Adaptive Filtering of Accelerometer and Electromyography Signals Using Extended Kalman Filter for Chewing Muscle Activities

Today Electromyography (EMG) and accelerometer (MEMS) based signals can be used in the clinical diagnosis of physical states of muscle activities such as fatigue, muscle weakness, pain, and tremors and in external or wearable robotic exoskeletal systems used in rehabilitation areas. During the recor...

Full description

Saved in:
Bibliographic Details
Published inAdvances in electrical and electronic engineering Vol. 20; no. 3; pp. 314 - 323
Main Authors Sonmezocak, Temel, Kurt, Serkan
Format Journal Article
LanguageEnglish
Published Ostrava Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava 01.09.2022
VSB-Technical University of Ostrava
Subjects
Online AccessGet full text
ISSN1336-1376
1804-3119
DOI10.15598/aeee.v20i3.4437

Cover

Abstract Today Electromyography (EMG) and accelerometer (MEMS) based signals can be used in the clinical diagnosis of physical states of muscle activities such as fatigue, muscle weakness, pain, and tremors and in external or wearable robotic exoskeletal systems used in rehabilitation areas. During the recording of these signals taken from the skin surface through non-invasive processes, analysis of the signal becomes difficult due to the electrodes attached to the skin not fully contacting, involuntary body movements, and noises from peripheral muscles. In addition, parameters such as age and skin structure of the subjects can also affect the signal. Considering these negative factors, a new adaptive method based on Extended Kalman Filtering (EKF) model for more effective filtering of the muscle signals based on both EMG and MEMS is proposed in this study. Moreover, the accuracy of the parametric values determined by the filter automatically according to the most effective time and frequency features that represent noisy and filtered signals was determined by different machine learning and classification algorithms. It was verified that the filter performs adaptive filtering with 100% effectiveness with Linear Discriminant.
AbstractList Today Electromyography (EMG) and accelerometer (MEMS) based signals can be used in the clinical diagnosis of physical states of muscle activities such as fatigue, muscle weakness, pain, and tremors and in external or wearable robotic exoskeletal systems used in rehabilitation areas. During the recording of these signals taken from the skin surface through non-invasive processes, analysis of the signal becomes difficult due to the electrodes attached to the skin not fully contacting, involuntary body movements, and noises from peripheral muscles. In addition, parameters such as age and skin structure of the subjects can also affect the signal. Considering these negative factors, a new adaptive method based on Extended Kalman Filtering (EKF) model for more effective filtering of the muscle signals based on both EMG and MEMS is proposed in this study. Moreover, the accuracy of the parametric values determined by the filter automatically according to the most effective time and frequency features that represent noisy and filtered signals was determined by different machine learning and classification algorithms. It was verified that the filter performs adaptive filtering with 100% effectiveness with Linear Discriminant.
Author Kurt, Serkan
Sonmezocak, Temel
Author_xml – sequence: 1
  givenname: Temel
  surname: Sonmezocak
  fullname: Sonmezocak, Temel
– sequence: 2
  givenname: Serkan
  surname: Kurt
  fullname: Kurt, Serkan
BookMark eNo9kUFvGyEQhVdRKiVNcu8Rqed1YQfY5WhZThs1VQ9NzoiFwcFaLy6s01j982XtqFxm9PT4BuZ9rC7HOGJVfWJ0wYRQ3ReDiIvXhgZYcA7tRXXNOsprYExdlh5A1gxaeVXd5byl5YASUjXX1d-lM_spvCK5D8OEKYwbEj1ZWosDprjDohEzOrIe0E5FOMZNMvuXI_kVNqMZMnnO853124SjQ0e-m2Fnxnca8TGR1Qv-mS0_DtkOWNBlXJgC5tvqgy8EvHuvN9Xz_fpp9a1-_Pn1YbV8rC1AM9Utdb6x5YNWGWBKdh0DyzslrZKAzvReeu9Nz0XfoPPSNOCo6QBpaWyr4KZ6OHNdNFu9T2Fn0lFHE_RJiGmjTZpCeZx2PaAyyKHnjtNW9bKnrWc9Ew0XxorC-nxm7VP8fcA86W08pHkRummFANpSTouLnl02xZwT-v9TGdWnxPScmD4lpufE4B__qY6J
ContentType Journal Article
Copyright 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BYOGL
CCPQU
DWQXO
HCIFZ
L6V
L7M
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.15598/aeee.v20i3.4437
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
East Europe, Central Europe Database
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
East Europe, Central Europe Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: 开放获取期刊(Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1804-3119
EndPage 323
ExternalDocumentID oai_doaj_org_article_db3e9ae43b4d4079b6b07f1b15245ac5
10_15598_aeee_v20i3_4437
GroupedDBID .4S
.DC
5VS
8FE
8FG
AAYXX
ABJCF
ABUWG
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
BPHCQ
BYOGL
CCPQU
CITATION
EOJEC
GROUPED_DOAJ
HCIFZ
I-F
KQ8
L6V
M7S
OBODZ
OK1
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
QM1
QO4
RNS
TUS
7SP
8FD
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c332t-70df2ceeec9a31968813c4896c963edabf6fffab45b2edf6a23d0a83e023dc793
IEDL.DBID 8FG
ISSN 1336-1376
IngestDate Wed Aug 27 01:29:41 EDT 2025
Fri Jul 25 12:16:46 EDT 2025
Tue Jul 01 04:17:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-70df2ceeec9a31968813c4896c963edabf6fffab45b2edf6a23d0a83e023dc793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2755307040?pq-origsite=%requestingapplication%
PQID 2755307040
PQPubID 1616344
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_db3e9ae43b4d4079b6b07f1b15245ac5
proquest_journals_2755307040
crossref_primary_10_15598_aeee_v20i3_4437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Ostrava
PublicationPlace_xml – name: Ostrava
PublicationTitle Advances in electrical and electronic engineering
PublicationYear 2022
Publisher Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava
VSB-Technical University of Ostrava
Publisher_xml – name: Faculty of Electrical Engineering and Computer Science VSB - Technical University of Ostrava
– name: VSB-Technical University of Ostrava
SSID ssj0000395692
Score 2.21775
Snippet Today Electromyography (EMG) and accelerometer (MEMS) based signals can be used in the clinical diagnosis of physical states of muscle activities such as...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 314
SubjectTerms accelerometer
Accelerometers
Adaptive filters
Algorithms
Electromyography
exoskeletal muscle activity
Extended Kalman filter
Machine learning
machine learning algorithm
Muscles
Muscular fatigue
Rehabilitation
Signal processing
Skin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27SgQxFA1ipYX4xPVFChuL0WySSWbKVXYRRRsV7EKeuqCj6KqIP--9mVlZsLCxDWEmnLnPJHMOIftWhb5ioV-oFFIhedCFi1oVtQyVrJTj1uPWwMWlOr2RZ7fl7YzUF94Ja-mBW-COghOxtlEKJwM0H7VTjunUd5B3ZGl9Zi9lNZtppnIMFlD3Z0Vk6MGQaE9PzyiRkPzIxhgP3zkbi0MpUQJ9Jidl6v5fkTmnm9EyWerqRDpo17dC5mKzShZn2APXyNcg2GeMVnQ0xjNvGKRPiQ68h1SCLAQwRm0T6LCVunn87Oip6dX4DmmTab4vQIfdPjg9tw-PtumeRqGapSf38QOnXLy9wirg0VlrAprrdXIzGl6fnBadlkLhheCTQrOQOCTE6GuLXldVfeFlVSsPHhiDdUmllKyTpeMxJGW5CMxWIkJODx6ceIPMN09N3CRUgxNDXvfSRyZ9aV3poM3liYmkKxlsjxxM0TTPLWWGwVYDkTeIvMnIG0S-R44R7p95SHadB8AETGcC5i8T6JGd6ccynQe-Gq5REElDjNr6j3dskwWOPz7k22U7ZH7y8hZ3oRyZuL1sed-dsd8F
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive Filtering of Accelerometer and Electromyography Signals Using Extended Kalman Filter for Chewing Muscle Activities
URI https://www.proquest.com/docview/2755307040
https://doaj.org/article/db3e9ae43b4d4079b6b07f1b15245ac5
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSxwxGA-tXtqD2Ie4PpYceulhdCbJJDMnWWW30qKIreAt5GkX6uzqror4z_t92awVCr1mQhi-fO8kvx8hX4z0lSx9VcjoYyGYV4UNShat8I1opGXGYWvg5FQeX4jvl_VlbrjN8rXKpU9MjtpPHPbI95lCghsFOncwvSmQNQpPVzOFxluyWkGkQT1vRt9eeiwlh-w_8SJDJYZwe2p5Uomw5PsmhLB3z8ox3xMCidBfRaYE4P-Pf05BZ7RO1nK2SAeL7f1A3oTuI3n_CkPwE3kaeDNFn0VHYzz5hkE6iXTgHAQUxCKAMWo6T4cLwpvrxwxSTX-OrxA8maZbA3SYu-H0h_lzbbq8GoWclh79Dg845eRuBn8BSyfGCSixP5OL0fDX0XGRGRUKxzmbF6r0kUFYDK41aHtNU3EnmlY6sMPgjY0yxmisqC0LPkrDuC9NwwNEdu_AlDfISjfpwiahCkwZorsTLpTC1cbWFopdFkseVSO86ZGvS2nq6QI4Q2PBgZLXKHmdJK9R8j1yiOJ-mYeQ12lgcnulswVpb3loTRDcCg9VaGulLVWsLCQgojau7pGd5WbpbIcz_Vdrtv7_eZu8Y_iwId0e2yEr89u7sAvpxtz2k071yerh8PTsvJ-K9meDFNie
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFLWqdAEsEE8RKOAFLFhMO7E99swCobQkSkkTIWil7oyfbSQ6CU1KVfFPfCP3OjOlEhK7bj0jz-j6-D78OIeQN0b6nsx9L5PRx0wwrzIblMwq4UtRSsuMw6WByVSOjsSn4-J4g_xu78LgscrWJyZH7ecO18h3mEKBGwWY-7D4kaFqFO6uthIaa1iMw9UllGzL9_sfYXzfMjYcHO6NskZVIHOcs1Wmch8ZhIbgKoP4K8sed6KspAMsBm9slDFGY0VhWfBRGsZ9bkoeILp5p5B8CVz-psAbrR2yuTuYfv5yvaqTc6g3khIz1H5I8KfavVEkQt8x8Nntnyyf8W0hUHr9RixMkgH_RIQU5oYPyP0mP6X9NaAeko1QPyL3brAWPia_-t4s0EvS4Qz32qGRziPtOwchDNkPoI2a2tPBWmLn7KqhxaZfZydI10zTOQU6aNbf6dh8PzN10xuFLJrunYZLfGVysYS_gK6TxgUU9U_I0a1Y-ynp1PM6PCNUgfOAfMIJF3LhCmMLC-U1izmPqhTedMm71pp6sabq0FjioOU1Wl4ny2u0fJfsormv30OS7dQwPz_RzZzV3vJQmSC4FR7q3spKm6vYs5DyiMK4oku22sHSzcxf6r84ff7_x6_JndHh5EAf7E_HL8hdhtcq0tm1LdJZnV-El5DsrOyrBmGUfLttUP8BIksWiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Filtering+of+Accelerometer+and+Electromyography+Signals+Using+Extended+Kalman+Filter+for+Chewing+Muscle+Activities&rft.jtitle=Advances+in+electrical+and+electronic+engineering&rft.au=Temel+Sonmezocak&rft.au=Kurt%2C+Serkan&rft.date=2022-09-01&rft.pub=Faculty+of+Electrical+Engineering+and+Computer+Science+VSB+-+Technical+University+of+Ostrava&rft.issn=1336-1376&rft.eissn=1804-3119&rft.volume=20&rft.issue=3&rft.spage=314&rft_id=info:doi/10.15598%2Faeee.v20i3.4437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1336-1376&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1336-1376&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1336-1376&client=summon