Accelerated Soil erosion as a source of atmospheric CO2
•Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion. Soil erosion, physical transport of soil over the landscape by alluvial a...
Saved in:
Published in | Soil & tillage research Vol. 188; pp. 35 - 40 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion.
Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions. |
---|---|
AbstractList | •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic carbon.•Factors affecting the fate of soil organic carbon transported by erosion.
Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions. Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon cycle (GCC). Being a light fraction (bulk density of 0.6–0.8 Mg/m3) and concentrated in vicinity of soil surface, soil organic carbon (SOC) is preferentially removed by water and wind erosion. The process of erosion and the attendant transport of SOC are accelerated by conversion of natural to agroecosystems. Whereas the human-induced acceleration of soil erosion has depleted the SOC stock of agroecosystems, the fate of SOC transported over the landscape and that deposited in depressional sites is not understood. While a fraction of SOC transported to and buried under aquatic ecosystems (e.g., flood plains, lakes, ocean) may be protected because of limited microbial activity, labile fractions of SOC being transported over the landscape enroute to the depositional site are vulnerable to decomposition. Depending on the site-specific conditions with regards to the hydrothermal regimes and the degree of aeration, the decomposition may lead to emission of CO2 under aerobic environments, CH4 under anaerobic conditions, and N2O under both situations. The process of soil erosion, especially that by water, is a 4-stage process: (i) detachment, (ii) splash, (iii) transport and redistribution, and (iv) deposition. Breakdown of aggregates, during the first three stages, exposes the hitherto encapsulated SOC to microbial processes and exacerbates its vulnerability to decomposition. Thus, the fate of SOC subject to erosion must be assessed for all landscape positions and integrated over the watershed. Lack of credible data regarding the fate of SOC at different erosional stages is a major cause of uncertainties. Thus, well-planned research at a watershed-level is needed to assess the impacts of erosional processes on decomposition of SOC, gaseous emission, and the soil/ecosystem C budget for diverse soils and management systems in global biomes/ecoregions. The data on global C budget is incomplete without consideration of the impact of erosion on SOC and the attendant gaseous emissions. |
Author | Lal, Rattan |
Author_xml | – sequence: 1 givenname: Rattan surname: Lal fullname: Lal, Rattan organization: Carbon Management and Sequestration Center, The Ohio State University, Columbus, OH 43210, United States |
BookMark | eNqFkD1PwzAQhi1UJFrgF7BkZEk420nsDAxVxZdUqQPdLde-CFdpXGwXiX-PS5kYYLlb3uf03jMjk9GPSMgNhYoCbe-2VUxuGCoGVFbAKgB6RqZUiq7kdV1PyDSnREk7KS7ILMYtANScySkRc2NwwKAT2uLVu6HA4KPzY6FjoYvoD8Fg4ftCp52P-zcMzhSLFbsi570eIl7_7EuyfnxYL57L5erpZTFfloZzlsqGWgZGiKbVG64tlVLzPLm0tOObptZ803NgtuWt7Du0Te5l2kaLTQO2bfgluT2d3Qf_fsCY1M7FXHjQI_pDVIwxkAJqJnOUn6ImPxAD9mof3E6HT0VBHS2prfq2pI6WFDCVLWWq-0UZl3TKAlLQbviHvT-xmAV8OAwqGoejQesCmqSsd3_yX4adhLA |
CitedBy_id | crossref_primary_10_1016_j_catena_2020_105106 crossref_primary_10_1016_j_pedsph_2023_03_019 crossref_primary_10_3390_agronomy11040665 crossref_primary_10_1126_sciadv_aau3523 crossref_primary_10_3390_agriculture14030352 crossref_primary_10_1038_s41598_024_65578_0 crossref_primary_10_1016_j_still_2024_106248 crossref_primary_10_1016_j_still_2024_106001 crossref_primary_10_1007_s10661_020_08785_2 crossref_primary_10_1016_j_eiar_2022_106815 crossref_primary_10_1016_j_scitotenv_2022_159169 crossref_primary_10_3390_app9163317 crossref_primary_10_1016_j_ancene_2024_100435 crossref_primary_10_5194_gmd_15_7835_2022 crossref_primary_10_1007_s11430_023_1275_2 crossref_primary_10_1029_2022EF003104 crossref_primary_10_1016_j_earscirev_2019_103067 crossref_primary_10_1111_gcb_17354 crossref_primary_10_1016_j_catena_2021_105753 crossref_primary_10_1016_j_jenvman_2023_119686 crossref_primary_10_1016_j_ancene_2021_100290 crossref_primary_10_1016_j_geoderma_2023_116345 crossref_primary_10_1016_j_scitotenv_2021_149247 crossref_primary_10_1002_esp_4694 crossref_primary_10_2139_ssrn_4074627 crossref_primary_10_1016_j_eti_2022_102498 crossref_primary_10_1016_j_geoderma_2022_116243 crossref_primary_10_1016_j_jhydrol_2019_124526 crossref_primary_10_1016_j_agee_2022_108283 crossref_primary_10_1111_sum_12718 crossref_primary_10_5194_soil_10_281_2024 crossref_primary_10_3390_ma14144036 crossref_primary_10_1016_j_scitotenv_2020_142616 crossref_primary_10_1071_SR22263 crossref_primary_10_3390_w12020529 crossref_primary_10_1002_ldr_3959 crossref_primary_10_1016_j_jenvman_2023_117296 crossref_primary_10_1007_s44378_025_00048_1 crossref_primary_10_1016_j_agee_2021_107827 crossref_primary_10_1016_j_ecoleng_2020_105860 crossref_primary_10_1016_j_jia_2023_10_001 crossref_primary_10_1080_03650340_2019_1630824 crossref_primary_10_1038_s41558_022_01559_3 crossref_primary_10_1016_j_catena_2024_107836 crossref_primary_10_1029_2019JG005471 crossref_primary_10_1016_j_catena_2025_108886 crossref_primary_10_3390_rs13234752 crossref_primary_10_36783_18069657rbcs20240061 crossref_primary_10_1111_gcb_15987 crossref_primary_10_5194_esd_10_685_2019 crossref_primary_10_1002_ldr_4636 crossref_primary_10_3390_land11020176 crossref_primary_10_1016_j_still_2024_106435 crossref_primary_10_3390_atmos13030397 crossref_primary_10_1016_j_still_2021_105001 crossref_primary_10_1016_j_iswcr_2023_02_005 crossref_primary_10_1016_j_catena_2024_108119 crossref_primary_10_1016_j_jhydrol_2024_132451 crossref_primary_10_1007_s11356_020_11888_5 crossref_primary_10_1016_j_agee_2021_107677 crossref_primary_10_1111_ejss_13136 crossref_primary_10_3390_agriculture14112011 crossref_primary_10_1007_s11368_021_02987_y crossref_primary_10_1016_j_catena_2025_108894 crossref_primary_10_1021_acsapm_3c03199 crossref_primary_10_1007_s44169_023_00041_1 crossref_primary_10_1016_j_envpol_2020_114403 crossref_primary_10_1016_j_watres_2022_119499 crossref_primary_10_3390_land12061161 crossref_primary_10_1029_2021JG006616 crossref_primary_10_3390_f16030484 crossref_primary_10_5194_bg_20_635_2023 crossref_primary_10_1134_S1064229321110028 crossref_primary_10_1016_j_chemosphere_2019_125756 crossref_primary_10_1016_j_envres_2021_111087 crossref_primary_10_1007_s13762_020_02756_3 crossref_primary_10_1016_j_soilbio_2024_109549 crossref_primary_10_1016_j_still_2024_106287 crossref_primary_10_1016_j_geodrs_2025_e00928 crossref_primary_10_1002_ldr_3890 crossref_primary_10_1016_j_soilad_2024_100005 crossref_primary_10_31660_0445_01108_2021_6_23_35 crossref_primary_10_1016_j_iswcr_2022_07_003 crossref_primary_10_1016_j_seh_2025_100130 crossref_primary_10_3390_soilsystems3020042 crossref_primary_10_1016_j_scitotenv_2020_144146 crossref_primary_10_1007_s13399_020_00943_3 crossref_primary_10_1016_j_iswcr_2020_07_005 crossref_primary_10_1016_j_still_2021_105119 crossref_primary_10_1007_s10661_024_12673_4 crossref_primary_10_1016_j_still_2024_106209 crossref_primary_10_1016_j_catena_2021_105551 crossref_primary_10_1016_j_oneear_2024_09_001 crossref_primary_10_1029_2022JG007297 crossref_primary_10_1007_s11368_022_03189_w crossref_primary_10_1007_s40808_025_02337_8 crossref_primary_10_1155_2023_7357131 crossref_primary_10_3389_fenvs_2024_1448601 crossref_primary_10_2139_ssrn_4120193 crossref_primary_10_1016_j_chemosphere_2024_141112 crossref_primary_10_1016_j_ecolind_2023_111076 crossref_primary_10_1111_ejss_13485 crossref_primary_10_1002_ldr_4977 crossref_primary_10_1016_j_scitotenv_2024_174243 crossref_primary_10_1016_j_scitotenv_2022_157473 crossref_primary_10_1016_j_catena_2021_106014 crossref_primary_10_3390_f12070859 crossref_primary_10_1007_s10668_024_05285_y crossref_primary_10_3390_su162411273 crossref_primary_10_1016_j_jarmap_2021_100351 crossref_primary_10_3390_ijerph19053020 crossref_primary_10_1016_j_jclepro_2024_143616 crossref_primary_10_1016_j_agee_2020_107112 crossref_primary_10_1016_j_geoderma_2022_116056 crossref_primary_10_1016_j_jenvman_2023_118186 crossref_primary_10_5194_soil_10_109_2024 crossref_primary_10_1016_j_scitotenv_2022_154161 crossref_primary_10_1016_j_agee_2021_107507 crossref_primary_10_1016_j_earscirev_2021_103689 crossref_primary_10_3390_land12091718 crossref_primary_10_5194_soil_6_179_2020 crossref_primary_10_1590_1413_7054202246002622 crossref_primary_10_1016_j_catena_2020_105056 crossref_primary_10_1007_s40333_020_0018_5 crossref_primary_10_1016_j_geoderma_2020_114759 crossref_primary_10_1016_j_geodrs_2023_e00751 crossref_primary_10_1016_j_catena_2024_108444 crossref_primary_10_1029_2022JD037697 crossref_primary_10_1016_j_ijsrc_2021_06_002 crossref_primary_10_1111_ejss_13344 crossref_primary_10_55761_abclima_v36i21_18952 crossref_primary_10_1016_j_catena_2024_108030 crossref_primary_10_3389_fenvs_2022_822967 crossref_primary_10_1016_j_agrformet_2022_109266 crossref_primary_10_1016_j_scitotenv_2020_141717 crossref_primary_10_1016_j_coldregions_2023_103899 crossref_primary_10_5194_soil_6_337_2020 crossref_primary_10_1016_j_catena_2022_106451 crossref_primary_10_3390_agronomy9120785 crossref_primary_10_1016_j_indic_2023_100315 crossref_primary_10_1038_s41598_024_65646_5 crossref_primary_10_1002_hyp_14657 crossref_primary_10_3390_geosciences13090278 crossref_primary_10_1002_ldr_4796 crossref_primary_10_3390_w11122617 crossref_primary_10_1016_j_catena_2024_107901 crossref_primary_10_1016_j_catena_2021_105502 crossref_primary_10_3390_su151713276 crossref_primary_10_1016_j_coesh_2024_100536 crossref_primary_10_1029_2023RG000829 crossref_primary_10_3390_agronomy12112796 crossref_primary_10_1007_s00267_024_02021_0 crossref_primary_10_1016_j_catena_2020_105047 crossref_primary_10_1111_sum_12636 crossref_primary_10_1007_s00267_023_01874_1 |
Cites_doi | 10.1016/S0308-521X(96)00015-7 10.3808/jei.201400287 10.2134/jeq1998.00472425002700010019x 10.1111/j.1365-2486.2005.00950.x 10.1111/j.1365-2486.2007.01457.x 10.1371/journal.pone.0154591 10.1002/2014JC010261 10.1073/pnas.1523358113 10.5194/bg-11-5235-2014 10.1002/esp.3795 10.5194/essd-8-605-2016 10.1016/j.scitotenv.2006.06.007 10.1016/S0160-4120(02)00192-7 10.1016/j.ecolmodel.2008.06.025 10.2136/sssaj2015.12.0444 10.1890/14-1323.1 10.1029/2004GB002271 10.1016/j.iswcr.2016.10.001 10.1016/j.gloplacha.2012.07.003 10.1038/nature14400 10.1016/0016-7061(76)90001-X 10.1016/0016-7061(76)90004-5 10.5194/bg-9-1099-2012 10.5194/esurf-5-113-2017 10.1016/0016-7061(85)90005-9 10.1002/2014JG002635 10.5194/bg-12-4861-2015 10.1016/j.still.2004.09.002 10.5194/tc-8-651-2014 10.1002/esp.3916 10.1016/j.geomorph.2014.07.023 10.1097/SS.0b013e3182285cde 10.1016/j.soilbio.2007.09.003 10.1111/j.1365-2486.2012.02665.x 10.1016/j.geoderma.2012.01.038 10.1002/2014GB004912 10.1016/j.geoderma.2009.12.012 10.1126/science.1101271 10.1016/j.aeolia.2016.07.005 10.1080/00224561.2004.12435709 10.1097/00010694-198611000-00006 10.1111/gcb.13198 10.1029/2012JF002430 10.1029/2008JG000751 10.1097/SS.0b013e318244d8d2 10.1126/science.1145724 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.still.2018.02.001 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1879-3444 |
EndPage | 40 |
ExternalDocumentID | 10_1016_j_still_2018_02_001 S0167198718300345 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE JJJVA KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SES SEW SPC SPCBC SSA SSR SST SSZ T5K TWZ UNMZH WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c332t-51d20c7756ab3ad188a3d1838d193b54a3bf302d6368f9ed5004c65a7b50d653 |
IEDL.DBID | .~1 |
ISSN | 0167-1987 |
IngestDate | Fri Jul 11 16:01:32 EDT 2025 Thu Apr 24 23:05:21 EDT 2025 Thu Jul 10 08:33:05 EDT 2025 Fri Feb 23 02:19:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaseous emissions Global warming 4 per Thousand Soil erosion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-51d20c7756ab3ad188a3d1838d193b54a3bf302d6368f9ed5004c65a7b50d653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2220870428 |
PQPubID | 24069 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2220870428 crossref_primary_10_1016_j_still_2018_02_001 crossref_citationtrail_10_1016_j_still_2018_02_001 elsevier_sciencedirect_doi_10_1016_j_still_2018_02_001 |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationTitle | Soil & tillage research |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Le Quéré, Andrew, Canadell (bib0100) 2016; 8 Józsa, Kiely, Borthwick (bib0045) 2014; 24 Dungait, D.W, Gregory, Whitmore (bib0020) 2012; 18 Korup, Rixen (bib0060) 2014; 8 Nadeu, Berhe, de Vente, Boix-Fayos (bib0145) 2012; 9 Olson, Gennadiyev, Zhidkin, Markelov (bib0160) 2011; 176 Berhe, Harden, Torn, Harte (bib0005) 2008; 113 Chappell, Webb, Rossel, Bui (bib0015) 2014; 11 Wilken, Fiener, Van Oost (bib0235) 2017; 5 Lal (bib0070) 1976; 16 Chappell, Baldock (bib0010) 2016; 22 Yue, Ni, Piao, Wang, Huang, Borthwick, Li, Wang, Chappell, Van Oost (bib0255) 2016; 113 Kirschbaum, Harms, Mathers, Dalal (bib0055) 2008; 40 Wang, Cammeraat, Romeijn, Kalbitz (bib0220) 2014; 9 Mchunu, Chaplot (bib0130) 2012; 177 Galy, Peucker-Ehrenbrink, Eglinton (bib0035) 2015; 521 Li, Nie, Chang, Liu, Sun (bib0105) 2016; 11 Nachimuthu, Hulugalle (bib0140) 2016; 4 Forbes, Raison, Skjemstad (bib0025) 2006; 370 Gaiser, Stahr, Billen, Mohammad (bib0030) 2008; 218 Olson, Gennadiyev, Zhidkin, Markelov (bib0165) 2012; 177 Yan, Wang, Wang, Zhang, Patel (bib0245) 2005; 11 Nearing, Pruski, O’Neal (bib0150) 2004; 59 Van Oost, Quine, Govers, De Gryze, Six, Harden (bib0200) 2007; 318 Yoo, Amundson, Heimsath, Dietrich (bib0250) 2005; 19 Wang, Van Oost, Govers (bib0230) 2015; 29 Ni, Yue, Borthwick, Li, Miao, He (bib0155) 2012; 94-95 Lal (bib0075) 1992 Lee, Phillips, Dodson (bib0095) 1996; 52 Hua, Zhu, Wang, Tian (bib0040) 2016; 80 Lal (bib0085) 2015; 81 Lal, Griffin, Apt, Lave, Morgan (bib0090) 2004; 305 Walling (bib0210) 2009 Wan, El-Swaify (bib0215) 1998; 27 Lal (bib0065) 1976; 16 Luo, Wang, Sun (bib0115) 2010; 155 Schiettecatte, Gabriels, Cornelis, Hofman (bib0190) 2008; 153 Wang, Govers, Van Oost, Clymans, Van den Putte, Merckx (bib0225) 2013; 118 Rajan, Natarajan, Kumar, Badrinath, Gowda (bib0185) 2010; 99 Pearce, Rastetter, Kwiatkowski, Bowden, Mack, Jiang (bib0170) 2015; 25 Quine, van Oost (bib0180) 2007; 13 Lugato, Paustian, Pangos, Jones, Borrelli (bib0110) 2016; 22 Worrall, Burt, Howden (bib0240) 2016; 41 Mann (bib0120) 1985; 36 Mann (bib0125) 1986; 142 Vonk, Semiletov, Dudarev, Eglinton, Andersson, Shakhova (bib0205) 2014; 119 Kirkels, Cammeraat, Kuhn (bib0050) 2014; 226 Lal (bib0080) 2003; 29 Stacy, Hart, Hunsaker, Johnson, Berhe (bib0195) 2015; 12 Puttock, Dungait, Macleod, Bol, Brazier (bib0175) 2014; 119 Müller-Nedebock, Chivenge, Chaplot (bib0135) 2016; 41 Pearce (10.1016/j.still.2018.02.001_bib0170) 2015; 25 Lal (10.1016/j.still.2018.02.001_bib0085) 2015; 81 Kirkels (10.1016/j.still.2018.02.001_bib0050) 2014; 226 Olson (10.1016/j.still.2018.02.001_bib0160) 2011; 176 Hua (10.1016/j.still.2018.02.001_bib0040) 2016; 80 Galy (10.1016/j.still.2018.02.001_bib0035) 2015; 521 Wang (10.1016/j.still.2018.02.001_bib0225) 2013; 118 Lal (10.1016/j.still.2018.02.001_bib0065) 1976; 16 Gaiser (10.1016/j.still.2018.02.001_bib0030) 2008; 218 Nadeu (10.1016/j.still.2018.02.001_bib0145) 2012; 9 Stacy (10.1016/j.still.2018.02.001_bib0195) 2015; 12 Müller-Nedebock (10.1016/j.still.2018.02.001_bib0135) 2016; 41 Luo (10.1016/j.still.2018.02.001_bib0115) 2010; 155 Yan (10.1016/j.still.2018.02.001_bib0245) 2005; 11 Lugato (10.1016/j.still.2018.02.001_bib0110) 2016; 22 Wang (10.1016/j.still.2018.02.001_bib0220) 2014; 9 Berhe (10.1016/j.still.2018.02.001_bib0005) 2008; 113 Yue (10.1016/j.still.2018.02.001_bib0255) 2016; 113 Kirschbaum (10.1016/j.still.2018.02.001_bib0055) 2008; 40 Mchunu (10.1016/j.still.2018.02.001_bib0130) 2012; 177 Forbes (10.1016/j.still.2018.02.001_bib0025) 2006; 370 Mann (10.1016/j.still.2018.02.001_bib0125) 1986; 142 Lal (10.1016/j.still.2018.02.001_bib0070) 1976; 16 Ni (10.1016/j.still.2018.02.001_bib0155) 2012; 94-95 Lee (10.1016/j.still.2018.02.001_bib0095) 1996; 52 Walling (10.1016/j.still.2018.02.001_bib0210) 2009 Lal (10.1016/j.still.2018.02.001_bib0075) 1992 Vonk (10.1016/j.still.2018.02.001_bib0205) 2014; 119 Wilken (10.1016/j.still.2018.02.001_bib0235) 2017; 5 Van Oost (10.1016/j.still.2018.02.001_bib0200) 2007; 318 Quine (10.1016/j.still.2018.02.001_bib0180) 2007; 13 Rajan (10.1016/j.still.2018.02.001_bib0185) 2010; 99 Olson (10.1016/j.still.2018.02.001_bib0165) 2012; 177 Nachimuthu (10.1016/j.still.2018.02.001_bib0140) 2016; 4 Mann (10.1016/j.still.2018.02.001_bib0120) 1985; 36 Lal (10.1016/j.still.2018.02.001_bib0080) 2003; 29 Le Quéré (10.1016/j.still.2018.02.001_bib0100) 2016; 8 Lal (10.1016/j.still.2018.02.001_bib0090) 2004; 305 Worrall (10.1016/j.still.2018.02.001_bib0240) 2016; 41 Korup (10.1016/j.still.2018.02.001_bib0060) 2014; 8 Nearing (10.1016/j.still.2018.02.001_bib0150) 2004; 59 Yoo (10.1016/j.still.2018.02.001_bib0250) 2005; 19 Wan (10.1016/j.still.2018.02.001_bib0215) 1998; 27 Puttock (10.1016/j.still.2018.02.001_bib0175) 2014; 119 Dungait (10.1016/j.still.2018.02.001_bib0020) 2012; 18 Schiettecatte (10.1016/j.still.2018.02.001_bib0190) 2008; 153 Wang (10.1016/j.still.2018.02.001_bib0230) 2015; 29 Józsa (10.1016/j.still.2018.02.001_bib0045) 2014; 24 Chappell (10.1016/j.still.2018.02.001_bib0010) 2016; 22 Chappell (10.1016/j.still.2018.02.001_bib0015) 2014; 11 Li (10.1016/j.still.2018.02.001_bib0105) 2016; 11 |
References_xml | – volume: 99 start-page: 823 year: 2010 end-page: 827 ident: bib0185 article-title: Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion publication-title: Curr. Sci. India – volume: 8 start-page: 605 year: 2016 end-page: 649 ident: bib0100 article-title: Global carbon budget 2016 publication-title: Earth Syst. Sci. Data – volume: 142 start-page: 279 year: 1986 end-page: 288 ident: bib0125 article-title: Changes in soil carbon storage after cultivation publication-title: Soil Sci. – volume: 11 start-page: e0154591 year: 2016 ident: bib0105 article-title: Characteristics of soil organic carbon loss by water erosion on the Loess Plateau in China publication-title: PLoS One – volume: 11 start-page: 5235 year: 2014 end-page: 5244 ident: bib0015 article-title: Australian net (1950s-1990) soil organic carbon erosion: implications for CO publication-title: Biogeosciences – volume: 81 start-page: 137 year: 2015 end-page: 142 ident: bib0085 article-title: Soil erosion and carbon dynamics publication-title: Soil Till. Res. – volume: 29 start-page: 437 year: 2003 end-page: 450 ident: bib0080 article-title: Soil erosion and the global carbon budget publication-title: Env. Int. – volume: 41 start-page: 61 year: 2016 end-page: 71 ident: bib0240 article-title: The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion publication-title: Earth Surf. Processes Landforms – volume: 13 start-page: 2610 year: 2007 end-page: 2625 ident: bib0180 article-title: Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories publication-title: Glob. Change Biol. – volume: 5 start-page: 113 year: 2017 end-page: 124 ident: bib0235 article-title: Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model publication-title: Earth Surf. Dynam. – volume: 12 start-page: 4861 year: 2015 end-page: 4874 ident: bib0195 article-title: Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration publication-title: Biogeosciences – volume: 9 start-page: 1099 year: 2012 end-page: 1111 ident: bib0145 article-title: Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach publication-title: Biogeosciences – volume: 22 start-page: 107 year: 2016 end-page: 116 ident: bib0010 article-title: Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices publication-title: Aeolian Res. – volume: 318 start-page: 626 year: 2007 end-page: 629 ident: bib0200 article-title: The impact of agricultural soil erosion on the global carbon cycle publication-title: Science – volume: 153 start-page: 74 year: 2008 end-page: 83 ident: bib0190 article-title: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes publication-title: SSSA J. – volume: 119 start-page: 2345 year: 2014 end-page: 2357 ident: bib0175 article-title: Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils publication-title: J. Geophys. Res.-Biogeosci. – volume: 24 start-page: 111 year: 2014 end-page: 120 ident: bib0045 article-title: Sediment flux and its environmental implications publication-title: J. Environ. Inf. – volume: 155 start-page: 211 year: 2010 end-page: 223 ident: bib0115 article-title: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis publication-title: Geoderma – volume: 305 start-page: 1567 year: 2004 ident: bib0090 article-title: Managing soil carbon: a response publication-title: Science – volume: 4 start-page: 245 year: 2016 end-page: 259 ident: bib0140 article-title: On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: a review of empirical research publication-title: Int. Soil Water Conserv. Res. – volume: 29 start-page: 65 year: 2015 end-page: 79 ident: bib0230 article-title: Predicting the long-term fate of buried organic carbon in colluvial soils publication-title: Global Biogeochem. Cycles – year: 2009 ident: bib0210 article-title: The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges – start-page: 303 year: 1992 ident: bib0075 article-title: Tropical agricultural hydrology and sustainability of agricultural systems publication-title: IITA Technical Bulletin – volume: 177 start-page: 269 year: 2012 end-page: 278 ident: bib0165 article-title: Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage publication-title: Soil Sci. – volume: 36 start-page: 241 year: 1985 end-page: 253 ident: bib0120 article-title: A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United-States publication-title: Geoderma – volume: 113 start-page: 6617 year: 2016 end-page: 6622 ident: bib0255 article-title: Lateral transport of soil carbon and land-atmosphere CO publication-title: PNAS – volume: 113 year: 2008 ident: bib0005 article-title: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions publication-title: J. Geophys. Res. –Biogeosci. – volume: 177 start-page: 72 year: 2012 end-page: 79 ident: bib0130 article-title: Land degradation impact on soil carbon losses through water erosion and CO2 emissions publication-title: Geoderma – volume: 16 start-page: 403 year: 1976 end-page: 417 ident: bib0070 article-title: Soil erosion on alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments publication-title: Geoderma – volume: 22 start-page: 1976 year: 2016 end-page: 1984 ident: bib0110 article-title: Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution publication-title: Global Change Biol. – volume: 59 start-page: 43 year: 2004 end-page: 50 ident: bib0150 article-title: Expected climate change impacts on soil erosion rates: a review publication-title: J. Soil Water Conserv. – volume: 118 start-page: 348 year: 2013 end-page: 360 ident: bib0225 article-title: Soil organic carbon mobilization by interrill erosion: insights from size fractions publication-title: J. Geophys. Res.-Earth Surf. – volume: 226 start-page: 94 year: 2014 end-page: 105 ident: bib0050 article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes – a review of different concepts publication-title: Geomorphology – volume: 80 start-page: 1011 year: 2016 end-page: 1019 ident: bib0040 article-title: Forms and fluxes of soil organic carbon transport via overland flow, interflow and soil erosion publication-title: Soil Sci. Soc. Am. J. – volume: 9 year: 2014 ident: bib0220 article-title: Soil organic carbon redistribution by water erosion: the role of CO publication-title: PLoS One – volume: 8 start-page: 651 year: 2014 end-page: 658 ident: bib0060 article-title: Soil erosion and organic carbon export by wet snow avalanches publication-title: Cryosphere – volume: 521 year: 2015 ident: bib0035 article-title: Global carbon export from the terrestrial biosphere controlled by erosion publication-title: Nature – volume: 16 start-page: 363 year: 1976 end-page: 375 ident: bib0065 article-title: Soil erosion on alfisols in Western Nigeria: I. Effects of slope, crop rotation and residue management publication-title: Geoderma – volume: 176 start-page: 449 year: 2011 end-page: 458 ident: bib0160 article-title: Impact of land use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions publication-title: Soil Sci. – volume: 94-95 start-page: 101 year: 2012 end-page: 110 ident: bib0155 article-title: Erosion-induced CO publication-title: Global Planet. Change – volume: 25 start-page: 1271 year: 2015 end-page: 1289 ident: bib0170 article-title: Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis publication-title: Ecol. Appl. – volume: 41 start-page: 1399 year: 2016 end-page: 1408 ident: bib0135 article-title: Selective organic carbon losses from soils by sheet erosion and main controls publication-title: Earth Surf. Processes Landforms – volume: 27 start-page: 132 year: 1998 end-page: 138 ident: bib0215 article-title: Sediment enrichment mechanisms of organic carbon and phosphorus in a well-aggregated oxisol publication-title: J. Environ. Qual. Abs. – volume: 19 start-page: 1 year: 2005 end-page: 17 ident: bib0250 article-title: Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model publication-title: Global Biogeochem. Cycles – volume: 11 start-page: 828 year: 2005 end-page: 840 ident: bib0245 article-title: Losses of soil organic carbon under wind erosion in China publication-title: Glob. Change Biol. – volume: 40 start-page: 392 year: 2008 end-page: 405 ident: bib0055 article-title: Soil carbon and nitrogen changes after clearing mulga (Acacia aneura) vegetation in Queensland, Australia: observations, simulations and scenario analysis publication-title: Soil Biol. Biochem. – volume: 119 start-page: 8410 year: 2014 end-page: 8421 ident: bib0205 article-title: Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters publication-title: J. Geophys. Res. Oceans – volume: 18 start-page: 1781 year: 2012 end-page: 1891 ident: bib0020 article-title: Soil organic matter turnover is governed by accessibility not calitrance publication-title: Glob. Change Biol. – volume: 52 start-page: 503 year: 1996 end-page: 521 ident: bib0095 article-title: Sensitivity of the US corn belt to climate change and elevated CO publication-title: Agric. Syst. – volume: 218 start-page: 110 year: 2008 end-page: 120 ident: bib0030 article-title: Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion publication-title: Ecol. Model. – volume: 370 start-page: 190 year: 2006 end-page: 206 ident: bib0025 article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems publication-title: Sci. Total Environ. – volume: 52 start-page: 503 year: 1996 ident: 10.1016/j.still.2018.02.001_bib0095 article-title: Sensitivity of the US corn belt to climate change and elevated CO2. 2. Soil erosion and organic carbon publication-title: Agric. Syst. doi: 10.1016/S0308-521X(96)00015-7 – volume: 24 start-page: 111 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0045 article-title: Sediment flux and its environmental implications publication-title: J. Environ. Inf. doi: 10.3808/jei.201400287 – volume: 27 start-page: 132 year: 1998 ident: 10.1016/j.still.2018.02.001_bib0215 article-title: Sediment enrichment mechanisms of organic carbon and phosphorus in a well-aggregated oxisol publication-title: J. Environ. Qual. Abs. doi: 10.2134/jeq1998.00472425002700010019x – volume: 11 start-page: 828 year: 2005 ident: 10.1016/j.still.2018.02.001_bib0245 article-title: Losses of soil organic carbon under wind erosion in China publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2005.00950.x – volume: 13 start-page: 2610 year: 2007 ident: 10.1016/j.still.2018.02.001_bib0180 article-title: Quantifying carbon sequestration as a result of soil erosion and deposition: retrospective assessment using caesium-137 and carbon inventories publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2007.01457.x – volume: 11 start-page: e0154591 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0105 article-title: Characteristics of soil organic carbon loss by water erosion on the Loess Plateau in China publication-title: PLoS One doi: 10.1371/journal.pone.0154591 – volume: 119 start-page: 8410 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0205 article-title: Preferential burial of permafrost-derived organic carbon in Siberian-Arctic shelf waters publication-title: J. Geophys. Res. Oceans doi: 10.1002/2014JC010261 – volume: 113 start-page: 6617 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0255 article-title: Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China publication-title: PNAS doi: 10.1073/pnas.1523358113 – volume: 11 start-page: 5235 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0015 article-title: Australian net (1950s-1990) soil organic carbon erosion: implications for CO2 emission and land-atmosphere modelling publication-title: Biogeosciences doi: 10.5194/bg-11-5235-2014 – volume: 41 start-page: 61 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0240 article-title: The fluvial flux of particulate organic matter from the UK: the emission factor of soil erosion publication-title: Earth Surf. Processes Landforms doi: 10.1002/esp.3795 – volume: 8 start-page: 605 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0100 article-title: Global carbon budget 2016 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-8-605-2016 – volume: 370 start-page: 190 year: 2006 ident: 10.1016/j.still.2018.02.001_bib0025 article-title: Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2006.06.007 – volume: 29 start-page: 437 year: 2003 ident: 10.1016/j.still.2018.02.001_bib0080 article-title: Soil erosion and the global carbon budget publication-title: Env. Int. doi: 10.1016/S0160-4120(02)00192-7 – volume: 218 start-page: 110 year: 2008 ident: 10.1016/j.still.2018.02.001_bib0030 article-title: Modeling carbon sequestration under zero tillage at the regional scale. I. The effect of soil erosion publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.06.025 – volume: 80 start-page: 1011 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0040 article-title: Forms and fluxes of soil organic carbon transport via overland flow, interflow and soil erosion publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.12.0444 – volume: 25 start-page: 1271 year: 2015 ident: 10.1016/j.still.2018.02.001_bib0170 article-title: Recovery of arctic tundra from thermal erosion disturbance is constrained by nutrient accumulation: a modeling analysis publication-title: Ecol. Appl. doi: 10.1890/14-1323.1 – volume: 19 start-page: 1 year: 2005 ident: 10.1016/j.still.2018.02.001_bib0250 article-title: Erosion of upland hillslope soil organic carbon: coupling field measurements with a sediment transport model publication-title: Global Biogeochem. Cycles doi: 10.1029/2004GB002271 – volume: 4 start-page: 245 issue: 4 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0140 article-title: On-farm gains and losses of soil organic carbon in terrestrial hydrological pathways: a review of empirical research publication-title: Int. Soil Water Conserv. Res. doi: 10.1016/j.iswcr.2016.10.001 – volume: 94-95 start-page: 101 year: 2012 ident: 10.1016/j.still.2018.02.001_bib0155 article-title: Erosion-induced CO2 flux of small watersheds publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2012.07.003 – volume: 521 year: 2015 ident: 10.1016/j.still.2018.02.001_bib0035 article-title: Global carbon export from the terrestrial biosphere controlled by erosion publication-title: Nature doi: 10.1038/nature14400 – volume: 16 start-page: 363 issue: 5 year: 1976 ident: 10.1016/j.still.2018.02.001_bib0065 article-title: Soil erosion on alfisols in Western Nigeria: I. Effects of slope, crop rotation and residue management publication-title: Geoderma doi: 10.1016/0016-7061(76)90001-X – volume: 16 start-page: 403 issue: 5 year: 1976 ident: 10.1016/j.still.2018.02.001_bib0070 article-title: Soil erosion on alfisols in Western Nigeria: IV. Nutrient element losses in runoff and eroded sediments publication-title: Geoderma doi: 10.1016/0016-7061(76)90004-5 – volume: 9 start-page: 1099 year: 2012 ident: 10.1016/j.still.2018.02.001_bib0145 article-title: Erosion, deposition and replacement of soil organic carbon in Mediterranean catchments: a geomorphological, isotopic and land use change approach publication-title: Biogeosciences doi: 10.5194/bg-9-1099-2012 – volume: 5 start-page: 113 year: 2017 ident: 10.1016/j.still.2018.02.001_bib0235 article-title: Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model publication-title: Earth Surf. Dynam. doi: 10.5194/esurf-5-113-2017 – volume: 36 start-page: 241 year: 1985 ident: 10.1016/j.still.2018.02.001_bib0120 article-title: A regional comparison of carbon in cultivated and uncultivated alfisols and mollisols in the central United-States publication-title: Geoderma doi: 10.1016/0016-7061(85)90005-9 – volume: 119 start-page: 2345 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0175 article-title: Woody plant encroachment into grasslands leads to accelerated erosion of previously stable organic carbon from dryland soils publication-title: J. Geophys. Res.-Biogeosci. doi: 10.1002/2014JG002635 – volume: 12 start-page: 4861 year: 2015 ident: 10.1016/j.still.2018.02.001_bib0195 article-title: Soil carbon and nitrogen erosion in forested catchments: implications for erosion-induced terrestrial carbon sequestration publication-title: Biogeosciences doi: 10.5194/bg-12-4861-2015 – volume: 81 start-page: 137 year: 2015 ident: 10.1016/j.still.2018.02.001_bib0085 article-title: Soil erosion and carbon dynamics publication-title: Soil Till. Res. doi: 10.1016/j.still.2004.09.002 – volume: 8 start-page: 651 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0060 article-title: Soil erosion and organic carbon export by wet snow avalanches publication-title: Cryosphere doi: 10.5194/tc-8-651-2014 – year: 2009 ident: 10.1016/j.still.2018.02.001_bib0210 – volume: 41 start-page: 1399 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0135 article-title: Selective organic carbon losses from soils by sheet erosion and main controls publication-title: Earth Surf. Processes Landforms doi: 10.1002/esp.3916 – volume: 226 start-page: 94 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0050 article-title: The fate of soil organic carbon upon erosion, transport and deposition in agricultural landscapes – a review of different concepts publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.07.023 – volume: 153 start-page: 74 year: 2008 ident: 10.1016/j.still.2018.02.001_bib0190 article-title: Enrichment of organic carbon in sediment transport by interrill and rill erosion processes publication-title: SSSA J. – volume: 176 start-page: 449 year: 2011 ident: 10.1016/j.still.2018.02.001_bib0160 article-title: Impact of land use change and soil erosion in upper Mississippi River Valley on soil organic carbon retention and greenhouse gas emissions publication-title: Soil Sci. doi: 10.1097/SS.0b013e3182285cde – volume: 40 start-page: 392 year: 2008 ident: 10.1016/j.still.2018.02.001_bib0055 article-title: Soil carbon and nitrogen changes after clearing mulga (Acacia aneura) vegetation in Queensland, Australia: observations, simulations and scenario analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.09.003 – volume: 18 start-page: 1781 year: 2012 ident: 10.1016/j.still.2018.02.001_bib0020 article-title: Soil organic matter turnover is governed by accessibility not calitrance publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2012.02665.x – volume: 177 start-page: 72 year: 2012 ident: 10.1016/j.still.2018.02.001_bib0130 article-title: Land degradation impact on soil carbon losses through water erosion and CO2 emissions publication-title: Geoderma doi: 10.1016/j.geoderma.2012.01.038 – volume: 29 start-page: 65 year: 2015 ident: 10.1016/j.still.2018.02.001_bib0230 article-title: Predicting the long-term fate of buried organic carbon in colluvial soils publication-title: Global Biogeochem. Cycles doi: 10.1002/2014GB004912 – volume: 155 start-page: 211 year: 2010 ident: 10.1016/j.still.2018.02.001_bib0115 article-title: Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis publication-title: Geoderma doi: 10.1016/j.geoderma.2009.12.012 – volume: 305 start-page: 1567 year: 2004 ident: 10.1016/j.still.2018.02.001_bib0090 article-title: Managing soil carbon: a response publication-title: Science doi: 10.1126/science.1101271 – volume: 22 start-page: 107 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0010 article-title: Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2016.07.005 – volume: 59 start-page: 43 year: 2004 ident: 10.1016/j.still.2018.02.001_bib0150 article-title: Expected climate change impacts on soil erosion rates: a review publication-title: J. Soil Water Conserv. doi: 10.1080/00224561.2004.12435709 – volume: 9 year: 2014 ident: 10.1016/j.still.2018.02.001_bib0220 article-title: Soil organic carbon redistribution by water erosion: the role of CO2 emissions for the carbon budget publication-title: PLoS One – volume: 142 start-page: 279 year: 1986 ident: 10.1016/j.still.2018.02.001_bib0125 article-title: Changes in soil carbon storage after cultivation publication-title: Soil Sci. doi: 10.1097/00010694-198611000-00006 – volume: 22 start-page: 1976 year: 2016 ident: 10.1016/j.still.2018.02.001_bib0110 article-title: Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution publication-title: Global Change Biol. doi: 10.1111/gcb.13198 – start-page: 303 year: 1992 ident: 10.1016/j.still.2018.02.001_bib0075 article-title: Tropical agricultural hydrology and sustainability of agricultural systems – volume: 99 start-page: 823 year: 2010 ident: 10.1016/j.still.2018.02.001_bib0185 article-title: Soil organic carbon - the most reliable indicator for monitoring land degradation by soil erosion publication-title: Curr. Sci. India – volume: 118 start-page: 348 year: 2013 ident: 10.1016/j.still.2018.02.001_bib0225 article-title: Soil organic carbon mobilization by interrill erosion: insights from size fractions publication-title: J. Geophys. Res.-Earth Surf. doi: 10.1029/2012JF002430 – volume: 113 year: 2008 ident: 10.1016/j.still.2018.02.001_bib0005 article-title: Linking soil organic matter dynamics and erosion-induced terrestrial carbon sequestration at different landform positions publication-title: J. Geophys. Res. –Biogeosci. doi: 10.1029/2008JG000751 – volume: 177 start-page: 269 year: 2012 ident: 10.1016/j.still.2018.02.001_bib0165 article-title: Impacts of land-use change, slope, and erosion on soil organic carbon retention and storage publication-title: Soil Sci. doi: 10.1097/SS.0b013e318244d8d2 – volume: 318 start-page: 626 year: 2007 ident: 10.1016/j.still.2018.02.001_bib0200 article-title: The impact of agricultural soil erosion on the global carbon cycle publication-title: Science doi: 10.1126/science.1145724 |
SSID | ssj0004328 |
Score | 2.605018 |
Snippet | •Impact of soil erosion as a source of CO2 and other greenhouse gases.•On-site and off-site effects of erosion-induced transport of soil organic... Soil erosion, physical transport of soil over the landscape by alluvial and aeolian processes as source of energy, has a strong impact on the global carbon... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35 |
SubjectTerms | 4 per Thousand aeration agroecosystems anaerobic conditions aquatic ecosystems bulk density carbon cycle carbon dioxide ecoregions encapsulation energy floodplains gas emissions Gaseous emissions Global warming lakes landscapes management systems methane microbial activity nitrous oxide soil Soil erosion soil organic carbon uncertainty watersheds wind erosion |
Title | Accelerated Soil erosion as a source of atmospheric CO2 |
URI | https://dx.doi.org/10.1016/j.still.2018.02.001 https://www.proquest.com/docview/2220870428 |
Volume | 188 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvFNBI_WTTtJ2h7LoqwK62FX8BbSpJHKul3c9epvd9KHoqAHL4WGJC1fkplJ8uULIecgRZiYEIKUaQi44w7HHDgM5NLCB7SAyZ5tMZLDB377KB57ZNCdhfG0ytb2Nza9ttZtSr9Fsz8vy_7YE-j9lNlXyID7g-acx76XX75_0Tw41Per1vrePnenPFRzvHAUTf3-Q5g0wp3hb97ph52unc_1Jtloo0aaNT-2RXrFbJusZ0-vrXJGsUPizBh0IV75wdJxVU5pgZ9A1KleUE2bRXpaOaqXL9XCiwmUhg7uo10yub6aDIZBeytCYACiZSBCGzETx0LqHLQNk0QDPiGxGIvlgmvIHbDISpCJSwsrEAMjhY5zwawUsEdWZtWs2CfUsdikTOYSvTgXVqQC80vH89DZGKw5IFEHhjKtYri_uGKqOmrYs6oRVB5BxSJPkDsgF5-F5o1gxt_ZZYey-tbuCk363wXPujZROCL8NoeeFdXbQmHEw9AK4bzq8L-VH5E1fEsbYuMxWVm-vhUnGHws89O6d52S1ezmbjj6AMIs1nM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6CcgAOiA0QHQM8aUeiOnmxkxyralULrDvQSdwsx45RUWlQf_z_e86PTSCtBy45OH5O9Dl-7zn-_BngO0oRpibEIOMag9jFjsYcOkrkssIntEjFnm0xkaPf8e2jeNyBQbsXxtMqG99f-_TKWzclvQbN3uts1nvwBHo_ZfYNcozFLux5dSrRgb3--G40-bc9EqsjViuJb2_Qig9VNC8aSHO_BBGmtXZn-L8A9c5VV_FneAxHTeLI-vW7fYKdYvEZDvtPy0Y8oziBpG8MRREv_mDZQzmbs4IeQcAzvWKa1f_pWemYXr-UK68nMDNs8Cs6henwx3QwCpqDEQKDGK0DEdqImyQRUueobZimGumKqaV0LBexxtwhj6xEmbqssIIwMFLoJBfcSoFn0FmUi-IcmOOJybjMJQXyWFiRCaovXZyHziZoTReiFgxlGtFwf3bFXLXssGdVIag8gopHniPXhZu_Rq-1Zsb26rJFWb3pekVefbvht7ZPFA0Kv9KhF0W5WSlKejg5Ippafflo49ewP5r-vFf348ndBRzQnazmOX6Fznq5KS4pF1nnV8239gcs79kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Soil+erosion+as+a+source+of+atmospheric+CO2&rft.jtitle=Soil+%26+tillage+research&rft.au=Lal%2C+Rattan&rft.date=2019-05-01&rft.issn=0167-1987&rft.volume=188&rft.spage=35&rft.epage=40&rft_id=info:doi/10.1016%2Fj.still.2018.02.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_still_2018_02_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-1987&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-1987&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-1987&client=summon |