Turbulence in transient channel flow
Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In respons...
Saved in:
Published in | Journal of fluid mechanics Vol. 715; pp. 60 - 102 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $, whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $. The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition. |
---|---|
AbstractList | Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $, whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $. The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition. Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar–turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a ‘receptivity’ process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of ${u}^{\ensuremath{\prime} } $ , whilst ${v}^{\ensuremath{\prime} } $ and ${w}^{\ensuremath{\prime} } $ remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of ${u}^{\ensuremath{\prime} } $ . The pressure–strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition. Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is shown that a low-Reynolds-number turbulent flow can undergo a process of transition that resembles the laminar-turbulent transition. In response to the rapid increase of flow rate, the flow does not progressively evolve from the initial turbulent structure to a new one, but undergoes a process involving three distinct phases (pre-transition, transition and fully turbulent) that are equivalent to the three regions of the boundary layer bypass transition, namely, the buffeted laminar flow, the intermittent flow and the fully turbulent flow regions. This transient channel flow represents an alternative bypass transition scenario to the free-stream-turbulence (FST) induced transition, whereby the initial flow serving as the disturbance is a low-Reynolds-number turbulent wall shear flow with pre-existing streaky structures. The flow nevertheless undergoes a 'receptivity' process during which the initial structures are modulated by a time-developing boundary layer, forming streaks of apparently specific favourable spacing (of about double the new boundary layer thickness) which are elongated streamwise during the pre-transitional period. The structures are stable and the flow is laminar-like initially; but later in the transitional phase, localized turbulent spots are generated which grow spatially, merge with each other and eventually occupy the entire wall surfaces when the flow becomes fully turbulent. It appears that the presence of the initial turbulent structures does not promote early transition when compared with boundary layer transition of similar FST intensity. New turbulent structures first appear at high wavenumbers extending into a lower-wavenumber spectrum later as turbulent spots grow and join together. In line with the transient energy growth theory, the maximum turbulent kinetic energy in the pre-transitional phase grows linearly but only in terms of [formula omitted, refer to PDF], whilst [formula omitted, refer to PDF] and [formula omitted, refer to PDF] remain essentially unchanged. The energy production and dissipation rates are very low at this stage despite the high level of [formula omitted, refer to PDF]. The pressure-strain term remains unchanged at that time, but increases rapidly later during transition along with the generation of turbulent spots, hence providing an unambiguous measure for the onset of transition. [PUBLICATION ABSTRACT] |
Author | He, S. Seddighi, M. |
Author_xml | – sequence: 1 givenname: S. surname: He fullname: He, S. email: s.he@sheffield.ac.uk organization: Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK – sequence: 2 givenname: M. surname: Seddighi fullname: Seddighi, M. organization: Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26885675$$DView record in Pascal Francis |
BookMark | eNp1kE1LAzEQhoNUsK3e_AEL6s1dJ8k2H0cpfkHBSz2HbJpoyjZbk13Ef29Ki4goDMzleWdengkahS5YhM4xVBgwv1m7TUUAk6qW4giNcc1kyVk9G6ExACElxgRO0CSlNQCmIPkYXS6H2AytDcYWPhR91CF5G_rCvOkQbFu4tvs4RcdOt8meHfYUvdzfLeeP5eL54Wl-uygNpaQv60YKbJ1z0mmqIY8hK66NcMJKarBh0FjihCbQcDBGUEGI09w1IKxjQKfoYn93G7v3waZerbshhvxSYcI4l5JLnKmrA6WT0a3LlY1Pahv9RsdPRZgQM8ZnmbvecyZ2KUXrvhEMaudLZV9q50tlXxknv3Dje937LmQpvv0vVB1CetNEv3q1Pyr_FfgCVNR-mQ |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1016_j_ijheatfluidflow_2018_03_005 crossref_primary_10_1063_5_0031338 crossref_primary_10_1017_jfm_2021_458 crossref_primary_10_3390_w15223988 crossref_primary_10_1017_jfm_2017_753 crossref_primary_10_1115_1_4046488 crossref_primary_10_1080_14685248_2017_1390239 crossref_primary_10_1016_j_ijheatfluidflow_2017_06_012 crossref_primary_10_1017_jfm_2014_698 crossref_primary_10_59324_ejtas_2024_2_2__82 crossref_primary_10_1017_jfm_2022_577 crossref_primary_10_1061__ASCE_HY_1943_7900_0000930 crossref_primary_10_1016_j_applthermaleng_2023_120790 crossref_primary_10_1017_jfm_2021_1156 crossref_primary_10_1017_jfm_2019_191 crossref_primary_10_1080_19942060_2019_1645736 crossref_primary_10_1115_1_4040299 crossref_primary_10_1080_14685248_2022_2131799 crossref_primary_10_1016_j_supflu_2023_106136 crossref_primary_10_1017_jfm_2021_303 crossref_primary_10_1080_14685248_2021_1885676 crossref_primary_10_1007_s10483_024_3131_6 crossref_primary_10_1007_s10494_018_9896_4 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126004 crossref_primary_10_1103_PhysRevFluids_8_064606 crossref_primary_10_1017_jfm_2021_705 crossref_primary_10_1017_jfm_2019_869 crossref_primary_10_1061__ASCE_HY_1943_7900_0001998 crossref_primary_10_1080_14685248_2021_1927057 crossref_primary_10_1016_j_compfluid_2022_105650 crossref_primary_10_1016_j_icheatmasstransfer_2025_108753 crossref_primary_10_1017_jfm_2022_948 crossref_primary_10_1017_jfm_2023_585 crossref_primary_10_3390_e20050375 crossref_primary_10_1016_j_compfluid_2013_10_037 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122651 crossref_primary_10_1017_jfm_2023_1068 crossref_primary_10_1017_jfm_2023_1025 crossref_primary_10_1017_jfm_2015_722 crossref_primary_10_1016_j_nucengdes_2022_112082 crossref_primary_10_1016_j_oceaneng_2021_110192 crossref_primary_10_1017_jfm_2022_560 crossref_primary_10_1017_jfm_2015_488 crossref_primary_10_1061__ASCE_HY_1943_7900_0001562 crossref_primary_10_1016_j_euromechflu_2015_04_001 crossref_primary_10_1103_PhysRevFluids_9_034601 crossref_primary_10_3390_en13061310 crossref_primary_10_1016_j_ijheatfluidflow_2015_09_004 crossref_primary_10_1017_jfm_2023_294 crossref_primary_10_1080_14685248_2020_1788218 crossref_primary_10_1115_1_4062166 crossref_primary_10_3795_KSME_B_2016_40_7_435 crossref_primary_10_1038_s41586_023_06399_5 crossref_primary_10_1080_14685248_2015_1052464 crossref_primary_10_1007_s10494_013_9519_z crossref_primary_10_1115_1_4030806 crossref_primary_10_1016_j_expthermflusci_2014_06_015 crossref_primary_10_1146_annurev_fluid_120720_021813 crossref_primary_10_59324_ejtas_2024_2_3__34 crossref_primary_10_1115_1_4052416 crossref_primary_10_1016_j_ijheatfluidflow_2020_108697 crossref_primary_10_1016_j_proeng_2015_11_173 crossref_primary_10_1017_jfm_2023_520 crossref_primary_10_1017_jfm_2016_653 crossref_primary_10_1080_00221686_2014_967817 |
Cites_doi | 10.1063/1.869908 10.1017/S0022112004002770 10.1017/S0022112008003017 10.1016/j.euromechflu.2008.06.002 10.1017/S0022112005003800 10.1016/j.euromechflu.2008.05.004 10.1017/S0022112071002842 10.1063/1.868473 10.1098/rsta.2008.0063 10.1017/S0022112000002469 10.1103/PhysRevE.63.046307 10.1017/S0022112095000462 10.1002/fld.917 10.1017/S0022112007008336 10.1017/S0022112073001576 10.1017/S0022112004000941 10.1017/S0022112099006205 10.1017/S0022112006001893 10.2514/1.6332 10.1063/1.3005836 10.1098/rstl.1883.0029 10.1252/jcej.9.431 10.1007/s10494-011-9341-4 10.1007/BF00271421 10.1017/S0022112087000892 10.1146/annurev-fluid-122109-160652 10.1103/PhysRevLett.103.054502 10.1017/jfm.2011.328 10.1017/S0022112010001758 10.1017/jfm.2011.177 10.1017/S0022112010002600 10.1017/S0022112082002006 10.1017/S0022112004000114 10.1126/science.1203223 10.1017/jfm.2011.120 10.1017/S0022112099004681 10.1016/S0021-9991(03)00029-9 10.1006/jcph.1993.1210 10.1146/annurev.fluid.30.1.539 10.1017/jfm.2011.300 10.1016/j.jher.2009.02.003 10.1017/S0022112001007431 10.1017/S0022112099007259 10.1016/0021-9991(85)90148-2 10.1017/S0022112000002810 10.1063/1.1359766 10.1017/S0022112099007016 10.1146/annurev.fluid.39.050905.110135 10.1017/S0022112006001340 10.1017/S0022112009006624 10.1017/S0022112008005648 10.1063/1.869966 10.1017/jfm.2011.41 10.1146/annurev.fluid.39.050905.110308 |
ContentType | Journal Article |
Copyright | 2013 Cambridge University Press 2014 INIST-CNRS |
Copyright_xml | – notice: 2013 Cambridge University Press – notice: 2014 INIST-CNRS |
DBID | AAYXX CITATION IQODW 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2012.498 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | S. He and M. Seddighi Turbulence in transient channel flow |
EISSN | 1469-7645 |
EndPage | 102 |
ExternalDocumentID | 2861161621 26885675 10_1017_jfm_2012_498 |
Genre | Feature |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AATMM AAYXX ABVKB ABXAU ABXHF ACDLN AEUYN AFZFC AKMAY BQFHP CITATION PHGZM PHGZT -1F -2V -~N 6TJ 6~7 8WZ 9M5 A6W AANRG ABDMP ABDPE ABFSI ABKAW ABTAH ABVFV ABVZP ABZUI ACETC ACKIV ACRPL ADMLS ADNMO ADOVH AEBPU AEMFK AENCP AI. ALEEW BESQT CAG CCUQV CDIZJ COF H~9 I.9 IQODW KAFGG NMFBF VH1 VOH ZJOSE ZY4 ~V1 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c332t-4b981efff9fa3a03a0c2d7ac8f8e93c1c60be2f8a20b70cc83822fa7fb08ef603 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Fri Aug 15 22:51:08 EDT 2025 Wed Apr 02 07:24:34 EDT 2025 Thu Apr 24 23:08:37 EDT 2025 Tue Jul 01 01:45:05 EDT 2025 Wed Mar 13 05:40:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | turbulent transition turbulent flows pipe flow boundary layer Pipe flow Skin friction Digital simulation Vorticity Modelling Velocity distribution Transition flow Boundary layers Turbulence structure Turbulent laminar transition |
Language | English |
License | https://www.cambridge.org/core/terms CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-4b981efff9fa3a03a0c2d7ac8f8e93c1c60be2f8a20b70cc83822fa7fb08ef603 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
PQID | 1267799791 |
PQPubID | 34769 |
PageCount | 43 |
ParticipantIDs | proquest_journals_1267799791 pascalfrancis_primary_26885675 crossref_primary_10_1017_jfm_2012_498 crossref_citationtrail_10_1017_jfm_2012_498 cambridge_journals_10_1017_jfm_2012_498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-25 |
PublicationDateYYYYMMDD | 2013-01-25 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2013 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S0022112012004983_r38 S0022112012004983_r37 Lagha (S0022112012004983_r24) 2007; 19 S0022112012004983_r31 S0022112012004983_r30 S0022112012004983_r35 S0022112012004983_r34 S0022112012004983_r33 S0022112012004983_r32 Roach (S0022112012004983_r43) 1992 Orlandi (S0022112012004983_r36) 2001 S0022112012004983_r28 S0022112012004983_r27 S0022112012004983_r26 S0022112012004983_r25 S0022112012004983_r29 S0022112012004983_r20 S0022112012004983_r22 S0022112012004983_r21 S0022112012004983_r17 S0022112012004983_r16 S0022112012004983_r15 S0022112012004983_r59 S0022112012004983_r58 S0022112012004983_r14 S0022112012004983_r19 S0022112012004983_r18 S0022112012004983_r53 S0022112012004983_r52 S0022112012004983_r50 S0022112012004983_r57 S0022112012004983_r13 S0022112012004983_r56 S0022112012004983_r12 S0022112012004983_r11 S0022112012004983_r55 S0022112012004983_r54 S0022112012004983_r10 S0022112012004983_r60 Pfenninger (S0022112012004983_r39) 1961 S0022112012004983_r49 S0022112012004983_r48 S0022112012004983_r47 S0022112012004983_r3 S0022112012004983_r4 Abe (S0022112012004983_r1) 2001; 123 S0022112012004983_r2 Zang (S0022112012004983_r61) 1989; 1 S0022112012004983_r42 S0022112012004983_r41 S0022112012004983_r40 S0022112012004983_r46 S0022112012004983_r45 S0022112012004983_r44 Klebanoff (S0022112012004983_r23) 1971; 10 Van (S0022112012004983_r51) 2011; 684 S0022112012004983_r7 S0022112012004983_r8 S0022112012004983_r5 S0022112012004983_r6 S0022112012004983_r9 |
References_xml | – ident: S0022112012004983_r2 doi: 10.1063/1.869908 – ident: S0022112012004983_r13 doi: 10.1017/S0022112004002770 – ident: S0022112012004983_r38 doi: 10.1017/S0022112008003017 – ident: S0022112012004983_r12 doi: 10.1016/j.euromechflu.2008.06.002 – ident: S0022112012004983_r58 doi: 10.1017/S0022112005003800 – ident: S0022112012004983_r17 doi: 10.1016/j.euromechflu.2008.05.004 – ident: S0022112012004983_r37 doi: 10.1017/S0022112071002842 – start-page: 319 volume-title: Numerical Simulation of Unsteady Flows and Transition to Turbulence year: 1992 ident: S0022112012004983_r43 – ident: S0022112012004983_r53 doi: 10.1063/1.868473 – ident: S0022112012004983_r54 doi: 10.1098/rsta.2008.0063 – ident: S0022112012004983_r19 doi: 10.1017/S0022112000002469 – ident: S0022112012004983_r45 doi: 10.1103/PhysRevE.63.046307 – ident: S0022112012004983_r20 doi: 10.1017/S0022112095000462 – volume: 10 start-page: 1323 year: 1971 ident: S0022112012004983_r23 article-title: Effect of free stream turbulence on the laminar boundary layer publication-title: Bull. Am. Phys. Soc. – ident: S0022112012004983_r7 doi: 10.1002/fld.917 – ident: S0022112012004983_r18 doi: 10.1017/S0022112007008336 – volume-title: Fluid Flow Phenomena: A Numerical Toolkit year: 2001 ident: S0022112012004983_r36 – ident: S0022112012004983_r57 doi: 10.1017/S0022112073001576 – ident: S0022112012004983_r5 doi: 10.1017/S0022112004000941 – ident: S0022112012004983_r55 doi: 10.1017/S0022112099006205 – ident: S0022112012004983_r34 doi: 10.1017/S0022112006001893 – ident: S0022112012004983_r50 doi: 10.2514/1.6332 – ident: S0022112012004983_r44 doi: 10.1063/1.3005836 – ident: S0022112012004983_r41 doi: 10.1098/rstl.1883.0029 – ident: S0022112012004983_r27 doi: 10.1252/jcej.9.431 – ident: S0022112012004983_r48 doi: 10.1007/s10494-011-9341-4 – volume: 1 start-page: 41 year: 1989 ident: S0022112012004983_r61 article-title: Numerical experiments on stability and transition in plane channel flow publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/BF00271421 – start-page: 961 volume-title: Boundary Layer Suction Experiments with Laminar Flow at High Reynolds Numbers in the Inlet Length of a Tube by Various Suction Methods, in Boundary Layer and Flow Control year: 1961 ident: S0022112012004983_r39 – ident: S0022112012004983_r22 doi: 10.1017/S0022112087000892 – ident: S0022112012004983_r33 doi: 10.1146/annurev-fluid-122109-160652 – ident: S0022112012004983_r29 doi: 10.1103/PhysRevLett.103.054502 – ident: S0022112012004983_r15 doi: 10.1017/jfm.2011.328 – ident: S0022112012004983_r35 doi: 10.1017/S0022112010001758 – ident: S0022112012004983_r52 doi: 10.1017/jfm.2011.177 – ident: S0022112012004983_r26 doi: 10.1017/S0022112010002600 – ident: S0022112012004983_r6 doi: 10.1017/S0022112082002006 – ident: S0022112012004983_r14 doi: 10.1017/S0022112004000114 – ident: S0022112012004983_r4 doi: 10.1126/science.1203223 – ident: S0022112012004983_r11 doi: 10.1017/jfm.2011.120 – ident: S0022112012004983_r49 doi: 10.1017/S0022112099004681 – ident: S0022112012004983_r30 doi: 10.1016/S0021-9991(03)00029-9 – ident: S0022112012004983_r40 doi: 10.1006/jcph.1993.1210 – ident: S0022112012004983_r31 doi: 10.1146/annurev.fluid.30.1.539 – ident: S0022112012004983_r47 – volume: 684 start-page: 251 year: 2011 ident: S0022112012004983_r51 article-title: Experimental study of the turbulent boundary layer in acceleration-skewed oscillatory flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.300 – ident: S0022112012004983_r8 doi: 10.1016/j.jher.2009.02.003 – ident: S0022112012004983_r3 doi: 10.1017/S0022112001007431 – ident: S0022112012004983_r25 doi: 10.1017/S0022112099007259 – ident: S0022112012004983_r21 doi: 10.1016/0021-9991(85)90148-2 – volume: 19 year: 2007 ident: S0022112012004983_r24 article-title: Turbulent spots and waves in a model for plane Poiseuille flow publication-title: Phys. Fluids – ident: S0022112012004983_r28 doi: 10.1017/S0022112000002810 – ident: S0022112012004983_r46 doi: 10.1063/1.1359766 – ident: S0022112012004983_r16 doi: 10.1017/S0022112099007016 – ident: S0022112012004983_r9 doi: 10.1146/annurev.fluid.39.050905.110135 – ident: S0022112012004983_r59 doi: 10.1017/S0022112006001340 – ident: S0022112012004983_r56 doi: 10.1017/S0022112009006624 – volume: 123 start-page: 382 year: 2001 ident: S0022112012004983_r1 article-title: Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence publication-title: Trans. ASME: J. Fluids Engng – ident: S0022112012004983_r60 doi: 10.1017/S0022112008005648 – ident: S0022112012004983_r32 doi: 10.1063/1.869966 – ident: S0022112012004983_r42 doi: 10.1017/jfm.2011.41 – ident: S0022112012004983_r10 doi: 10.1146/annurev.fluid.39.050905.110308 |
SSID | ssj0013097 |
Score | 2.3645232 |
Snippet | Direct numerical simulations (DNS) are performed of a transient channel flow following a rapid increase of flow rate from an initially turbulent flow. It is... |
SourceID | proquest pascalfrancis crossref cambridge |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | Boundary layer Boundary layers Channel flow Exact sciences and technology Flow rates Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fluid mechanics Fundamental areas of phenomenology (including applications) Kinetic energy Laminar flow Physics Reynolds number Transition to turbulence Turbulent flow Turbulent flows, convection, and heat transfer |
Title | Turbulence in transient channel flow |
URI | https://www.cambridge.org/core/product/identifier/S0022112012004983/type/journal_article https://www.proquest.com/docview/1267799791 |
Volume | 715 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LS_QwEB_URVDEx_qJ62PpQfEg8WvTNI-T-FpFVMQHeCtJmoCydFe74r9v0s2uK6JQ6KFzKL-ZzEySmd8A7BgmJDOJQIoUBBHNMFLOkFCqCy2U5jJLfb_z9Q29eCSXT9lTOHCrQlnlyCfWjrroaX9G_j_BlDEhmEgO-6_IT43yt6thhMY0NJwL5m7z1Tg-u7m9-7pHiAUb8YW7zCIOpe-eNPrF-kb0BB8QwSeJFb4FqIW-rBxWdjjk4oe_roNQZxkWQ_YYHQ3VvQJTpmzCUsgko7BOqybMT9AMNmG2LvPU1SrsPLw7FOs-o-i5jAY-UPmGyMj3_5amG9lu7-MfPHbOHk4uUJiTgHSa4gEiSvDEWGuFlamM3aNxwaTmlhuR6kTTWBlsucSxYrHWPHVZgZXMqpgbS-N0DWbKXmnWIaLKSGIoN5JSwomWrJBGZUq4N9FF0YK9MVB5sPYqH1aKsdxBmntIcwdpC_ZHMOY60I37qRfdX6R3x9L9Ic3GL3LtbxoZC2PKeeY2Py3YGqlo4v_GtrPx9-dNmMP1uIsE4WwLZgZv72bbJR0D1YZp3jlvQ-Po9Prqvh3s7BPl2tjR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BFYKqassCYlugOYA4IENiO34cqqoq3S7lcVokbsF2bAm0yi5kEeqf6m-sncd2EYIbUqQcMoqimfHMOJ75PoAdy6XiNpFI05wiajhG2jsSIiY3UhuhUhLmnc_OWf-C_r5ML-fgbzsLE9oq25hYBep8ZMI_8sMEM86l5DL5Nr5FgTUqnK62FBq1W5zYPw9-y1Z-PT7y9t3FuPdz8KOPGlYBZAjBE0S1FIl1zkmniIr9ZXDOlRFOWElMYlisLXZC4Vjz2BhBfA51ijsdC-tYTPx75-ENJUSGFSV6v_6fWsSSt-jkvo6Jm0b7AFF948LYe4IPqBSzMA6P0uG7sSq9ZVxNqfEkO1Qpr_cR3je1avS9dq4VmLNFBz40dWvURIWyA29nQA07sFg1lZpyFXYG995m1VRTdF1Ek5AWw_hlFKaNCzuM3HD0sAYXr6K_dVgoRoXdgIhpq6hlwirGqKBG8VxZnWrp79TkeRf2porKmrVVZnVfGs-8SrOg0syrtAv7rRoz04CbB46N4TPSu1PpcQ3q8Yzc9iOLTIUxEyL1W60ubLYmmvm-qad-evnxF1jqD85Os9Pj85PPsIwroo0E4XQTFiZ393bLlzsTvV35WARXr-3U_wAbTxPW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Turbulence+in+transient+channel+flow&rft.jtitle=Journal+of+fluid+mechanics&rft.au=HE%2C+S&rft.au=SEDDIGHI%2C+M&rft.date=2013-01-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.volume=715&rft.spage=60&rft.epage=102&rft_id=info:doi/10.1017%2Fjfm.2012.498&rft.externalDBID=n%2Fa&rft.externalDocID=26885675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |