PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES

Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperboli...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of mathematics Vol. 141; no. 6; pp. 1777 - 1816
Main Authors Lu, Guozhen, Yang, Qiaohua
Format Journal Article
LanguageEnglish
Published Baltimore Johns Hopkins University Press 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincaré-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincaré-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincaré-Sobolev inequalities relies on hard analysis of Green's functions estimates, and Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces.
AbstractList Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincaré-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincaré-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincaré-Sobolev inequalities relies on hard analysis of Green's functions estimates, and Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces.
Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality for higher order derivatives holds has still remained open. By using, among other things, the Fourier analysis techniques on the hyperbolic space which is a noncompact complete Riemannian manifold, we establish the Hardy-Sobolev-Maz'ya inequalities for higher order derivatives on half spaces. Moreover, we derive sharp Poincar\'e-Sobolev inequalities (namely, Sobolev inequalities with a substraction of a Hardy term) for the Paneitz operators on hyperbolic spaces which are of their independent interests and useful in establishing the sharp Hardy-Sobolev-Maz'ya inequalities. Our sharp Poincar\'e-Sobolev inequalities for the Paneitz operators on hyperbolic spaces improve substantially those Sobolev inequalities in the literature. The proof of such Poincar\'e-Sobolev inequalities relies on hard analysis of Green's functions estimates, Fourier analysis on hyperbolic spaces together with the Hardy-Littlewood-Sobolev inequality on the hyperbolic spaces. Finally, we show the sharp constant in the Hardy-Sobolev-Maz'ya inequality for the bi-Laplacian in the upper half space of dimension five coincides with the best Sobolev constant. This is an analogous result to that of the sharp constant in the first order Hardy-Sobolev-Maz'ya inequality in the three dimensional upper half spaces.
Author Lu, Guozhen
Yang, Qiaohua
Author_xml – sequence: 1
  givenname: Guozhen
  surname: Lu
  fullname: Lu, Guozhen
– sequence: 2
  givenname: Qiaohua
  surname: Yang
  fullname: Yang, Qiaohua
BookMark eNp1kc1LwzAYxoMoOD-OHoWAB0-db5J2SY5xq7ZQ19lOYV5C1qWw4tbZdgf_e1MmCoKnlxee3_vxPGfoeFtvLUJXBIaEBezOVJshBSKHAD4_QgMCArwR4_wYDQCAepJRforO2rZyLXCgA1TO1DSM5284nYWZmqdZjtMpjhauu0-TeIzzmRqHOVbTCY7ixwin2STMcKSyycLLU6cJX70n9Xa7UDiehs8vKonncXiYopKHb_4CnZTmvbWX3_UcvTyE83HkJeljPFaJVzBGO48ZUtrVUhrBOJOiEOVyBb4UfmBZIC0TMlhJ92uwtD6nxNLSFAQM8QXYYgmcnaObw9xdU3_sbdvpqt43W7dSU0aCYAQgiFOxg6po6rZtbKmLdWe6db3tGrN-1wR0b6h2hureUN0b6ijvD7Vr1hvTfP6r939uqWzRbfat_T2HMwEgdd6H1GdE5KjPRDrs-oBVbVc3PzsoJ74PI8q-AD_BiYo
CitedBy_id crossref_primary_10_1080_17476933_2021_2021195
crossref_primary_10_1016_j_na_2020_112102
crossref_primary_10_1137_19M1242823
crossref_primary_10_1515_anona_2024_0052
crossref_primary_10_1515_ans_2020_2098
crossref_primary_10_1007_s10114_020_9330_4
crossref_primary_10_1007_s13163_020_00379_3
crossref_primary_10_1016_j_na_2023_113314
crossref_primary_10_1007_s00526_019_1633_x
crossref_primary_10_1016_j_jmaa_2022_126488
crossref_primary_10_1007_s10013_023_00637_z
crossref_primary_10_1002_mana_201900312
crossref_primary_10_1007_s00605_020_01490_9
crossref_primary_10_1007_s12220_022_01183_9
crossref_primary_10_1515_anona_2021_0233
crossref_primary_10_1007_s00526_020_01831_4
crossref_primary_10_1016_j_jmaa_2019_05_005
crossref_primary_10_1007_s00526_024_02880_9
crossref_primary_10_1016_j_jfa_2022_109714
crossref_primary_10_1007_s00526_024_02709_5
crossref_primary_10_1016_j_aim_2021_107915
crossref_primary_10_1016_j_jfa_2022_109413
crossref_primary_10_1007_s10231_021_01091_9
crossref_primary_10_2140_pjm_2020_305_353
crossref_primary_10_1017_prm_2024_18
crossref_primary_10_1007_s10231_021_01072_y
crossref_primary_10_1007_s12220_020_00589_7
crossref_primary_10_1016_j_aim_2020_107143
crossref_primary_10_1016_j_aim_2022_108259
crossref_primary_10_1016_j_aim_2022_108512
crossref_primary_10_1007_s12220_022_01079_8
crossref_primary_10_1016_j_aim_2021_108156
crossref_primary_10_1515_crelle_2025_0017
crossref_primary_10_1007_s12220_020_00406_1
crossref_primary_10_1016_j_jfa_2020_108673
crossref_primary_10_58997_ejde_2020_75
crossref_primary_10_1007_s12220_021_00847_2
crossref_primary_10_1007_s10114_020_9122_x
crossref_primary_10_1016_j_na_2020_112031
crossref_primary_10_1515_ans_2021_2122
ContentType Journal Article
Copyright 2019 by Johns Hopkins University Press
Copyright © The Johns Hopkins University Press.
Copyright Johns Hopkins University Press Dec 2019
Copyright_xml – notice: 2019 by Johns Hopkins University Press
– notice: Copyright © The Johns Hopkins University Press.
– notice: Copyright Johns Hopkins University Press Dec 2019
DBID AAYXX
CITATION
7XB
8AF
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1353/ajm.2019.0047
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Computer Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1080-6377
EndPage 1816
ExternalDocumentID 10_1353_ajm_2019_0047
738009_S1080637719600079
27144062
GroupedDBID -~X
0R~
23M
4.4
5GY
5VS
6J9
6OB
706
709
70B
8AF
8FE
8FG
8FW
AAGGK
AAHKB
AAHKG
AAMZP
AAVNP
AAXGD
ABECW
ABEZY
ABFAN
ABJCF
ABPFR
ABPPZ
ABYWD
ACDWB
ACGFO
ACGOD
ACHIS
ACIWK
ACMTB
ACNCT
ACTMH
ACYXD
ADFRT
ADHJG
ADPSH
ADTUW
ADWTG
AEHYH
AENEX
AERNI
AFKRA
AFNCV
AFVYC
AFXHP
AIHXW
ALMA_UNASSIGNED_HOLDINGS
AMBIC
AMVHM
ANBFE
AOQIW
ARAPS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
COF
CS3
D0L
DWQXO
EBS
FOMLG
GNUQQ
GUQSH
H13
HCIFZ
HVGLF
JAS
JENOY
JMS
JST
K6V
K7-
L6V
L7B
LU7
M2O
M2P
M7S
MBR
MBU
MSI
MUA
MUP
MUS
N9A
O9-
OK1
P2P
P62
PADUT
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PTHSS
RC9
ROL
S0X
TN5
WH7
YF5
2AX
3V.
692
AAFWJ
AAYJJ
AAYOK
ABBHK
ABCQX
ABEFU
ABTAH
ABXSQ
ABYAD
ACMKW
ACTWD
ACUBG
ADACV
ADODI
ADULT
AELPN
AEUPB
AGHSJ
AHJEN
AI.
AS~
BES
BKOMP
BKUOZ
CAG
DQDLB
DSRWC
ECEWR
EJD
F20
FEDTE
FVMVE
HGD
HQ6
H~9
IAO
IEA
IGS
IOF
ITC
JAAYA
JBMMH
JBZCM
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
KQ8
MVM
NHB
P-O
RNS
SA0
VH1
VOH
VQG
YYP
ZCG
ZY4
AAWIL
AAYXX
ABAWQ
ABPQH
ACHJO
AFQQW
AGLNM
AIHAF
ALRMG
CITATION
IPSME
7XB
JQ2
MBDVC
PAQYV
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c332t-3a1fedb9a837398c8fbd049845e359e3895d91355be4721e2fac10a1480ecb073
IEDL.DBID BENPR
ISSN 0002-9327
1080-6377
IngestDate Wed Aug 13 04:53:47 EDT 2025
Tue Jul 01 02:15:54 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Thu Jul 04 04:49:32 EDT 2024
Thu Jul 03 21:29:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-3a1fedb9a837398c8fbd049845e359e3895d91355be4721e2fac10a1480ecb073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2315560081
PQPubID 41735
PageCount 40
ParticipantIDs proquest_journals_2315560081
crossref_citationtrail_10_1353_ajm_2019_0047
crossref_primary_10_1353_ajm_2019_0047
projectmuse_journals_738009_S1080637719600079
jstor_primary_27144062
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Baltimore
PublicationPlace_xml – name: Baltimore
PublicationTitle American journal of mathematics
PublicationYear 2019
Publisher Johns Hopkins University Press
Publisher_xml – name: Johns Hopkins University Press
SSID ssj0000702
Score 2.4480886
Snippet Though there has been extensive study on Hardy-Sobolev-Maz'ya inequalities on upper half spaces for first order derivatives, whether an analogous inequality...
SourceID proquest
crossref
projectmuse
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1777
SubjectTerms Derivatives
Fourier analysis
Green's functions
Half spaces
Inequalities
Inequality
Operators (mathematics)
Riemann manifold
Title PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES
URI https://www.jstor.org/stable/27144062
https://muse.jhu.edu/article/738009
https://www.proquest.com/docview/2315560081
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58XPQgPnF9kYPoxWDbbNvkJCquIuwiPsBbSdoUlaVdd1fB_fXOtNmHiJ566LSUmfTLfJnkG4BDIY2JbKo4XjQnSXOutNLcpH4mdObjDE5Esd2Jbp6at8_hs1twG7htlWNMrIA6K1NaIz_FZ0KanaV_1nvn1DWKqquuhcY8LCIESyRfixdXnbv7KRbHXjBOgDFTiZ3KpgjFqX6jg-g-yVVSb5WZWanemPhzMeQXVFfzT2sVVlziyM7rSK_BnC3WYbk9UV0dbEB-pwv7Ohyxsmer6vmAlQV7QabZNyT_yxA9EBaYLjJGMsWs0t1kVfGeP5RoYz95W4-OvzTD5LM-b4lMunqL7ubu-U14al09Xt5w10eBp0IEQy60n9vMKI1kVCiZytxkSAxkM7QiVBZTljBT6JPQ2CYSQhvkOvU9jUTJs6lBDNiChaIs7DawvKlNJKl8KyRyJY9a93g6soEyWY5krAEnYz8mqRMZp14X3aSqnIUiQbcn5PaE3N6Ao4l5r1bX-MtwqwrKxCqIqSodBQ3gM1FK3A84SGIcdZ5KHmgLZSTiGIGGRoNqwN44jlPj6dja-f_2LizRJ9XbWfZgYdj_sPuYlAzNAczL1vWBG3_fJ1ffMw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB0BPUAPiBYQWyj1AeilFkmcLx-qCtEuS2FRJUDiZuzEUVuhZMtuW-3-KH4jM06yS1XBjVMOmUTReDwzLzN-A7AjUmNim0mOF82J0pxLLTU3mZ8LnfsYwQko9s_i3mX49Sq6moO79iwMtVW2PtE56rzK6B_5Pj4TUXRO_U-DX5ymRlF1tR2hUZvFiR3_Rcg2_Hj8Gdd3Nwi6Xy4Oe7yZKsAzIYIRF9ovbG6kRmgmZJqlhckxTU7DyIpIWgzgUS59DMPGhgiPbFDozPc0wgbPZgZ3BL53Hl6EQkjaUWn3aOb5Ey9o023Mi5KG01NEYl__pGPvPpFj0iSXBzGwboP899fLf4HBRbvuCiw3aSo7qO3qFczZ8jW87E85XoerUHzTpf0xmrBqYF2tfsiqkn1HXHtriGyYoa9CJ8R0mTMiRWaO5ZO5VgF-XqGM_cP7evJ-rBmmuvXpTsTt7i36pmieX4PLZ9HvOiyUVWk3gBWhNnFKxWKRIjLzaFCQp2MbSJMXCP068KHVo8oaSnOarHGjXJ0uEgrVrkjtitTegb2p-KDm8nhMcN0tylQqSKgGHgcd4A9WSTXbfagStHFPqnNq2IxFkqBbI2uQHdhq13EmPLPkN0_ffgeLvYv-qTo9PjvZhCX6vLqRZgsWRre_7VtMh0Zm29kgg-vnNvp7O0gZUA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5BkBAcUAtFBCjdA20vrGJ748ceKgSFCEoTRaVI3JZdey1AyA4kUMFP49cx40dCheDGyQfPWtbseGY-z-w3AJsiMiawseR40ZwozbnUUnMTu4nQiYsRnIBitxccnLR_nfqnU_BYn4WhtsraJxaOOslj-kfewjU-RefIbaVVW0R_r7M9uOY0QYoqrfU4jdJEjuz9P4Rvwx-He7jXXz2vs__35wGvJgzwWAhvxIV2U5sYqRGmCRnFUWoSTJmjtm-FLy0Gcz-RLoZkY9sIlayX6th1NEIIx8YGvw587jTMhIiKnAbM7O73-n8mcSB0vDr5xiwprBg-hS9a-pIOwbtElUlzXZ5FxLIp8v8fMS_CRBH7Oh9goUpa2U5pZR9hymaLMN8dM74OlyDt68xejB5YPrBF5X7I8oydI8q9MUQ9zNBzoUtiOksYUSSzgvOTFY0D_DhHGXvHu_rh-71mmPiWZz0RxRdP0Vdptf4TnLyLhpehkeWZXQGWtrUJIiodiwhxmkNjgxwdWE-aJEUg2IStWo8qrgjOac7GlSqqdr5QqHZFalek9iZ8G4sPSmaP1wSXi00ZS3khVcQDrwn82S6p6uMfqhAt3pHqmNo3AxGG6OTIGmQT1ut9nAhP7Hr17dtfYBYNXv0-7B2twRy9XdlVsw6N0c2t_Yy50chsVEbI4Oy97f4JIpMe4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paneitz+operators+on+hyperbolic+spaces+and+high+order+Hardy-Sobolev-Maz%27ya+inequalities+on+half+spaces&rft.jtitle=American+journal+of+mathematics&rft.au=Lu%2C+Guozhen&rft.au=Yang%2C+Qiaohua&rft.date=2019-12-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=141&rft.issue=6&rft.spage=1777&rft_id=info:doi/10.1353%2Fajm.2019.0047&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon