PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES
Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperboli...
Saved in:
Published in | American journal of mathematics Vol. 141; no. 6; pp. 1777 - 1816 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Baltimore
Johns Hopkins University Press
01.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincaré-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincaré-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincaré-Sobolev inequalities relies on hard analysis of Green's functions estimates, and Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces. |
---|---|
AbstractList | Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincaré-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincaré-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincaré-Sobolev inequalities relies on hard analysis of Green's functions estimates, and Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces. Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincar\'e-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincar\'e-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincar\'e-Sobolev inequalities relies on hard analysis of Green's functions estimates, Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces. |
Author | Lu, Guozhen Yang, Qiaohua |
Author_xml | – sequence: 1 givenname: Guozhen surname: Lu fullname: Lu, Guozhen – sequence: 2 givenname: Qiaohua surname: Yang fullname: Yang, Qiaohua |
BookMark | eNp1kc1LwzAYxoMoOD-OHoWAB0-db5J2SY5xq7ZQ19lOYV5C1qWw4tbZdgf_e1MmCoKnlxee3_vxPGfoeFtvLUJXBIaEBezOVJshBSKHAD4_QgMCArwR4_wYDQCAepJRforO2rZyLXCgA1TO1DSM5284nYWZmqdZjtMpjhauu0-TeIzzmRqHOVbTCY7ixwin2STMcKSyycLLU6cJX70n9Xa7UDiehs8vKonncXiYopKHb_4CnZTmvbWX3_UcvTyE83HkJeljPFaJVzBGO48ZUtrVUhrBOJOiEOVyBb4UfmBZIC0TMlhJ92uwtD6nxNLSFAQM8QXYYgmcnaObw9xdU3_sbdvpqt43W7dSU0aCYAQgiFOxg6po6rZtbKmLdWe6db3tGrN-1wR0b6h2hureUN0b6ijvD7Vr1hvTfP6r939uqWzRbfat_T2HMwEgdd6H1GdE5KjPRDrs-oBVbVc3PzsoJ74PI8q-AD_BiYo |
CitedBy_id | crossref_primary_10_1080_17476933_2021_2021195 crossref_primary_10_1016_j_na_2020_112102 crossref_primary_10_1137_19M1242823 crossref_primary_10_1515_anona_2024_0052 crossref_primary_10_1515_ans_2020_2098 crossref_primary_10_1007_s10114_020_9330_4 crossref_primary_10_1007_s13163_020_00379_3 crossref_primary_10_1016_j_na_2023_113314 crossref_primary_10_1007_s00526_019_1633_x crossref_primary_10_1016_j_jmaa_2022_126488 crossref_primary_10_1007_s10013_023_00637_z crossref_primary_10_1002_mana_201900312 crossref_primary_10_1007_s00605_020_01490_9 crossref_primary_10_1007_s12220_022_01183_9 crossref_primary_10_1515_anona_2021_0233 crossref_primary_10_1007_s00526_020_01831_4 crossref_primary_10_1016_j_jmaa_2019_05_005 crossref_primary_10_1007_s00526_024_02880_9 crossref_primary_10_1016_j_jfa_2022_109714 crossref_primary_10_1007_s00526_024_02709_5 crossref_primary_10_1016_j_aim_2021_107915 crossref_primary_10_1016_j_jfa_2022_109413 crossref_primary_10_1007_s10231_021_01091_9 crossref_primary_10_2140_pjm_2020_305_353 crossref_primary_10_1017_prm_2024_18 crossref_primary_10_1007_s10231_021_01072_y crossref_primary_10_1007_s12220_020_00589_7 crossref_primary_10_1016_j_aim_2020_107143 crossref_primary_10_1016_j_aim_2022_108259 crossref_primary_10_1016_j_aim_2022_108512 crossref_primary_10_1007_s12220_022_01079_8 crossref_primary_10_1016_j_aim_2021_108156 crossref_primary_10_1515_crelle_2025_0017 crossref_primary_10_1007_s12220_020_00406_1 crossref_primary_10_1016_j_jfa_2020_108673 crossref_primary_10_58997_ejde_2020_75 crossref_primary_10_1007_s12220_021_00847_2 crossref_primary_10_1007_s10114_020_9122_x crossref_primary_10_1016_j_na_2020_112031 crossref_primary_10_1515_ans_2021_2122 |
ContentType | Journal Article |
Copyright | 2019 by Johns Hopkins University Press Copyright © The Johns Hopkins University Press. Copyright Johns Hopkins University Press Dec 2019 |
Copyright_xml | – notice: 2019 by Johns Hopkins University Press – notice: Copyright © The Johns Hopkins University Press. – notice: Copyright Johns Hopkins University Press Dec 2019 |
DBID | AAYXX CITATION 7XB 8AF 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L6V M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X |
DOI | 10.1353/ajm.2019.0047 |
DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) STEM Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1080-6377 |
EndPage | 1816 |
ExternalDocumentID | 10_1353_ajm_2019_0047 738009_S1080637719600079 27144062 |
GroupedDBID | -~X 0R~ 23M 4.4 5GY 5VS 6J9 6OB 706 709 70B 8AF 8FE 8FG 8FW AAGGK AAHKB AAHKG AAMZP AAVNP AAXGD ABECW ABEZY ABFAN ABJCF ABPFR ABPPZ ABYWD ACDWB ACGFO ACGOD ACHIS ACIWK ACMTB ACNCT ACTMH ACYXD ADFRT ADHJG ADPSH ADTUW ADWTG AEHYH AENEX AERNI AFKRA AFNCV AFVYC AFXHP AIHXW ALMA_UNASSIGNED_HOLDINGS AMBIC AMVHM ANBFE AOQIW ARAPS AZQEC BENPR BGLVJ BPHCQ CCPQU COF CS3 D0L DWQXO EBS FOMLG GNUQQ GUQSH H13 HCIFZ HVGLF JAS JENOY JMS JST K6V K7- L6V L7B LU7 M2O M2P M7S MBR MBU MSI MUA MUP MUS N9A O9- OK1 P2P P62 PADUT PHGZM PHGZT PQQKQ PRG PROAC PTHSS RC9 ROL S0X TN5 WH7 YF5 2AX 3V. 692 AAFWJ AAYJJ AAYOK ABBHK ABCQX ABEFU ABTAH ABXSQ ABYAD ACMKW ACTWD ACUBG ADACV ADODI ADULT AELPN AEUPB AGHSJ AHJEN AI. AS~ BES BKOMP BKUOZ CAG DQDLB DSRWC ECEWR EJD F20 FEDTE FVMVE HGD HQ6 H~9 IAO IEA IGS IOF ITC JAAYA JBMMH JBZCM JHFFW JKQEH JLEZI JLXEF JPL JSODD KQ8 MVM NHB P-O RNS SA0 VH1 VOH VQG YYP ZCG ZY4 AAWIL AAYXX ABAWQ ABPQH ACHJO AFQQW AGLNM AIHAF ALRMG CITATION IPSME 7XB JQ2 MBDVC PAQYV PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c332t-3a1fedb9a837398c8fbd049845e359e3895d91355be4721e2fac10a1480ecb073 |
IEDL.DBID | BENPR |
ISSN | 0002-9327 1080-6377 |
IngestDate | Wed Aug 13 04:53:47 EDT 2025 Tue Jul 01 02:15:54 EDT 2025 Thu Apr 24 22:55:57 EDT 2025 Thu Jul 04 04:49:32 EDT 2024 Thu Jul 03 21:29:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-3a1fedb9a837398c8fbd049845e359e3895d91355be4721e2fac10a1480ecb073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2315560081 |
PQPubID | 41735 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2315560081 crossref_citationtrail_10_1353_ajm_2019_0047 crossref_primary_10_1353_ajm_2019_0047 projectmuse_journals_738009_S1080637719600079 jstor_primary_27144062 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Baltimore |
PublicationPlace_xml | – name: Baltimore |
PublicationTitle | American journal of mathematics |
PublicationYear | 2019 |
Publisher | Johns Hopkins University Press |
Publisher_xml | – name: Johns Hopkins University Press |
SSID | ssj0000702 |
Score | 2.4480886 |
Snippet | Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality... |
SourceID | proquest crossref projectmuse jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1777 |
SubjectTerms | Derivatives Fourier analysis Green's functions Half spaces Inequalities Inequality Operators (mathematics) Riemann manifold |
Title | PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES |
URI | https://www.jstor.org/stable/27144062 https://muse.jhu.edu/article/738009 https://www.proquest.com/docview/2315560081 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XPQgPnF9kYPoxWDbbNvkJCquIuwiPsBbSdoUlaVdd1fB_fXOtNmHiJ566LSUmfTLfJnkG4BDIY2JbKo4XjQnSXOutNLcpH4mdObjDE5Esd2Jbp6at8_hs1twG7htlWNMrIA6K1NaIz_FZ0KanaV_1nvn1DWKqquuhcY8LCIESyRfixdXnbv7KRbHXjBOgDFTiZ3KpgjFqX6jg-g-yVVSb5WZWanemPhzMeQXVFfzT2sVVlziyM7rSK_BnC3WYbk9UV0dbEB-pwv7Ohyxsmer6vmAlQV7QabZNyT_yxA9EBaYLjJGMsWs0t1kVfGeP5RoYz95W4-OvzTD5LM-b4lMunqL7ubu-U14al09Xt5w10eBp0IEQy60n9vMKI1kVCiZytxkSAxkM7QiVBZTljBT6JPQ2CYSQhvkOvU9jUTJs6lBDNiChaIs7DawvKlNJKl8KyRyJY9a93g6soEyWY5krAEnYz8mqRMZp14X3aSqnIUiQbcn5PaE3N6Ao4l5r1bX-MtwqwrKxCqIqSodBQ3gM1FK3A84SGIcdZ5KHmgLZSTiGIGGRoNqwN44jlPj6dja-f_2LizRJ9XbWfZgYdj_sPuYlAzNAczL1vWBG3_fJ1ffMw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPUAPiBYQWyj1AeilFkmcLx-qCtEuS2FRJUDiZuzEUVuhZMtuW-3-KH4jM06yS1XBjVMOmUTReDwzLzN-A7AjUmNim0mOF82J0pxLLTU3mZ8LnfsYwQko9s_i3mX49Sq6moO79iwMtVW2PtE56rzK6B_5Pj4TUXRO_U-DX5ymRlF1tR2hUZvFiR3_Rcg2_Hj8Gdd3Nwi6Xy4Oe7yZKsAzIYIRF9ovbG6kRmgmZJqlhckxTU7DyIpIWgzgUS59DMPGhgiPbFDozPc0wgbPZgZ3BL53Hl6EQkjaUWn3aOb5Ey9o023Mi5KG01NEYl__pGPvPpFj0iSXBzGwboP899fLf4HBRbvuCiw3aSo7qO3qFczZ8jW87E85XoerUHzTpf0xmrBqYF2tfsiqkn1HXHtriGyYoa9CJ8R0mTMiRWaO5ZO5VgF-XqGM_cP7evJ-rBmmuvXpTsTt7i36pmieX4PLZ9HvOiyUVWk3gBWhNnFKxWKRIjLzaFCQp2MbSJMXCP068KHVo8oaSnOarHGjXJ0uEgrVrkjtitTegb2p-KDm8nhMcN0tylQqSKgGHgcd4A9WSTXbfagStHFPqnNq2IxFkqBbI2uQHdhq13EmPLPkN0_ffgeLvYv-qTo9PjvZhCX6vLqRZgsWRre_7VtMh0Zm29kgg-vnNvp7O0gZUA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BkBAcUAtFBCjdA20vrGJ748ceKgSFCEoTRaVI3JZdey1AyA4kUMFP49cx40dCheDGyQfPWtbseGY-z-w3AJsiMiawseR40ZwozbnUUnMTu4nQiYsRnIBitxccnLR_nfqnU_BYn4WhtsraJxaOOslj-kfewjU-RefIbaVVW0R_r7M9uOY0QYoqrfU4jdJEjuz9P4Rvwx-He7jXXz2vs__35wGvJgzwWAhvxIV2U5sYqRGmCRnFUWoSTJmjtm-FLy0Gcz-RLoZkY9sIlayX6th1NEIIx8YGvw587jTMhIiKnAbM7O73-n8mcSB0vDr5xiwprBg-hS9a-pIOwbtElUlzXZ5FxLIp8v8fMS_CRBH7Oh9goUpa2U5pZR9hymaLMN8dM74OlyDt68xejB5YPrBF5X7I8oydI8q9MUQ9zNBzoUtiOksYUSSzgvOTFY0D_DhHGXvHu_rh-71mmPiWZz0RxRdP0Vdptf4TnLyLhpehkeWZXQGWtrUJIiodiwhxmkNjgxwdWE-aJEUg2IStWo8qrgjOac7GlSqqdr5QqHZFalek9iZ8G4sPSmaP1wSXi00ZS3khVcQDrwn82S6p6uMfqhAt3pHqmNo3AxGG6OTIGmQT1ut9nAhP7Hr17dtfYBYNXv0-7B2twRy9XdlVsw6N0c2t_Yy50chsVEbI4Oy97f4JIpMe4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paneitz+operators+on+hyperbolic+spaces+and+high+order+Hardy-Sobolev-Maz%27ya+inequalities+on+half+spaces&rft.jtitle=American+journal+of+mathematics&rft.au=Lu%2C+Guozhen&rft.au=Yang%2C+Qiaohua&rft.date=2019-12-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=141&rft.issue=6&rft.spage=1777&rft_id=info:doi/10.1353%2Fajm.2019.0047&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon |