Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping

ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable select...

Full description

Saved in:
Bibliographic Details
Published inRevista Brasileira de Ciência do Solo Vol. 42
Main Authors Alcinei Ribeiro Campos, Elvio Giasson, José Janderson Ferreira Costa, Israel Rosa Machado, Elisângela Benedet da Silva, Benito Roberto Bonfatti
Format Journal Article
LanguageEnglish
Published Sociedade Brasileira de Ciência do Solo 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.
AbstractList ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.
Author Israel Rosa Machado
Elvio Giasson
José Janderson Ferreira Costa
Elisângela Benedet da Silva
Alcinei Ribeiro Campos
Benito Roberto Bonfatti
Author_xml – sequence: 1
  fullname: Alcinei Ribeiro Campos
– sequence: 2
  fullname: Elvio Giasson
– sequence: 3
  fullname: José Janderson Ferreira Costa
– sequence: 4
  fullname: Israel Rosa Machado
– sequence: 5
  fullname: Elisângela Benedet da Silva
– sequence: 6
  fullname: Benito Roberto Bonfatti
BookMark eNotjU1PwyAcxjnMxKn7Bh74AlUoUOC41KlLZjxsHk3zh8KCYdDQZonf3k49PcnvebtBi5STQ-iekgcqNHmkijS6EbIYO9aESsIpX6DlBVcXfo1W4xgMqYkUgiqxRJ97F52dQk44e7xJ51ByOrk0QcRtPkMJMLkR-1xwG2Eu--AKPhQIKaQjXg9DDK7HIeGncAyX1j6HiN9gGGb_Dl15iKNb_est-njeHNrXavf-sm3Xu8oyVk-VsLb24BxTteeKG2cV0xykrrVtuJekBykbr62QPWfSct5broyf8870QrNbtP3b7TN8dUMJJyjfXYbQ_YJcjh2UKdjoOkM1003jLDOMz2_KKBAgiQfNeuko-wGwMWW9
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_116873
crossref_primary_10_56926_repia_v3i2_63
crossref_primary_10_1007_s10661_023_11126_8
crossref_primary_10_3390_agronomy12081786
crossref_primary_10_3389_fenvs_2023_1213069
crossref_primary_10_1590_1678_992x_2019_0227
ContentType Journal Article
DBID DOA
DOI 10.1590/18069657rbcs20170414
DatabaseName DOAJ Directory of Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1
GroupedDBID 5VS
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-c332t-5cc2faee382f484bec8394a7929c64f70da776f9c57d437c44dc48bf382ebd593
IEDL.DBID DOA
ISSN 1806-9657
IngestDate Wed Aug 27 01:23:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-5cc2faee382f484bec8394a7929c64f70da776f9c57d437c44dc48bf382ebd593
OpenAccessLink https://doaj.org/article/b193966ec3b34f488b8a5a70fa93d7e1
ParticipantIDs doaj_primary_oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Revista Brasileira de Ciência do Solo
PublicationYear 2018
Publisher Sociedade Brasileira de Ciência do Solo
Publisher_xml – name: Sociedade Brasileira de Ciência do Solo
SSID ssib020755185
ssib005513259
Score 2.2063425
Snippet ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the...
SourceID doaj
SourceType Open Website
SubjectTerms data mining
geomorphometric variables
soil prediction
Title Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
URI https://doaj.org/article/b193966ec3b34f488b8a5a70fa93d7e1
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3SkxdRVPwmB69Lt8lkkxy1thRBL22hF1nyWRZkV2r19zvZXWg9efE6hGWZmWXeyybvEXJvgpZc2vTLX0AGikGmvIeMOSls5NYjgUunLV6L2RKeV2K1Z_WVzoR18sBd4oYWEQZC8uC45RCx3awywsg8Gs29DC3xwZm3R6bazhLIsnaDmuFgFKPWn3OkkELrQsj-Hp3Q-TDFUmhj3SdLgjIwgl8a_u2wmR6Tox4l0ofu7U7IQahPydu89azBRNIm0snuhhquHDffSHoTbqSIQmlrdVlFHHl00XtA0B5v0qqmT9U6eYXQeVO90xeTJBrWZ2Q5nSzGs6x3R8gc52ybCedYNCFwxTAtgLVArANGIt5xBUSZeyNlEbUT0gOXDsA7UJh_xYL1QvNzMqibOlwQGr1nIbKI37oB7Z0O0gjhuYVgYm7cJXlMuSg_OgGMMklStwEsVNkXqvyrUFf_8ZBrcogFUt0eyA0ZbDdf4RZRwdbetQ3wAyGFtHA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Environmental+Covariates+for+Classifier+Training+Applied+in+Digital+Soil+Mapping&rft.jtitle=Revista+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.au=Alcinei+Ribeiro+Campos&rft.au=Elvio+Giasson&rft.au=Jos%C3%A9+Janderson+Ferreira+Costa&rft.au=Israel+Rosa+Machado&rft.date=2018-01-01&rft.pub=Sociedade+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.issn=1806-9657&rft.volume=42&rft_id=info:doi/10.1590%2F18069657rbcs20170414&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-9657&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-9657&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-9657&client=summon