Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping
ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable select...
Saved in:
Published in | Revista Brasileira de Ciência do Solo Vol. 42 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Sociedade Brasileira de Ciência do Solo
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units. |
---|---|
AbstractList | ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units. |
Author | Israel Rosa Machado Elvio Giasson José Janderson Ferreira Costa Elisângela Benedet da Silva Alcinei Ribeiro Campos Benito Roberto Bonfatti |
Author_xml | – sequence: 1 fullname: Alcinei Ribeiro Campos – sequence: 2 fullname: Elvio Giasson – sequence: 3 fullname: José Janderson Ferreira Costa – sequence: 4 fullname: Israel Rosa Machado – sequence: 5 fullname: Elisângela Benedet da Silva – sequence: 6 fullname: Benito Roberto Bonfatti |
BookMark | eNotjU1PwyAcxjnMxKn7Bh74AlUoUOC41KlLZjxsHk3zh8KCYdDQZonf3k49PcnvebtBi5STQ-iekgcqNHmkijS6EbIYO9aESsIpX6DlBVcXfo1W4xgMqYkUgiqxRJ97F52dQk44e7xJ51ByOrk0QcRtPkMJMLkR-1xwG2Eu--AKPhQIKaQjXg9DDK7HIeGncAyX1j6HiN9gGGb_Dl15iKNb_est-njeHNrXavf-sm3Xu8oyVk-VsLb24BxTteeKG2cV0xykrrVtuJekBykbr62QPWfSct5broyf8870QrNbtP3b7TN8dUMJJyjfXYbQ_YJcjh2UKdjoOkM1003jLDOMz2_KKBAgiQfNeuko-wGwMWW9 |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_116873 crossref_primary_10_56926_repia_v3i2_63 crossref_primary_10_1007_s10661_023_11126_8 crossref_primary_10_3390_agronomy12081786 crossref_primary_10_3389_fenvs_2023_1213069 crossref_primary_10_1590_1678_992x_2019_0227 |
ContentType | Journal Article |
DBID | DOA |
DOI | 10.1590/18069657rbcs20170414 |
DatabaseName | DOAJ Directory of Open Access Journals |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1 |
GroupedDBID | 5VS ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ |
ID | FETCH-LOGICAL-c332t-5cc2faee382f484bec8394a7929c64f70da776f9c57d437c44dc48bf382ebd593 |
IEDL.DBID | DOA |
ISSN | 1806-9657 |
IngestDate | Wed Aug 27 01:23:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-5cc2faee382f484bec8394a7929c64f70da776f9c57d437c44dc48bf382ebd593 |
OpenAccessLink | https://doaj.org/article/b193966ec3b34f488b8a5a70fa93d7e1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Revista Brasileira de Ciência do Solo |
PublicationYear | 2018 |
Publisher | Sociedade Brasileira de Ciência do Solo |
Publisher_xml | – name: Sociedade Brasileira de Ciência do Solo |
SSID | ssib020755185 ssib005513259 |
Score | 2.2063425 |
Snippet | ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the... |
SourceID | doaj |
SourceType | Open Website |
SubjectTerms | data mining geomorphometric variables soil prediction |
Title | Selection of Environmental Covariates for Classifier Training Applied in Digital Soil Mapping |
URI | https://doaj.org/article/b193966ec3b34f488b8a5a70fa93d7e1 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3SkxdRVPwmB69Lt8lkkxy1thRBL22hF1nyWRZkV2r19zvZXWg9efE6hGWZmWXeyybvEXJvgpZc2vTLX0AGikGmvIeMOSls5NYjgUunLV6L2RKeV2K1Z_WVzoR18sBd4oYWEQZC8uC45RCx3awywsg8Gs29DC3xwZm3R6bazhLIsnaDmuFgFKPWn3OkkELrQsj-Hp3Q-TDFUmhj3SdLgjIwgl8a_u2wmR6Tox4l0ofu7U7IQahPydu89azBRNIm0snuhhquHDffSHoTbqSIQmlrdVlFHHl00XtA0B5v0qqmT9U6eYXQeVO90xeTJBrWZ2Q5nSzGs6x3R8gc52ybCedYNCFwxTAtgLVArANGIt5xBUSZeyNlEbUT0gOXDsA7UJh_xYL1QvNzMqibOlwQGr1nIbKI37oB7Z0O0gjhuYVgYm7cJXlMuSg_OgGMMklStwEsVNkXqvyrUFf_8ZBrcogFUt0eyA0ZbDdf4RZRwdbetQ3wAyGFtHA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Environmental+Covariates+for+Classifier+Training+Applied+in+Digital+Soil+Mapping&rft.jtitle=Revista+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.au=Alcinei+Ribeiro+Campos&rft.au=Elvio+Giasson&rft.au=Jos%C3%A9+Janderson+Ferreira+Costa&rft.au=Israel+Rosa+Machado&rft.date=2018-01-01&rft.pub=Sociedade+Brasileira+de+Ci%C3%AAncia+do+Solo&rft.issn=1806-9657&rft.volume=42&rft_id=info:doi/10.1590%2F18069657rbcs20170414&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b193966ec3b34f488b8a5a70fa93d7e1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1806-9657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1806-9657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1806-9657&client=summon |