Accelerated Soil erosion as a source of atmospheric CO2

•Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion. Soil erosion, physical transport of soil over the landscape by alluvial a...

Full description

Saved in:
Bibliographic Details
Published inSoil & tillage research Vol. 188; pp. 35 - 40
Main Author Lal, Rattan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion. Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions.
AbstractList •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion. Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions.
Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions.
Author Lal, Rattan
Author_xml – sequence: 1
  givenname: Rattan
  surname: Lal
  fullname: Lal, Rattan
  organization: Carbon Management and Sequestration Center, The Ohio State University, Columbus, OH 43210, United States
BookMark eNqFkD1PwzAQhi1UJFrgF7BkZEk420nsDAxVxZdUqQPdLde-CFdpXGwXiX-PS5kYYLlb3uf03jMjk9GPSMgNhYoCbe-2VUxuGCoGVFbAKgB6RqZUiq7kdV1PyDSnREk7KS7ILMYtANScySkRc2NwwKAT2uLVu6HA4KPzY6FjoYvoD8Fg4ftCp52P-zcMzhSLFbsi570eIl7_7EuyfnxYL57L5erpZTFfloZzlsqGWgZGiKbVG64tlVLzPLm0tOObptZ803NgtuWt7Du0Te5l2kaLTQO2bfgluT2d3Qf_fsCY1M7FXHjQI_pDVIwxkAJqJnOUn6ImPxAD9mof3E6HT0VBHS2prfq2pI6WFDCVLWWq-0UZl3TKAlLQbviHvT-xmAV8OAwqGoejQesCmqSsd3_yX4adhLA
CitedBy_id crossref_primary_10_1016_j_catena_2020_105106
crossref_primary_10_1016_j_pedsph_2023_03_019
crossref_primary_10_3390_agronomy11040665
crossref_primary_10_1126_sciadv_aau3523
crossref_primary_10_3390_agriculture14030352
crossref_primary_10_1038_s41598_024_65578_0
crossref_primary_10_1016_j_still_2024_106248
crossref_primary_10_1016_j_still_2024_106001
crossref_primary_10_1007_s10661_020_08785_2
crossref_primary_10_1016_j_eiar_2022_106815
crossref_primary_10_1016_j_scitotenv_2022_159169
crossref_primary_10_3390_app9163317
crossref_primary_10_1016_j_ancene_2024_100435
crossref_primary_10_5194_gmd_15_7835_2022
crossref_primary_10_1007_s11430_023_1275_2
crossref_primary_10_1029_2022EF003104
crossref_primary_10_1016_j_earscirev_2019_103067
crossref_primary_10_1111_gcb_17354
crossref_primary_10_1016_j_catena_2021_105753
crossref_primary_10_1016_j_jenvman_2023_119686
crossref_primary_10_1016_j_ancene_2021_100290
crossref_primary_10_1016_j_geoderma_2023_116345
crossref_primary_10_1016_j_scitotenv_2021_149247
crossref_primary_10_1002_esp_4694
crossref_primary_10_2139_ssrn_4074627
crossref_primary_10_1016_j_eti_2022_102498
crossref_primary_10_1016_j_geoderma_2022_116243
crossref_primary_10_1016_j_jhydrol_2019_124526
crossref_primary_10_1016_j_agee_2022_108283
crossref_primary_10_1111_sum_12718
crossref_primary_10_5194_soil_10_281_2024
crossref_primary_10_3390_ma14144036
crossref_primary_10_1016_j_scitotenv_2020_142616
crossref_primary_10_1071_SR22263
crossref_primary_10_3390_w12020529
crossref_primary_10_1002_ldr_3959
crossref_primary_10_1016_j_jenvman_2023_117296
crossref_primary_10_1007_s44378_025_00048_1
crossref_primary_10_1016_j_agee_2021_107827
crossref_primary_10_1016_j_ecoleng_2020_105860
crossref_primary_10_1016_j_jia_2023_10_001
crossref_primary_10_1080_03650340_2019_1630824
crossref_primary_10_1038_s41558_022_01559_3
crossref_primary_10_1016_j_catena_2024_107836
crossref_primary_10_1029_2019JG005471
crossref_primary_10_1016_j_catena_2025_108886
crossref_primary_10_3390_rs13234752
crossref_primary_10_36783_18069657rbcs20240061
crossref_primary_10_1111_gcb_15987
crossref_primary_10_5194_esd_10_685_2019
crossref_primary_10_1002_ldr_4636
crossref_primary_10_3390_land11020176
crossref_primary_10_1016_j_still_2024_106435
crossref_primary_10_3390_atmos13030397
crossref_primary_10_1016_j_still_2021_105001
crossref_primary_10_1016_j_iswcr_2023_02_005
crossref_primary_10_1016_j_catena_2024_108119
crossref_primary_10_1016_j_jhydrol_2024_132451
crossref_primary_10_1007_s11356_020_11888_5
crossref_primary_10_1016_j_agee_2021_107677
crossref_primary_10_1111_ejss_13136
crossref_primary_10_3390_agriculture14112011
crossref_primary_10_1007_s11368_021_02987_y
crossref_primary_10_1016_j_catena_2025_108894
crossref_primary_10_1021_acsapm_3c03199
crossref_primary_10_1007_s44169_023_00041_1
crossref_primary_10_1016_j_envpol_2020_114403
crossref_primary_10_1016_j_watres_2022_119499
crossref_primary_10_3390_land12061161
crossref_primary_10_1029_2021JG006616
crossref_primary_10_3390_f16030484
crossref_primary_10_5194_bg_20_635_2023
crossref_primary_10_1134_S1064229321110028
crossref_primary_10_1016_j_chemosphere_2019_125756
crossref_primary_10_1016_j_envres_2021_111087
crossref_primary_10_1007_s13762_020_02756_3
crossref_primary_10_1016_j_soilbio_2024_109549
crossref_primary_10_1016_j_still_2024_106287
crossref_primary_10_1016_j_geodrs_2025_e00928
crossref_primary_10_1002_ldr_3890
crossref_primary_10_1016_j_soilad_2024_100005
crossref_primary_10_31660_0445_01108_2021_6_23_35
crossref_primary_10_1016_j_iswcr_2022_07_003
crossref_primary_10_1016_j_seh_2025_100130
crossref_primary_10_3390_soilsystems3020042
crossref_primary_10_1016_j_scitotenv_2020_144146
crossref_primary_10_1007_s13399_020_00943_3
crossref_primary_10_1016_j_iswcr_2020_07_005
crossref_primary_10_1016_j_still_2021_105119
crossref_primary_10_1007_s10661_024_12673_4
crossref_primary_10_1016_j_still_2024_106209
crossref_primary_10_1016_j_catena_2021_105551
crossref_primary_10_1016_j_oneear_2024_09_001
crossref_primary_10_1029_2022JG007297
crossref_primary_10_1007_s11368_022_03189_w
crossref_primary_10_1007_s40808_025_02337_8
crossref_primary_10_1155_2023_7357131
crossref_primary_10_3389_fenvs_2024_1448601
crossref_primary_10_2139_ssrn_4120193
crossref_primary_10_1016_j_chemosphere_2024_141112
crossref_primary_10_1016_j_ecolind_2023_111076
crossref_primary_10_1111_ejss_13485
crossref_primary_10_1002_ldr_4977
crossref_primary_10_1016_j_scitotenv_2024_174243
crossref_primary_10_1016_j_scitotenv_2022_157473
crossref_primary_10_1016_j_catena_2021_106014
crossref_primary_10_3390_f12070859
crossref_primary_10_1007_s10668_024_05285_y
crossref_primary_10_3390_su162411273
crossref_primary_10_1016_j_jarmap_2021_100351
crossref_primary_10_3390_ijerph19053020
crossref_primary_10_1016_j_jclepro_2024_143616
crossref_primary_10_1016_j_agee_2020_107112
crossref_primary_10_1016_j_geoderma_2022_116056
crossref_primary_10_1016_j_jenvman_2023_118186
crossref_primary_10_5194_soil_10_109_2024
crossref_primary_10_1016_j_scitotenv_2022_154161
crossref_primary_10_1016_j_agee_2021_107507
crossref_primary_10_1016_j_earscirev_2021_103689
crossref_primary_10_3390_land12091718
crossref_primary_10_5194_soil_6_179_2020
crossref_primary_10_1590_1413_7054202246002622
crossref_primary_10_1016_j_catena_2020_105056
crossref_primary_10_1007_s40333_020_0018_5
crossref_primary_10_1016_j_geoderma_2020_114759
crossref_primary_10_1016_j_geodrs_2023_e00751
crossref_primary_10_1016_j_catena_2024_108444
crossref_primary_10_1029_2022JD037697
crossref_primary_10_1016_j_ijsrc_2021_06_002
crossref_primary_10_1111_ejss_13344
crossref_primary_10_55761_abclima_v36i21_18952
crossref_primary_10_1016_j_catena_2024_108030
crossref_primary_10_3389_fenvs_2022_822967
crossref_primary_10_1016_j_agrformet_2022_109266
crossref_primary_10_1016_j_scitotenv_2020_141717
crossref_primary_10_1016_j_coldregions_2023_103899
crossref_primary_10_5194_soil_6_337_2020
crossref_primary_10_1016_j_catena_2022_106451
crossref_primary_10_3390_agronomy9120785
crossref_primary_10_1016_j_indic_2023_100315
crossref_primary_10_1038_s41598_024_65646_5
crossref_primary_10_1002_hyp_14657
crossref_primary_10_3390_geosciences13090278
crossref_primary_10_1002_ldr_4796
crossref_primary_10_3390_w11122617
crossref_primary_10_1016_j_catena_2024_107901
crossref_primary_10_1016_j_catena_2021_105502
crossref_primary_10_3390_su151713276
crossref_primary_10_1016_j_coesh_2024_100536
crossref_primary_10_1029_2023RG000829
crossref_primary_10_3390_agronomy12112796
crossref_primary_10_1007_s00267_024_02021_0
crossref_primary_10_1016_j_catena_2020_105047
crossref_primary_10_1111_sum_12636
crossref_primary_10_1007_s00267_023_01874_1
Cites_doi 10.1016/S0308-521X(96)00015-7
10.3808/jei.201400287
10.2134/jeq1998.00472425002700010019x
10.1111/j.1365-2486.2005.00950.x
10.1111/j.1365-2486.2007.01457.x
10.1371/journal.pone.0154591
10.1002/2014JC010261
10.1073/pnas.1523358113
10.5194/bg-11-5235-2014
10.1002/esp.3795
10.5194/essd-8-605-2016
10.1016/j.scitotenv.2006.06.007
10.1016/S0160-4120(02)00192-7
10.1016/j.ecolmodel.2008.06.025
10.2136/sssaj2015.12.0444
10.1890/14-1323.1
10.1029/2004GB002271
10.1016/j.iswcr.2016.10.001
10.1016/j.gloplacha.2012.07.003
10.1038/nature14400
10.1016/0016-7061(76)90001-X
10.1016/0016-7061(76)90004-5
10.5194/bg-9-1099-2012
10.5194/esurf-5-113-2017
10.1016/0016-7061(85)90005-9
10.1002/2014JG002635
10.5194/bg-12-4861-2015
10.1016/j.still.2004.09.002
10.5194/tc-8-651-2014
10.1002/esp.3916
10.1016/j.geomorph.2014.07.023
10.1097/SS.0b013e3182285cde
10.1016/j.soilbio.2007.09.003
10.1111/j.1365-2486.2012.02665.x
10.1016/j.geoderma.2012.01.038
10.1002/2014GB004912
10.1016/j.geoderma.2009.12.012
10.1126/science.1101271
10.1016/j.aeolia.2016.07.005
10.1080/00224561.2004.12435709
10.1097/00010694-198611000-00006
10.1111/gcb.13198
10.1029/2012JF002430
10.1029/2008JG000751
10.1097/SS.0b013e318244d8d2
10.1126/science.1145724
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.still.2018.02.001
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1879-3444
EndPage 40
ExternalDocumentID 10_1016_j_still_2018_02_001
S0167198718300345
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSA
SSR
SST
SSZ
T5K
TWZ
UNMZH
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c332t-51d20c7756ab3ad188a3d1838d193b54a3bf302d6368f9ed5004c65a7b50d653
IEDL.DBID .~1
ISSN 0167-1987
IngestDate Fri Jul 11 16:01:32 EDT 2025
Thu Apr 24 23:05:21 EDT 2025
Thu Jul 10 08:33:05 EDT 2025
Fri Feb 23 02:19:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaseous emissions
Global warming
4 per Thousand
Soil erosion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-51d20c7756ab3ad188a3d1838d193b54a3bf302d6368f9ed5004c65a7b50d653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2220870428
PQPubID 24069
PageCount 6
ParticipantIDs proquest_miscellaneous_2220870428
crossref_primary_10_1016_j_still_2018_02_001
crossref_citationtrail_10_1016_j_still_2018_02_001
elsevier_sciencedirect_doi_10_1016_j_still_2018_02_001
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationTitle Soil & tillage research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Le Quéré, Andrew, Canadell (bib0100) 2016; 8
Józsa, Kiely, Borthwick (bib0045) 2014; 24
Dungait, D.W, Gregory, Whitmore (bib0020) 2012; 18
Korup, Rixen (bib0060) 2014; 8
Nadeu, Berhe, de Vente, Boix-Fayos (bib0145) 2012; 9
Olson, Gennadiyev, Zhidkin, Markelov (bib0160) 2011; 176
Berhe, Harden, Torn, Harte (bib0005) 2008; 113
Chappell, Webb, Rossel, Bui (bib0015) 2014; 11
Wilken, Fiener, Van Oost (bib0235) 2017; 5
Lal (bib0070) 1976; 16
Chappell, Baldock (bib0010) 2016; 22
Yue, Ni, Piao, Wang, Huang, Borthwick, Li, Wang, Chappell, Van Oost (bib0255) 2016; 113
Kirschbaum, Harms, Mathers, Dalal (bib0055) 2008; 40
Wang, Cammeraat, Romeijn, Kalbitz (bib0220) 2014; 9
Mchunu, Chaplot (bib0130) 2012; 177
Galy, Peucker-Ehrenbrink, Eglinton (bib0035) 2015; 521
Li, Nie, Chang, Liu, Sun (bib0105) 2016; 11
Nachimuthu, Hulugalle (bib0140) 2016; 4
Forbes, Raison, Skjemstad (bib0025) 2006; 370
Gaiser, Stahr, Billen, Mohammad (bib0030) 2008; 218
Olson, Gennadiyev, Zhidkin, Markelov (bib0165) 2012; 177
Yan, Wang, Wang, Zhang, Patel (bib0245) 2005; 11
Nearing, Pruski, O’Neal (bib0150) 2004; 59
Van Oost, Quine, Govers, De Gryze, Six, Harden (bib0200) 2007; 318
Yoo, Amundson, Heimsath, Dietrich (bib0250) 2005; 19
Wang, Van Oost, Govers (bib0230) 2015; 29
Ni, Yue, Borthwick, Li, Miao, He (bib0155) 2012; 94-95
Lal (bib0075) 1992
Lee, Phillips, Dodson (bib0095) 1996; 52
Hua, Zhu, Wang, Tian (bib0040) 2016; 80
Lal (bib0085) 2015; 81
Lal, Griffin, Apt, Lave, Morgan (bib0090) 2004; 305
Walling (bib0210) 2009
Wan, El-Swaify (bib0215) 1998; 27
Lal (bib0065) 1976; 16
Luo, Wang, Sun (bib0115) 2010; 155
Schiettecatte, Gabriels, Cornelis, Hofman (bib0190) 2008; 153
Wang, Govers, Van Oost, Clymans, Van den Putte, Merckx (bib0225) 2013; 118
Rajan, Natarajan, Kumar, Badrinath, Gowda (bib0185) 2010; 99
Pearce, Rastetter, Kwiatkowski, Bowden, Mack, Jiang (bib0170) 2015; 25
Quine, van Oost (bib0180) 2007; 13
Lugato, Paustian, Pangos, Jones, Borrelli (bib0110) 2016; 22
Worrall, Burt, Howden (bib0240) 2016; 41
Mann (bib0120) 1985; 36
Mann (bib0125) 1986; 142
Vonk, Semiletov, Dudarev, Eglinton, Andersson, Shakhova (bib0205) 2014; 119
Kirkels, Cammeraat, Kuhn (bib0050) 2014; 226
Lal (bib0080) 2003; 29
Stacy, Hart, Hunsaker, Johnson, Berhe (bib0195) 2015; 12
Puttock, Dungait, Macleod, Bol, Brazier (bib0175) 2014; 119
Müller-Nedebock, Chivenge, Chaplot (bib0135) 2016; 41
Pearce (10.1016/j.still.2018.02.001_bib0170) 2015; 25
Lal (10.1016/j.still.2018.02.001_bib0085) 2015; 81
Kirkels (10.1016/j.still.2018.02.001_bib0050) 2014; 226
Olson (10.1016/j.still.2018.02.001_bib0160) 2011; 176
Hua (10.1016/j.still.2018.02.001_bib0040) 2016; 80
Galy (10.1016/j.still.2018.02.001_bib0035) 2015; 521
Wang (10.1016/j.still.2018.02.001_bib0225) 2013; 118
Lal (10.1016/j.still.2018.02.001_bib0065) 1976; 16
Gaiser (10.1016/j.still.2018.02.001_bib0030) 2008; 218
Nadeu (10.1016/j.still.2018.02.001_bib0145) 2012; 9
Stacy (10.1016/j.still.2018.02.001_bib0195) 2015; 12
Müller-Nedebock (10.1016/j.still.2018.02.001_bib0135) 2016; 41
Luo (10.1016/j.still.2018.02.001_bib0115) 2010; 155
Yan (10.1016/j.still.2018.02.001_bib0245) 2005; 11
Lugato (10.1016/j.still.2018.02.001_bib0110) 2016; 22
Wang (10.1016/j.still.2018.02.001_bib0220) 2014; 9
Berhe (10.1016/j.still.2018.02.001_bib0005) 2008; 113
Yue (10.1016/j.still.2018.02.001_bib0255) 2016; 113
Kirschbaum (10.1016/j.still.2018.02.001_bib0055) 2008; 40
Mchunu (10.1016/j.still.2018.02.001_bib0130) 2012; 177
Forbes (10.1016/j.still.2018.02.001_bib0025) 2006; 370
Mann (10.1016/j.still.2018.02.001_bib0125) 1986; 142
Lal (10.1016/j.still.2018.02.001_bib0070) 1976; 16
Ni (10.1016/j.still.2018.02.001_bib0155) 2012; 94-95
Lee (10.1016/j.still.2018.02.001_bib0095) 1996; 52
Walling (10.1016/j.still.2018.02.001_bib0210) 2009
Lal (10.1016/j.still.2018.02.001_bib0075) 1992
Vonk (10.1016/j.still.2018.02.001_bib0205) 2014; 119
Wilken (10.1016/j.still.2018.02.001_bib0235) 2017; 5
Van Oost (10.1016/j.still.2018.02.001_bib0200) 2007; 318
Quine (10.1016/j.still.2018.02.001_bib0180) 2007; 13
Rajan (10.1016/j.still.2018.02.001_bib0185) 2010; 99
Olson (10.1016/j.still.2018.02.001_bib0165) 2012; 177
Nachimuthu (10.1016/j.still.2018.02.001_bib0140) 2016; 4
Mann (10.1016/j.still.2018.02.001_bib0120) 1985; 36
Lal (10.1016/j.still.2018.02.001_bib0080) 2003; 29
Le Quéré (10.1016/j.still.2018.02.001_bib0100) 2016; 8
Lal (10.1016/j.still.2018.02.001_bib0090) 2004; 305
Worrall (10.1016/j.still.2018.02.001_bib0240) 2016; 41
Korup (10.1016/j.still.2018.02.001_bib0060) 2014; 8
Nearing (10.1016/j.still.2018.02.001_bib0150) 2004; 59
Yoo (10.1016/j.still.2018.02.001_bib0250) 2005; 19
Wan (10.1016/j.still.2018.02.001_bib0215) 1998; 27
Puttock (10.1016/j.still.2018.02.001_bib0175) 2014; 119
Dungait (10.1016/j.still.2018.02.001_bib0020) 2012; 18
Schiettecatte (10.1016/j.still.2018.02.001_bib0190) 2008; 153
Wang (10.1016/j.still.2018.02.001_bib0230) 2015; 29
Józsa (10.1016/j.still.2018.02.001_bib0045) 2014; 24
Chappell (10.1016/j.still.2018.02.001_bib0010) 2016; 22
Chappell (10.1016/j.still.2018.02.001_bib0015) 2014; 11
Li (10.1016/j.still.2018.02.001_bib0105) 2016; 11
References_xml – volume: 99
  start-page: 823
  year: 2010
  end-page: 827
  ident: bib0185
  article-title: Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion
  publication-title: Curr. Sci. India
– volume: 8
  start-page: 605
  year: 2016
  end-page: 649
  ident: bib0100
  article-title: Global carbon budget 2016
  publication-title: Earth Syst. Sci. Data
– volume: 142
  start-page: 279
  year: 1986
  end-page: 288
  ident: bib0125
  article-title: Changes in soil carbon storage after cultivation
  publication-title: Soil Sci.
– volume: 11
  start-page: e0154591
  year: 2016
  ident: bib0105
  article-title: Characteristics of soil organic carbon loss by water erosion on the Loess Plateau in China
  publication-title: PLoS One
– volume: 11
  start-page: 5235
  year: 2014
  end-page: 5244
  ident: bib0015
  article-title: Australian net (1950s-1990) soil organic carbon erosion: implications for CO
  publication-title: Biogeosciences
– volume: 81
  start-page: 137
  year: 2015
  end-page: 142
  ident: bib0085
  article-title: Soil erosion and carbon dynamics
  publication-title: Soil Till. Res.
– volume: 29
  start-page: 437
  year: 2003
  end-page: 450
  ident: bib0080
  article-title: Soil erosion and the global carbon budget
  publication-title: Env. Int.
– volume: 41
  start-page: 61
  year: 2016
  end-page: 71
  ident: bib0240
  article-title: The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion
  publication-title: Earth Surf. Processes Landforms
– volume: 13
  start-page: 2610
  year: 2007
  end-page: 2625
  ident: bib0180
  article-title: Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories
  publication-title: Glob. Change Biol.
– volume: 5
  start-page: 113
  year: 2017
  end-page: 124
  ident: bib0235
  article-title: Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model
  publication-title: Earth Surf. Dynam.
– volume: 12
  start-page: 4861
  year: 2015
  end-page: 4874
  ident: bib0195
  article-title: Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration
  publication-title: Biogeosciences
– volume: 9
  start-page: 1099
  year: 2012
  end-page: 1111
  ident: bib0145
  article-title: Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach
  publication-title: Biogeosciences
– volume: 22
  start-page: 107
  year: 2016
  end-page: 116
  ident: bib0010
  article-title: Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices
  publication-title: Aeolian Res.
– volume: 318
  start-page: 626
  year: 2007
  end-page: 629
  ident: bib0200
  article-title: The impact of agricultural soil erosion on the global carbon cycle
  publication-title: Science
– volume: 153
  start-page: 74
  year: 2008
  end-page: 83
  ident: bib0190
  article-title: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes
  publication-title: SSSA J.
– volume: 119
  start-page: 2345
  year: 2014
  end-page: 2357
  ident: bib0175
  article-title: Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils
  publication-title: J. Geophys. Res.-Biogeosci.
– volume: 24
  start-page: 111
  year: 2014
  end-page: 120
  ident: bib0045
  article-title: Sediment flux and its environmental implications
  publication-title: J. Environ. Inf.
– volume: 155
  start-page: 211
  year: 2010
  end-page: 223
  ident: bib0115
  article-title: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis
  publication-title: Geoderma
– volume: 305
  start-page: 1567
  year: 2004
  ident: bib0090
  article-title: Managing soil carbon: a response
  publication-title: Science
– volume: 4
  start-page: 245
  year: 2016
  end-page: 259
  ident: bib0140
  article-title: On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: a review of empirical research
  publication-title: Int. Soil Water Conserv. Res.
– volume: 29
  start-page: 65
  year: 2015
  end-page: 79
  ident: bib0230
  article-title: Predicting the long-term fate of buried organic carbon in colluvial soils
  publication-title: Global Biogeochem. Cycles
– year: 2009
  ident: bib0210
  article-title: The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges
– start-page: 303
  year: 1992
  ident: bib0075
  article-title: Tropical agricultural hydrology and sustainability of agricultural systems
  publication-title: IITA Technical Bulletin
– volume: 177
  start-page: 269
  year: 2012
  end-page: 278
  ident: bib0165
  article-title: Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage
  publication-title: Soil Sci.
– volume: 36
  start-page: 241
  year: 1985
  end-page: 253
  ident: bib0120
  article-title: A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United-States
  publication-title: Geoderma
– volume: 113
  start-page: 6617
  year: 2016
  end-page: 6622
  ident: bib0255
  article-title: Lateral transport of soil carbon and land-atmosphere CO
  publication-title: PNAS
– volume: 113
  year: 2008
  ident: bib0005
  article-title: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions
  publication-title: J. Geophys. Res. –Biogeosci.
– volume: 177
  start-page: 72
  year: 2012
  end-page: 79
  ident: bib0130
  article-title: Land degradation impact on soil carbon losses through water erosion and CO2 emissions
  publication-title: Geoderma
– volume: 16
  start-page: 403
  year: 1976
  end-page: 417
  ident: bib0070
  article-title: Soil erosion on alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments
  publication-title: Geoderma
– volume: 22
  start-page: 1976
  year: 2016
  end-page: 1984
  ident: bib0110
  article-title: Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution
  publication-title: Global Change Biol.
– volume: 59
  start-page: 43
  year: 2004
  end-page: 50
  ident: bib0150
  article-title: Expected climate change impacts on soil erosion rates: a review
  publication-title: J. Soil Water Conserv.
– volume: 118
  start-page: 348
  year: 2013
  end-page: 360
  ident: bib0225
  article-title: Soil organic carbon mobilization by interrill erosion: insights from size fractions
  publication-title: J. Geophys. Res.-Earth Surf.
– volume: 226
  start-page: 94
  year: 2014
  end-page: 105
  ident: bib0050
  article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes – a review of different concepts
  publication-title: Geomorphology
– volume: 80
  start-page: 1011
  year: 2016
  end-page: 1019
  ident: bib0040
  article-title: Forms and fluxes of soil organic carbon transport via overland flow, interflow and soil erosion
  publication-title: Soil Sci. Soc. Am. J.
– volume: 9
  year: 2014
  ident: bib0220
  article-title: Soil organic carbon redistribution by water erosion: the role of CO
  publication-title: PLoS One
– volume: 8
  start-page: 651
  year: 2014
  end-page: 658
  ident: bib0060
  article-title: Soil erosion and organic carbon export by wet snow avalanches
  publication-title: Cryosphere
– volume: 521
  year: 2015
  ident: bib0035
  article-title: Global carbon export from the terrestrial biosphere controlled by erosion
  publication-title: Nature
– volume: 16
  start-page: 363
  year: 1976
  end-page: 375
  ident: bib0065
  article-title: Soil erosion on alfisols in Western Nigeria: I. Effects of slope, crop rotation and residue management
  publication-title: Geoderma
– volume: 176
  start-page: 449
  year: 2011
  end-page: 458
  ident: bib0160
  article-title: Impact of land use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions
  publication-title: Soil Sci.
– volume: 94-95
  start-page: 101
  year: 2012
  end-page: 110
  ident: bib0155
  article-title: Erosion-induced CO
  publication-title: Global Planet. Change
– volume: 25
  start-page: 1271
  year: 2015
  end-page: 1289
  ident: bib0170
  article-title: Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis
  publication-title: Ecol. Appl.
– volume: 41
  start-page: 1399
  year: 2016
  end-page: 1408
  ident: bib0135
  article-title: Selective organic carbon losses from soils by sheet erosion and main controls
  publication-title: Earth Surf. Processes Landforms
– volume: 27
  start-page: 132
  year: 1998
  end-page: 138
  ident: bib0215
  article-title: Sediment enrichment mechanisms of organic carbon and phosphorus in a well-aggregated oxisol
  publication-title: J. Environ. Qual. Abs.
– volume: 19
  start-page: 1
  year: 2005
  end-page: 17
  ident: bib0250
  article-title: Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model
  publication-title: Global Biogeochem. Cycles
– volume: 11
  start-page: 828
  year: 2005
  end-page: 840
  ident: bib0245
  article-title: Losses of soil organic carbon under wind erosion in China
  publication-title: Glob. Change Biol.
– volume: 40
  start-page: 392
  year: 2008
  end-page: 405
  ident: bib0055
  article-title: Soil carbon and nitrogen changes after clearing mulga (Acacia aneura) vegetation in Queensland, Australia: observations, simulations and scenario analysis
  publication-title: Soil Biol. Biochem.
– volume: 119
  start-page: 8410
  year: 2014
  end-page: 8421
  ident: bib0205
  article-title: Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters
  publication-title: J. Geophys. Res. Oceans
– volume: 18
  start-page: 1781
  year: 2012
  end-page: 1891
  ident: bib0020
  article-title: Soil organic matter turnover is governed by accessibility not calitrance
  publication-title: Glob. Change Biol.
– volume: 52
  start-page: 503
  year: 1996
  end-page: 521
  ident: bib0095
  article-title: Sensitivity of the US corn belt to climate change and elevated CO
  publication-title: Agric. Syst.
– volume: 218
  start-page: 110
  year: 2008
  end-page: 120
  ident: bib0030
  article-title: Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion
  publication-title: Ecol. Model.
– volume: 370
  start-page: 190
  year: 2006
  end-page: 206
  ident: bib0025
  article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 503
  year: 1996
  ident: 10.1016/j.still.2018.02.001_bib0095
  article-title: Sensitivity of the US corn belt to climate change and elevated CO2. 2. Soil erosion and organic carbon
  publication-title: Agric. Syst.
  doi: 10.1016/S0308-521X(96)00015-7
– volume: 24
  start-page: 111
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0045
  article-title: Sediment flux and its environmental implications
  publication-title: J. Environ. Inf.
  doi: 10.3808/jei.201400287
– volume: 27
  start-page: 132
  year: 1998
  ident: 10.1016/j.still.2018.02.001_bib0215
  article-title: Sediment enrichment mechanisms of organic carbon and phosphorus in a well-aggregated oxisol
  publication-title: J. Environ. Qual. Abs.
  doi: 10.2134/jeq1998.00472425002700010019x
– volume: 11
  start-page: 828
  year: 2005
  ident: 10.1016/j.still.2018.02.001_bib0245
  article-title: Losses of soil organic carbon under wind erosion in China
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2005.00950.x
– volume: 13
  start-page: 2610
  year: 2007
  ident: 10.1016/j.still.2018.02.001_bib0180
  article-title: Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2007.01457.x
– volume: 11
  start-page: e0154591
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0105
  article-title: Characteristics of soil organic carbon loss by water erosion on the Loess Plateau in China
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0154591
– volume: 119
  start-page: 8410
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0205
  article-title: Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2014JC010261
– volume: 113
  start-page: 6617
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0255
  article-title: Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China
  publication-title: PNAS
  doi: 10.1073/pnas.1523358113
– volume: 11
  start-page: 5235
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0015
  article-title: Australian net (1950s-1990) soil organic carbon erosion: implications for CO2 emission and land-atmosphere modelling
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-5235-2014
– volume: 41
  start-page: 61
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0240
  article-title: The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion
  publication-title: Earth Surf. Processes Landforms
  doi: 10.1002/esp.3795
– volume: 8
  start-page: 605
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0100
  article-title: Global carbon budget 2016
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-8-605-2016
– volume: 370
  start-page: 190
  year: 2006
  ident: 10.1016/j.still.2018.02.001_bib0025
  article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2006.06.007
– volume: 29
  start-page: 437
  year: 2003
  ident: 10.1016/j.still.2018.02.001_bib0080
  article-title: Soil erosion and the global carbon budget
  publication-title: Env. Int.
  doi: 10.1016/S0160-4120(02)00192-7
– volume: 218
  start-page: 110
  year: 2008
  ident: 10.1016/j.still.2018.02.001_bib0030
  article-title: Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.06.025
– volume: 80
  start-page: 1011
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0040
  article-title: Forms and fluxes of soil organic carbon transport via overland flow, interflow and soil erosion
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.12.0444
– volume: 25
  start-page: 1271
  year: 2015
  ident: 10.1016/j.still.2018.02.001_bib0170
  article-title: Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis
  publication-title: Ecol. Appl.
  doi: 10.1890/14-1323.1
– volume: 19
  start-page: 1
  year: 2005
  ident: 10.1016/j.still.2018.02.001_bib0250
  article-title: Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2004GB002271
– volume: 4
  start-page: 245
  issue: 4
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0140
  article-title: On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: a review of empirical research
  publication-title: Int. Soil Water Conserv. Res.
  doi: 10.1016/j.iswcr.2016.10.001
– volume: 94-95
  start-page: 101
  year: 2012
  ident: 10.1016/j.still.2018.02.001_bib0155
  article-title: Erosion-induced CO2 flux of small watersheds
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2012.07.003
– volume: 521
  year: 2015
  ident: 10.1016/j.still.2018.02.001_bib0035
  article-title: Global carbon export from the terrestrial biosphere controlled by erosion
  publication-title: Nature
  doi: 10.1038/nature14400
– volume: 16
  start-page: 363
  issue: 5
  year: 1976
  ident: 10.1016/j.still.2018.02.001_bib0065
  article-title: Soil erosion on alfisols in Western Nigeria: I. Effects of slope, crop rotation and residue management
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90001-X
– volume: 16
  start-page: 403
  issue: 5
  year: 1976
  ident: 10.1016/j.still.2018.02.001_bib0070
  article-title: Soil erosion on alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments
  publication-title: Geoderma
  doi: 10.1016/0016-7061(76)90004-5
– volume: 9
  start-page: 1099
  year: 2012
  ident: 10.1016/j.still.2018.02.001_bib0145
  article-title: Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-1099-2012
– volume: 5
  start-page: 113
  year: 2017
  ident: 10.1016/j.still.2018.02.001_bib0235
  article-title: Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model
  publication-title: Earth Surf. Dynam.
  doi: 10.5194/esurf-5-113-2017
– volume: 36
  start-page: 241
  year: 1985
  ident: 10.1016/j.still.2018.02.001_bib0120
  article-title: A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United-States
  publication-title: Geoderma
  doi: 10.1016/0016-7061(85)90005-9
– volume: 119
  start-page: 2345
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0175
  article-title: Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils
  publication-title: J. Geophys. Res.-Biogeosci.
  doi: 10.1002/2014JG002635
– volume: 12
  start-page: 4861
  year: 2015
  ident: 10.1016/j.still.2018.02.001_bib0195
  article-title: Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-4861-2015
– volume: 81
  start-page: 137
  year: 2015
  ident: 10.1016/j.still.2018.02.001_bib0085
  article-title: Soil erosion and carbon dynamics
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2004.09.002
– volume: 8
  start-page: 651
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0060
  article-title: Soil erosion and organic carbon export by wet snow avalanches
  publication-title: Cryosphere
  doi: 10.5194/tc-8-651-2014
– year: 2009
  ident: 10.1016/j.still.2018.02.001_bib0210
– volume: 41
  start-page: 1399
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0135
  article-title: Selective organic carbon losses from soils by sheet erosion and main controls
  publication-title: Earth Surf. Processes Landforms
  doi: 10.1002/esp.3916
– volume: 226
  start-page: 94
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0050
  article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes – a review of different concepts
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.07.023
– volume: 153
  start-page: 74
  year: 2008
  ident: 10.1016/j.still.2018.02.001_bib0190
  article-title: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes
  publication-title: SSSA J.
– volume: 176
  start-page: 449
  year: 2011
  ident: 10.1016/j.still.2018.02.001_bib0160
  article-title: Impact of land use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e3182285cde
– volume: 40
  start-page: 392
  year: 2008
  ident: 10.1016/j.still.2018.02.001_bib0055
  article-title: Soil carbon and nitrogen changes after clearing mulga (Acacia aneura) vegetation in Queensland, Australia: observations, simulations and scenario analysis
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.003
– volume: 18
  start-page: 1781
  year: 2012
  ident: 10.1016/j.still.2018.02.001_bib0020
  article-title: Soil organic matter turnover is governed by accessibility not calitrance
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2012.02665.x
– volume: 177
  start-page: 72
  year: 2012
  ident: 10.1016/j.still.2018.02.001_bib0130
  article-title: Land degradation impact on soil carbon losses through water erosion and CO2 emissions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.01.038
– volume: 29
  start-page: 65
  year: 2015
  ident: 10.1016/j.still.2018.02.001_bib0230
  article-title: Predicting the long-term fate of buried organic carbon in colluvial soils
  publication-title: Global Biogeochem. Cycles
  doi: 10.1002/2014GB004912
– volume: 155
  start-page: 211
  year: 2010
  ident: 10.1016/j.still.2018.02.001_bib0115
  article-title: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.12.012
– volume: 305
  start-page: 1567
  year: 2004
  ident: 10.1016/j.still.2018.02.001_bib0090
  article-title: Managing soil carbon: a response
  publication-title: Science
  doi: 10.1126/science.1101271
– volume: 22
  start-page: 107
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0010
  article-title: Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2016.07.005
– volume: 59
  start-page: 43
  year: 2004
  ident: 10.1016/j.still.2018.02.001_bib0150
  article-title: Expected climate change impacts on soil erosion rates: a review
  publication-title: J. Soil Water Conserv.
  doi: 10.1080/00224561.2004.12435709
– volume: 9
  year: 2014
  ident: 10.1016/j.still.2018.02.001_bib0220
  article-title: Soil organic carbon redistribution by water erosion: the role of CO2 emissions for the carbon budget
  publication-title: PLoS One
– volume: 142
  start-page: 279
  year: 1986
  ident: 10.1016/j.still.2018.02.001_bib0125
  article-title: Changes in soil carbon storage after cultivation
  publication-title: Soil Sci.
  doi: 10.1097/00010694-198611000-00006
– volume: 22
  start-page: 1976
  year: 2016
  ident: 10.1016/j.still.2018.02.001_bib0110
  article-title: Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.13198
– start-page: 303
  year: 1992
  ident: 10.1016/j.still.2018.02.001_bib0075
  article-title: Tropical agricultural hydrology and sustainability of agricultural systems
– volume: 99
  start-page: 823
  year: 2010
  ident: 10.1016/j.still.2018.02.001_bib0185
  article-title: Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion
  publication-title: Curr. Sci. India
– volume: 118
  start-page: 348
  year: 2013
  ident: 10.1016/j.still.2018.02.001_bib0225
  article-title: Soil organic carbon mobilization by interrill erosion: insights from size fractions
  publication-title: J. Geophys. Res.-Earth Surf.
  doi: 10.1029/2012JF002430
– volume: 113
  year: 2008
  ident: 10.1016/j.still.2018.02.001_bib0005
  article-title: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions
  publication-title: J. Geophys. Res. –Biogeosci.
  doi: 10.1029/2008JG000751
– volume: 177
  start-page: 269
  year: 2012
  ident: 10.1016/j.still.2018.02.001_bib0165
  article-title: Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e318244d8d2
– volume: 318
  start-page: 626
  year: 2007
  ident: 10.1016/j.still.2018.02.001_bib0200
  article-title: The impact of agricultural soil erosion on the global carbon cycle
  publication-title: Science
  doi: 10.1126/science.1145724
SSID ssj0004328
Score 2.605018
Snippet •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic...
Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35
SubjectTerms 4 per Thousand
aeration
agroecosystems
anaerobic conditions
aquatic ecosystems
bulk density
carbon cycle
carbon dioxide
ecoregions
encapsulation
energy
floodplains
gas emissions
Gaseous emissions
Global warming
lakes
landscapes
management systems
methane
microbial activity
nitrous oxide
soil
Soil erosion
soil organic carbon
uncertainty
watersheds
wind erosion
Title Accelerated Soil erosion as a source of atmospheric CO2
URI https://dx.doi.org/10.1016/j.still.2018.02.001
https://www.proquest.com/docview/2220870428
Volume 188
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNBI_WTTtJ2h7LoqwK62FX8BbSpJHKul3c9epvd9KHoqAHL4WGJC1fkplJ8uULIecgRZiYEIKUaQi44w7HHDgM5NLCB7SAyZ5tMZLDB377KB57ZNCdhfG0ytb2Nza9ttZtSr9Fsz8vy_7YE-j9lNlXyID7g-acx76XX75_0Tw41Per1vrePnenPFRzvHAUTf3-Q5g0wp3hb97ph52unc_1Jtloo0aaNT-2RXrFbJusZ0-vrXJGsUPizBh0IV75wdJxVU5pgZ9A1KleUE2bRXpaOaqXL9XCiwmUhg7uo10yub6aDIZBeytCYACiZSBCGzETx0LqHLQNk0QDPiGxGIvlgmvIHbDISpCJSwsrEAMjhY5zwawUsEdWZtWs2CfUsdikTOYSvTgXVqQC80vH89DZGKw5IFEHhjKtYri_uGKqOmrYs6oRVB5BxSJPkDsgF5-F5o1gxt_ZZYey-tbuCk363wXPujZROCL8NoeeFdXbQmHEw9AK4bzq8L-VH5E1fEsbYuMxWVm-vhUnGHws89O6d52S1ezmbjj6AMIs1nM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CcgAOiA0QHQM8aUeiOnmxkxyralULrDvQSdwsx45RUWlQf_z_e86PTSCtBy45OH5O9Dl-7zn-_BngO0oRpibEIOMag9jFjsYcOkrkssIntEjFnm0xkaPf8e2jeNyBQbsXxtMqG99f-_TKWzclvQbN3uts1nvwBHo_ZfYNcozFLux5dSrRgb3--G40-bc9EqsjViuJb2_Qig9VNC8aSHO_BBGmtXZn-L8A9c5VV_FneAxHTeLI-vW7fYKdYvEZDvtPy0Y8oziBpG8MRREv_mDZQzmbs4IeQcAzvWKa1f_pWemYXr-UK68nMDNs8Cs6henwx3QwCpqDEQKDGK0DEdqImyQRUueobZimGumKqaV0LBexxtwhj6xEmbqssIIwMFLoJBfcSoFn0FmUi-IcmOOJybjMJQXyWFiRCaovXZyHziZoTReiFgxlGtFwf3bFXLXssGdVIag8gopHniPXhZu_Rq-1Zsb26rJFWb3pekVefbvht7ZPFA0Kv9KhF0W5WSlKejg5Ippafflo49ewP5r-vFf348ndBRzQnazmOX6Fznq5KS4pF1nnV8239gcs79kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Soil+erosion+as+a+source+of+atmospheric+CO2&rft.jtitle=Soil+%26+tillage+research&rft.au=Lal%2C+Rattan&rft.date=2019-05-01&rft.issn=0167-1987&rft.volume=188&rft.spage=35&rft.epage=40&rft_id=info:doi/10.1016%2Fj.still.2018.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2018_02_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon