Turbulence in transient channel flow

Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In respons...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 715; pp. 60 - 102
Main Authors He, S., Seddighi, M.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $, whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $. The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition.
AbstractList Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $, whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $. The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition.
Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $ , whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of  ${u}^{\ensuremath{\prime} } $ . The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition.
Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar-turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a 'receptivity' process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of [formula omitted, refer to PDF], whilst [formula omitted, refer to PDF] and [formula omitted, refer to PDF] remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of [formula omitted, refer to PDF]. The pressure-strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition. [PUBLICATION ABSTRACT]
Author He, S.
Seddighi, M.
Author_xml – sequence: 1
  givenname: S.
  surname: He
  fullname: He, S.
  email: s.he@sheffield.ac.uk
  organization: Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK
– sequence: 2
  givenname: M.
  surname: Seddighi
  fullname: Seddighi, M.
  organization: Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26885675$$DView record in Pascal Francis
BookMark eNp1kE1LAzEQhoNUsK3e_AEL6s1dJ8k2H0cpfkHBSz2HbJpoyjZbk13Ef29Ki4goDMzleWdengkahS5YhM4xVBgwv1m7TUUAk6qW4giNcc1kyVk9G6ExACElxgRO0CSlNQCmIPkYXS6H2AytDcYWPhR91CF5G_rCvOkQbFu4tvs4RcdOt8meHfYUvdzfLeeP5eL54Wl-uygNpaQv60YKbJ1z0mmqIY8hK66NcMJKarBh0FjihCbQcDBGUEGI09w1IKxjQKfoYn93G7v3waZerbshhvxSYcI4l5JLnKmrA6WT0a3LlY1Pahv9RsdPRZgQM8ZnmbvecyZ2KUXrvhEMaudLZV9q50tlXxknv3Dje937LmQpvv0vVB1CetNEv3q1Pyr_FfgCVNR-mQ
CODEN JFLSA7
CitedBy_id crossref_primary_10_1016_j_ijheatfluidflow_2018_03_005
crossref_primary_10_1063_5_0031338
crossref_primary_10_1017_jfm_2021_458
crossref_primary_10_3390_w15223988
crossref_primary_10_1017_jfm_2017_753
crossref_primary_10_1115_1_4046488
crossref_primary_10_1080_14685248_2017_1390239
crossref_primary_10_1016_j_ijheatfluidflow_2017_06_012
crossref_primary_10_1017_jfm_2014_698
crossref_primary_10_59324_ejtas_2024_2_2__82
crossref_primary_10_1017_jfm_2022_577
crossref_primary_10_1061__ASCE_HY_1943_7900_0000930
crossref_primary_10_1016_j_applthermaleng_2023_120790
crossref_primary_10_1017_jfm_2021_1156
crossref_primary_10_1017_jfm_2019_191
crossref_primary_10_1080_19942060_2019_1645736
crossref_primary_10_1115_1_4040299
crossref_primary_10_1080_14685248_2022_2131799
crossref_primary_10_1016_j_supflu_2023_106136
crossref_primary_10_1017_jfm_2021_303
crossref_primary_10_1080_14685248_2021_1885676
crossref_primary_10_1007_s10483_024_3131_6
crossref_primary_10_1007_s10494_018_9896_4
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126004
crossref_primary_10_1103_PhysRevFluids_8_064606
crossref_primary_10_1017_jfm_2021_705
crossref_primary_10_1017_jfm_2019_869
crossref_primary_10_1061__ASCE_HY_1943_7900_0001998
crossref_primary_10_1080_14685248_2021_1927057
crossref_primary_10_1016_j_compfluid_2022_105650
crossref_primary_10_1016_j_icheatmasstransfer_2025_108753
crossref_primary_10_1017_jfm_2022_948
crossref_primary_10_1017_jfm_2023_585
crossref_primary_10_3390_e20050375
crossref_primary_10_1016_j_compfluid_2013_10_037
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122651
crossref_primary_10_1017_jfm_2023_1068
crossref_primary_10_1017_jfm_2023_1025
crossref_primary_10_1017_jfm_2015_722
crossref_primary_10_1016_j_nucengdes_2022_112082
crossref_primary_10_1016_j_oceaneng_2021_110192
crossref_primary_10_1017_jfm_2022_560
crossref_primary_10_1017_jfm_2015_488
crossref_primary_10_1061__ASCE_HY_1943_7900_0001562
crossref_primary_10_1016_j_euromechflu_2015_04_001
crossref_primary_10_1103_PhysRevFluids_9_034601
crossref_primary_10_3390_en13061310
crossref_primary_10_1016_j_ijheatfluidflow_2015_09_004
crossref_primary_10_1017_jfm_2023_294
crossref_primary_10_1080_14685248_2020_1788218
crossref_primary_10_1115_1_4062166
crossref_primary_10_3795_KSME_B_2016_40_7_435
crossref_primary_10_1038_s41586_023_06399_5
crossref_primary_10_1080_14685248_2015_1052464
crossref_primary_10_1007_s10494_013_9519_z
crossref_primary_10_1115_1_4030806
crossref_primary_10_1016_j_expthermflusci_2014_06_015
crossref_primary_10_1146_annurev_fluid_120720_021813
crossref_primary_10_59324_ejtas_2024_2_3__34
crossref_primary_10_1115_1_4052416
crossref_primary_10_1016_j_ijheatfluidflow_2020_108697
crossref_primary_10_1016_j_proeng_2015_11_173
crossref_primary_10_1017_jfm_2023_520
crossref_primary_10_1017_jfm_2016_653
crossref_primary_10_1080_00221686_2014_967817
Cites_doi 10.1063/1.869908
10.1017/S0022112004002770
10.1017/S0022112008003017
10.1016/j.euromechflu.2008.06.002
10.1017/S0022112005003800
10.1016/j.euromechflu.2008.05.004
10.1017/S0022112071002842
10.1063/1.868473
10.1098/rsta.2008.0063
10.1017/S0022112000002469
10.1103/PhysRevE.63.046307
10.1017/S0022112095000462
10.1002/fld.917
10.1017/S0022112007008336
10.1017/S0022112073001576
10.1017/S0022112004000941
10.1017/S0022112099006205
10.1017/S0022112006001893
10.2514/1.6332
10.1063/1.3005836
10.1098/rstl.1883.0029
10.1252/jcej.9.431
10.1007/s10494-011-9341-4
10.1007/BF00271421
10.1017/S0022112087000892
10.1146/annurev-fluid-122109-160652
10.1103/PhysRevLett.103.054502
10.1017/jfm.2011.328
10.1017/S0022112010001758
10.1017/jfm.2011.177
10.1017/S0022112010002600
10.1017/S0022112082002006
10.1017/S0022112004000114
10.1126/science.1203223
10.1017/jfm.2011.120
10.1017/S0022112099004681
10.1016/S0021-9991(03)00029-9
10.1006/jcph.1993.1210
10.1146/annurev.fluid.30.1.539
10.1017/jfm.2011.300
10.1016/j.jher.2009.02.003
10.1017/S0022112001007431
10.1017/S0022112099007259
10.1016/0021-9991(85)90148-2
10.1017/S0022112000002810
10.1063/1.1359766
10.1017/S0022112099007016
10.1146/annurev.fluid.39.050905.110135
10.1017/S0022112006001340
10.1017/S0022112009006624
10.1017/S0022112008005648
10.1063/1.869966
10.1017/jfm.2011.41
10.1146/annurev.fluid.39.050905.110308
ContentType Journal Article
Copyright 2013 Cambridge University Press
2014 INIST-CNRS
Copyright_xml – notice: 2013 Cambridge University Press
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2012.498
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate S. He and M. Seddighi
Turbulence in transient channel flow
EISSN 1469-7645
EndPage 102
ExternalDocumentID 2861161621
26885675
10_1017_jfm_2012_498
Genre Feature
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AATMM
AAYXX
ABVKB
ABXAU
ABXHF
ACDLN
AEUYN
AFZFC
AKMAY
BQFHP
CITATION
PHGZM
PHGZT
-1F
-2V
-~N
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABTAH
ABVFV
ABVZP
ABZUI
ACETC
ACKIV
ACRPL
ADMLS
ADNMO
ADOVH
AEBPU
AEMFK
AENCP
AI.
ALEEW
BESQT
CAG
CCUQV
CDIZJ
COF
H~9
I.9
IQODW
KAFGG
NMFBF
VH1
VOH
ZJOSE
ZY4
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c332t-4b981efff9fa3a03a0c2d7ac8f8e93c1c60be2f8a20b70cc83822fa7fb08ef603
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Fri Aug 15 22:51:08 EDT 2025
Wed Apr 02 07:24:34 EDT 2025
Thu Apr 24 23:08:37 EDT 2025
Tue Jul 01 01:45:05 EDT 2025
Wed Mar 13 05:40:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords turbulent transition
turbulent flows
pipe flow boundary layer
Pipe flow
Skin friction
Digital simulation
Vorticity
Modelling
Velocity distribution
Transition flow
Boundary layers
Turbulence structure
Turbulent laminar transition
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-4b981efff9fa3a03a0c2d7ac8f8e93c1c60be2f8a20b70cc83822fa7fb08ef603
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1267799791
PQPubID 34769
PageCount 43
ParticipantIDs proquest_journals_1267799791
pascalfrancis_primary_26885675
crossref_primary_10_1017_jfm_2012_498
crossref_citationtrail_10_1017_jfm_2012_498
cambridge_journals_10_1017_jfm_2012_498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-25
PublicationDateYYYYMMDD 2013-01-25
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2013
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S0022112012004983_r38
S0022112012004983_r37
Lagha (S0022112012004983_r24) 2007; 19
S0022112012004983_r31
S0022112012004983_r30
S0022112012004983_r35
S0022112012004983_r34
S0022112012004983_r33
S0022112012004983_r32
Roach (S0022112012004983_r43) 1992
Orlandi (S0022112012004983_r36) 2001
S0022112012004983_r28
S0022112012004983_r27
S0022112012004983_r26
S0022112012004983_r25
S0022112012004983_r29
S0022112012004983_r20
S0022112012004983_r22
S0022112012004983_r21
S0022112012004983_r17
S0022112012004983_r16
S0022112012004983_r15
S0022112012004983_r59
S0022112012004983_r58
S0022112012004983_r14
S0022112012004983_r19
S0022112012004983_r18
S0022112012004983_r53
S0022112012004983_r52
S0022112012004983_r50
S0022112012004983_r57
S0022112012004983_r13
S0022112012004983_r56
S0022112012004983_r12
S0022112012004983_r11
S0022112012004983_r55
S0022112012004983_r54
S0022112012004983_r10
S0022112012004983_r60
Pfenninger (S0022112012004983_r39) 1961
S0022112012004983_r49
S0022112012004983_r48
S0022112012004983_r47
S0022112012004983_r3
S0022112012004983_r4
Abe (S0022112012004983_r1) 2001; 123
S0022112012004983_r2
Zang (S0022112012004983_r61) 1989; 1
S0022112012004983_r42
S0022112012004983_r41
S0022112012004983_r40
S0022112012004983_r46
S0022112012004983_r45
S0022112012004983_r44
Klebanoff (S0022112012004983_r23) 1971; 10
Van (S0022112012004983_r51) 2011; 684
S0022112012004983_r7
S0022112012004983_r8
S0022112012004983_r5
S0022112012004983_r6
S0022112012004983_r9
References_xml – ident: S0022112012004983_r2
  doi: 10.1063/1.869908
– ident: S0022112012004983_r13
  doi: 10.1017/S0022112004002770
– ident: S0022112012004983_r38
  doi: 10.1017/S0022112008003017
– ident: S0022112012004983_r12
  doi: 10.1016/j.euromechflu.2008.06.002
– ident: S0022112012004983_r58
  doi: 10.1017/S0022112005003800
– ident: S0022112012004983_r17
  doi: 10.1016/j.euromechflu.2008.05.004
– ident: S0022112012004983_r37
  doi: 10.1017/S0022112071002842
– start-page: 319
  volume-title: Numerical Simulation of Unsteady Flows and Transition to Turbulence
  year: 1992
  ident: S0022112012004983_r43
– ident: S0022112012004983_r53
  doi: 10.1063/1.868473
– ident: S0022112012004983_r54
  doi: 10.1098/rsta.2008.0063
– ident: S0022112012004983_r19
  doi: 10.1017/S0022112000002469
– ident: S0022112012004983_r45
  doi: 10.1103/PhysRevE.63.046307
– ident: S0022112012004983_r20
  doi: 10.1017/S0022112095000462
– volume: 10
  start-page: 1323
  year: 1971
  ident: S0022112012004983_r23
  article-title: Effect of free stream turbulence on the laminar boundary layer
  publication-title: Bull. Am. Phys. Soc.
– ident: S0022112012004983_r7
  doi: 10.1002/fld.917
– ident: S0022112012004983_r18
  doi: 10.1017/S0022112007008336
– volume-title: Fluid Flow Phenomena: A Numerical Toolkit
  year: 2001
  ident: S0022112012004983_r36
– ident: S0022112012004983_r57
  doi: 10.1017/S0022112073001576
– ident: S0022112012004983_r5
  doi: 10.1017/S0022112004000941
– ident: S0022112012004983_r55
  doi: 10.1017/S0022112099006205
– ident: S0022112012004983_r34
  doi: 10.1017/S0022112006001893
– ident: S0022112012004983_r50
  doi: 10.2514/1.6332
– ident: S0022112012004983_r44
  doi: 10.1063/1.3005836
– ident: S0022112012004983_r41
  doi: 10.1098/rstl.1883.0029
– ident: S0022112012004983_r27
  doi: 10.1252/jcej.9.431
– ident: S0022112012004983_r48
  doi: 10.1007/s10494-011-9341-4
– volume: 1
  start-page: 41
  year: 1989
  ident: S0022112012004983_r61
  article-title: Numerical experiments on stability and transition in plane channel flow
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/BF00271421
– start-page: 961
  volume-title: Boundary Layer Suction Experiments with Laminar Flow at High Reynolds Numbers in the Inlet Length of a Tube by Various Suction Methods, in Boundary Layer and Flow Control
  year: 1961
  ident: S0022112012004983_r39
– ident: S0022112012004983_r22
  doi: 10.1017/S0022112087000892
– ident: S0022112012004983_r33
  doi: 10.1146/annurev-fluid-122109-160652
– ident: S0022112012004983_r29
  doi: 10.1103/PhysRevLett.103.054502
– ident: S0022112012004983_r15
  doi: 10.1017/jfm.2011.328
– ident: S0022112012004983_r35
  doi: 10.1017/S0022112010001758
– ident: S0022112012004983_r52
  doi: 10.1017/jfm.2011.177
– ident: S0022112012004983_r26
  doi: 10.1017/S0022112010002600
– ident: S0022112012004983_r6
  doi: 10.1017/S0022112082002006
– ident: S0022112012004983_r14
  doi: 10.1017/S0022112004000114
– ident: S0022112012004983_r4
  doi: 10.1126/science.1203223
– ident: S0022112012004983_r11
  doi: 10.1017/jfm.2011.120
– ident: S0022112012004983_r49
  doi: 10.1017/S0022112099004681
– ident: S0022112012004983_r30
  doi: 10.1016/S0021-9991(03)00029-9
– ident: S0022112012004983_r40
  doi: 10.1006/jcph.1993.1210
– ident: S0022112012004983_r31
  doi: 10.1146/annurev.fluid.30.1.539
– ident: S0022112012004983_r47
– volume: 684
  start-page: 251
  year: 2011
  ident: S0022112012004983_r51
  article-title: Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.300
– ident: S0022112012004983_r8
  doi: 10.1016/j.jher.2009.02.003
– ident: S0022112012004983_r3
  doi: 10.1017/S0022112001007431
– ident: S0022112012004983_r25
  doi: 10.1017/S0022112099007259
– ident: S0022112012004983_r21
  doi: 10.1016/0021-9991(85)90148-2
– volume: 19
  year: 2007
  ident: S0022112012004983_r24
  article-title: Turbulent spots and waves in a model for plane Poiseuille flow
  publication-title: Phys. Fluids
– ident: S0022112012004983_r28
  doi: 10.1017/S0022112000002810
– ident: S0022112012004983_r46
  doi: 10.1063/1.1359766
– ident: S0022112012004983_r16
  doi: 10.1017/S0022112099007016
– ident: S0022112012004983_r9
  doi: 10.1146/annurev.fluid.39.050905.110135
– ident: S0022112012004983_r59
  doi: 10.1017/S0022112006001340
– ident: S0022112012004983_r56
  doi: 10.1017/S0022112009006624
– volume: 123
  start-page: 382
  year: 2001
  ident: S0022112012004983_r1
  article-title: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence
  publication-title: Trans. ASME: J. Fluids Engng
– ident: S0022112012004983_r60
  doi: 10.1017/S0022112008005648
– ident: S0022112012004983_r32
  doi: 10.1063/1.869966
– ident: S0022112012004983_r42
  doi: 10.1017/jfm.2011.41
– ident: S0022112012004983_r10
  doi: 10.1146/annurev.fluid.39.050905.110308
SSID ssj0013097
Score 2.3645232
Snippet Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is...
SourceID proquest
pascalfrancis
crossref
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Boundary layer
Boundary layers
Channel flow
Exact sciences and technology
Flow rates
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Kinetic energy
Laminar flow
Physics
Reynolds number
Transition to turbulence
Turbulent flow
Turbulent flows, convection, and heat transfer
Title Turbulence in transient channel flow
URI https://www.cambridge.org/core/product/identifier/S0022112012004983/type/journal_article
https://www.proquest.com/docview/1267799791
Volume 715
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEB_URVDEx_qJ62PpQfEg8WvTNI-T-FpFVMQHeCtJmoCydFe74r9v0s2uK6JQ6KFzKL-ZzEySmd8A7BgmJDOJQIoUBBHNMFLOkFCqCy2U5jJLfb_z9Q29eCSXT9lTOHCrQlnlyCfWjrroaX9G_j_BlDEhmEgO-6_IT43yt6thhMY0NJwL5m7z1Tg-u7m9-7pHiAUb8YW7zCIOpe-eNPrF-kb0BB8QwSeJFb4FqIW-rBxWdjjk4oe_roNQZxkWQ_YYHQ3VvQJTpmzCUsgko7BOqybMT9AMNmG2LvPU1SrsPLw7FOs-o-i5jAY-UPmGyMj3_5amG9lu7-MfPHbOHk4uUJiTgHSa4gEiSvDEWGuFlamM3aNxwaTmlhuR6kTTWBlsucSxYrHWPHVZgZXMqpgbS-N0DWbKXmnWIaLKSGIoN5JSwomWrJBGZUq4N9FF0YK9MVB5sPYqH1aKsdxBmntIcwdpC_ZHMOY60I37qRfdX6R3x9L9Ic3GL3LtbxoZC2PKeeY2Py3YGqlo4v_GtrPx9-dNmMP1uIsE4WwLZgZv72bbJR0D1YZp3jlvQ-Po9Prqvh3s7BPl2tjR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BFYKqassCYlugOYA4IENiO34cqqoq3S7lcVokbsF2bAm0yi5kEeqf6m-sncd2EYIbUqQcMoqimfHMOJ75PoAdy6XiNpFI05wiajhG2jsSIiY3UhuhUhLmnc_OWf-C_r5ML-fgbzsLE9oq25hYBep8ZMI_8sMEM86l5DL5Nr5FgTUqnK62FBq1W5zYPw9-y1Z-PT7y9t3FuPdz8KOPGlYBZAjBE0S1FIl1zkmniIr9ZXDOlRFOWElMYlisLXZC4Vjz2BhBfA51ijsdC-tYTPx75-ENJUSGFSV6v_6fWsSSt-jkvo6Jm0b7AFF948LYe4IPqBSzMA6P0uG7sSq9ZVxNqfEkO1Qpr_cR3je1avS9dq4VmLNFBz40dWvURIWyA29nQA07sFg1lZpyFXYG995m1VRTdF1Ek5AWw_hlFKaNCzuM3HD0sAYXr6K_dVgoRoXdgIhpq6hlwirGqKBG8VxZnWrp79TkeRf2porKmrVVZnVfGs-8SrOg0syrtAv7rRoz04CbB46N4TPSu1PpcQ3q8Yzc9iOLTIUxEyL1W60ubLYmmvm-qad-evnxF1jqD85Os9Pj85PPsIwroo0E4XQTFiZ393bLlzsTvV35WARXr-3U_wAbTxPW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulence+in+transient+channel+flow&rft.jtitle=Journal+of+fluid+mechanics&rft.au=HE%2C+S&rft.au=SEDDIGHI%2C+M&rft.date=2013-01-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.volume=715&rft.spage=60&rft.epage=102&rft_id=info:doi/10.1017%2Fjfm.2012.498&rft.externalDBID=n%2Fa&rft.externalDocID=26885675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon