpNWCiwXFUtAy6bvJHDNWg1StpZfN9jX1rIFaETJuRHn5N1-7hTDrxlTVqNLBodBewxzUlBzELzlTBT07QGduxGtmqIbddyqFw8LIPaAiSGliL0yLj8bWBxzgwKmdkmpXVIKhHpOqqiqf1Qvg__P_wHM65fc
CitedBy_id crossref_primary_10_1177_11206721211054967
crossref_primary_10_1111_aos_13914
crossref_primary_10_3390_diagnostics11122203
crossref_primary_10_1097_ICU_0000000000000231
crossref_primary_10_1586_17469899_2015_1003544
crossref_primary_10_1080_02713683_2018_1563195
crossref_primary_10_1016_j_oftal_2015_02_007
crossref_primary_10_1097_IJG_0000000000000875
crossref_primary_10_1007_s00417_019_04557_y
crossref_primary_10_1167_iovs_19_26891
crossref_primary_10_1097_IJG_0000000000001604
crossref_primary_10_1167_tvst_7_4_14
crossref_primary_10_1016_j_ajo_2019_07_009
crossref_primary_10_1016_j_mexoft_2016_05_001
crossref_primary_10_1007_s10384_018_0620_7
crossref_primary_10_1167_tvst_13_6_10
crossref_primary_10_5301_ejo_5001033
crossref_primary_10_1016_j_ajo_2017_01_001
crossref_primary_10_1016_j_jfo_2015_06_011
crossref_primary_10_1117_1_JBO_23_10_106004
crossref_primary_10_1007_s10792_018_0836_z
crossref_primary_10_1007_s00347_017_0616_6
crossref_primary_10_1097_WNO_0000000000000768
crossref_primary_10_1111_aos_13464
crossref_primary_10_1111_aos_13698
crossref_primary_10_3390_jcm10194414
crossref_primary_10_1167_iovs_18_24283
crossref_primary_10_1167_tvst_12_11_5
crossref_primary_10_1016_j_ophtha_2015_06_001
crossref_primary_10_1159_000508952
crossref_primary_10_1007_s00347_015_0107_6
crossref_primary_10_1136_bjophthalmol_2016_310111
crossref_primary_10_1038_s41433_019_0525_9
crossref_primary_10_1097_IJG_0000000000002156
crossref_primary_10_1016_j_ophtha_2021_07_032
crossref_primary_10_1097_IJG_0000000000000532
crossref_primary_10_3341_jkos_2022_63_2_191
crossref_primary_10_1007_s10792_021_02181_6
crossref_primary_10_1038_eye_2016_251
crossref_primary_10_1016_j_survophthal_2020_03_002
crossref_primary_10_1016_j_ajo_2016_06_028
crossref_primary_10_1186_s12886_019_1054_9
crossref_primary_10_1016_j_ajo_2016_10_022
crossref_primary_10_1016_j_ajo_2015_09_019
crossref_primary_10_3389_fmed_2022_923096
crossref_primary_10_3390_jcm8091362
crossref_primary_10_1167_tvst_9_10_10
crossref_primary_10_1016_j_ophtha_2019_09_036
crossref_primary_10_1038_s41598_020_76154_7
crossref_primary_10_1097_IJG_0000000000000647
crossref_primary_10_1016_j_ajo_2018_01_035
crossref_primary_10_1016_j_jcjo_2018_05_007
crossref_primary_10_1016_j_ajo_2020_03_051
crossref_primary_10_1167_tvst_10_6_28
crossref_primary_10_1136_bjophthalmol_2021_320509
crossref_primary_10_1016_j_ajo_2022_08_030
crossref_primary_10_1109_TIM_2024_3400305
crossref_primary_10_1155_2017_8963267
crossref_primary_10_1364_BOE_9_006497
crossref_primary_10_1089_neu_2021_0182
crossref_primary_10_1097_IJG_0000000000001485
crossref_primary_10_36299_jkgs_2020_9_1_24
crossref_primary_10_1016_j_oftale_2015_05_001
crossref_primary_10_1097_IJG_0000000000000675
crossref_primary_10_1016_j_ogla_2021_12_003
crossref_primary_10_1016_j_ophtha_2021_04_022
crossref_primary_10_1038_s41433_020_01367_z
crossref_primary_10_3341_jkos_2017_58_7_836
crossref_primary_10_1016_j_exer_2020_108348
crossref_primary_10_1016_j_ogla_2025_02_005
crossref_primary_10_1007_s00417_018_4187_2
crossref_primary_10_1097_IJG_0000000000002042
crossref_primary_10_1097_IJG_0000000000000787
crossref_primary_10_1016_j_ajo_2022_10_013
crossref_primary_10_1038_s41598_018_32499_8
crossref_primary_10_1038_s41598_021_87844_1
crossref_primary_10_1136_bjophthalmol_2016_308957
crossref_primary_10_1038_s41598_023_43104_y
crossref_primary_10_1016_j_ophtha_2018_01_026
crossref_primary_10_3390_jcm10112240
crossref_primary_10_1055_a_2460_0147
crossref_primary_10_1111_aos_13657
crossref_primary_10_3389_fmed_2022_1037647
crossref_primary_10_1016_j_ajo_2019_01_011
crossref_primary_10_1371_journal_pone_0122347
crossref_primary_10_1097_IJG_0000000000002471
crossref_primary_10_1371_journal_pone_0234816
crossref_primary_10_1155_2024_9978354
crossref_primary_10_1016_j_jfo_2014_10_004
crossref_primary_10_1097_IJG_0000000000001947
crossref_primary_10_1007_s00347_015_0098_3
crossref_primary_10_1016_j_ajo_2019_04_034
crossref_primary_10_1038_eye_2017_306
crossref_primary_10_3390_bioengineering12030321
crossref_primary_10_1016_j_ajo_2024_02_007
crossref_primary_10_1038_s41598_023_39701_6
crossref_primary_10_1016_j_ophtha_2016_01_052
crossref_primary_10_1016_j_ogla_2019_02_008
crossref_primary_10_1186_s12886_020_1322_8
crossref_primary_10_1167_iovs_17_23454
crossref_primary_10_1136_bjophthalmol_2018_313595
crossref_primary_10_1186_s12886_021_01906_6
crossref_primary_10_1097_IJG_0000000000001934
crossref_primary_10_1038_s41598_019_55926_w
crossref_primary_10_3390_jcm9082321
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1167/iovs.13-13482
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1552-5783
ExternalDocumentID 24692125
10_1167_iovs_13_13482
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
18M
2WC
34G
39C
5GY
5RE
AAYXX
ACGFO
ACNCT
ADBBV
AENEX
AFOSN
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
N9A
OK1
P2P
RPM
SJN
TR2
TRV
W8F
WH7
WOQ
WOW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c332t-71fd469c1bf0b23db6d63e2121161a67fb612a08a1668d297ef5dd041aee622c3
ISSN 1552-5783
IngestDate Thu Jul 10 23:39:58 EDT 2025
Thu Apr 03 06:59:15 EDT 2025
Thu Apr 24 23:08:04 EDT 2025
Tue Jul 01 02:30:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords visual field
optical coherence tomography
glaucoma
structure–function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-71fd469c1bf0b23db6d63e2121161a67fb612a08a1668d297ef5dd041aee622c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iovs.arvojournals.org/arvo/content_public/journal/iovs/932989/i1552-5783-55-5-2953.pdf
PMID 24692125
PQID 1521328203
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1521328203
pubmed_primary_24692125
crossref_citationtrail_10_1167_iovs_13_13482
crossref_primary_10_1167_iovs_13_13482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-May-02
PublicationDateYYYYMMDD 2014-05-02
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Investigative ophthalmology & visual science
PublicationTitleAlternate Invest Ophthalmol Vis Sci
PublicationYear 2014
SSID ssj0021120
Score 2.4811084
Snippet To evaluate the regional structure-function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness and optic nerve head...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2953
SubjectTerms Aged
Aged, 80 and over
Analysis of Variance
Cross-Sectional Studies
Female
Glaucoma - diagnosis
Glaucoma - physiopathology
Humans
Male
Middle Aged
Nerve Fibers - pathology
Optic Disk - pathology
Prospective Studies
Tomography, Optical Coherence - methods
Visual Fields - physiology
Title Structure-Function Relationships With Spectral-Domain Optical Coherence Tomography Retinal Nerve Fiber Layer and Optic Nerve Head Measurements
URI https://www.ncbi.nlm.nih.gov/pubmed/24692125
https://www.proquest.com/docview/1521328203
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiPeWl4yEuBSX2E6czRGhrRbYXZBoUW9RHDtqpSap2nQP_Aj-En-NseM8yu5KC5e0cmwr6Xwdz3jG3yD0hmUUjAAhSaADTmA9lkSCHiRRxiJPUS6pNBHds3NxMvM_z4P5YPC7l7W0q-Q4_XnluZL_kSq0gVzNKdl_kGw7KTTAd5AvXEHCcL2RjL9b8tfdRhOzPFlJbprktsVy7U6u2cOUm2RFVJknSzAP15WjBVk4jtmqzB1z9cgcajQGamEyIUeZyScZrRKwy22UwQ5190CLq1HebTFu-3Zuj74DupbrRbVIVnnN92TAdrHc7prjmB22vpldjIr8MJWQ6pT7iYvkq_pjs0y7fATDPFvtEyR04aM8KVyYRScF6ec_mmTeblTz73AbH9S3aYasr6sD8KPDug7OWF_R5hR8zQPsgBz0tXVUExVfXkaECWQvy4vtmHJCDQFQt142OQLnX-PJ7PQ0nh7Pp7fQbQZ-ivXpP31pPX5a84K2T9WQvIrw_d7k-0bRNZ6OtXim99E956rgDzXuHqCBLh6iO2cuGeMR-nUZfngPftjAD_8FP-zgh1v44Q5-2MEPW4hhCz9s4YcBfvVQd8_AD_fh9xjNJsfTjyfElfcgKeesIiHNlC-ilMrMk4wrKZTgmhnOQUETEWYSrO_EO0qoEEeKRaHOAqU8nyZaC8ZS_gQdFGWhDxFOI1OP0TfVFEKfMS1THSbM81Xqac0VHaJ3ze8bp4773pRgWcXWBxZhbMQRUx5bcQzR27b7uiZ9ua7j60ZYMahlE2sDdJc76AFmMWdgXvMhelpLsZ2KwVvDawbPbjD6ObrbYf8FOgDB6pdgBlfylYXaH9QVvbA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-function+relationships+with+spectral-domain+optical+coherence+tomography+retinal+nerve+fiber+layer+and+optic+nerve+head+measurements&rft.jtitle=Investigative+ophthalmology+%26+visual+science&rft.au=Pollet-Villard%2C+Fr%C3%A9d%C3%A9ric&rft.au=Chiquet%2C+Christophe&rft.au=Romanet%2C+Jean-Paul&rft.au=Noel%2C+Christian&rft.date=2014-05-02&rft.issn=1552-5783&rft.eissn=1552-5783&rft.volume=55&rft.issue=5&rft.spage=2953&rft_id=info:doi/10.1167%2Fiovs.13-13482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5783&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5783&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5783&client=summon