Stimulated emission does not radiate in a pure dipole pattern

Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule w...

Full description

Saved in:
Bibliographic Details
Published inOptica Vol. 11; no. 4; p. 464
Main Authors Barentine, Andrew E. S., Moerner, W. E.
Format Journal Article
LanguageEnglish
Published United States 20.04.2024
Online AccessGet full text

Cover

Loading…
Abstract Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the probe ) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.
AbstractList Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the probe ) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.
Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the ) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.
Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the probe) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and ultimately resolution. Several ideas for the radiation pattern and directionality of StE remain prevalent, namely, whether a single molecule would radiate StE itself in a pure dipole pattern, or whether its emission direction depends on the driving field. Previous StE imaging has been carried out in transmission, which would collect signal either way. Here, we introduce the StE driving field (the probe) at an angle, using total internal reflection to avoid incident probe light and its specular reflections in our detection path. In this non-collinear detection configuration that also collects some fluorescence from the sample, we observe fluorescence depletion even in the spectral window where an increase in detected signal from StE would be expected if StE radiated like a simple classical dipole. Because simultaneous direct measurement of the fluorescence represents a calibration of the potential size of StE were it spatially patterned like a classical dipole emitter, our study clarifies a critical characteristic of StE for optimal microscope design, optical cooling, and applications using small arrays of emitters.
Author Moerner, W. E.
Barentine, Andrew E. S.
Author_xml – sequence: 1
  givenname: Andrew E. S.
  orcidid: 0000-0002-7673-9771
  surname: Barentine
  fullname: Barentine, Andrew E. S.
– sequence: 2
  givenname: W. E.
  orcidid: 0000-0002-2830-209X
  surname: Moerner
  fullname: Moerner, W. E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39989466$$D View this record in MEDLINE/PubMed
BookMark eNptkM1LxDAQxYOsuOu6R6-So5dq0slHc_Agi1-wsILrOaRtCpFuU5P04H9vpbsg4mkG5vce8945mnW-swhdUnJDQbDb7evuZX1_wynPc3GCFjkAy3IOYvZrn6NVjB-EEAqMcEXO0ByUKhQTYoHu3pLbD61JtsZ272J0vsO1txF3PuFgajeesOuwwf0QLK5d71uLe5OSDd0FOm1MG-3qMJfo_fFht37ONtun8bFNVgHkKQPW1I1SlktqK1EUhDTAZUVybirKCyFKyTgBWTBGgQrIiVSKsJJJVci6FLBE15NvH_znYGPS46uVbVvTWT9EDVSSXBSg6IheHdCh3Nta98HtTfjSx8gjABNQBR9jsI2uXDJpzJ2Cca2mRP90q6du9dTtqMr-qI7G__Pfh1F3VQ
CitedBy_id crossref_primary_10_1364_OPTICA_515226
Cites_doi 10.1016/j.cplett.2007.06.017
10.1119/1.12956
10.1073/pnas.0404200101
10.1007/978-1-59745-513-8_14
10.1038/nature08438
10.1364/OPTICA.515226
10.1088/0963-9659/2/5/014
10.1021/acs.jpca.1c07713
10.1364/OPTICA.5.000465
10.1073/pnas.93.7.2926
10.1063/1.1897520
10.1038/s41587-023-01702-1
10.1111/j.1469-185X.1940.tb00761.x
10.1038/s41467-019-10650-x
10.1038/nature08134
10.1126/science.aay1821
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1364/OPTICA.515226
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2334-2536
ExternalDocumentID 39989466
10_1364_OPTICA_515226
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118067
GroupedDBID 4.4
AAFWJ
AAWJZ
AAYXX
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
AZSQR
BCNDV
CITATION
DSZJF
EBS
GROUPED_DOAJ
M~E
OFLFD
OK1
OPJBK
ROL
ROS
TR6
NPM
7X8
ID FETCH-LOGICAL-c332t-34fdf99e571ec68800f357c025ac15866b745037844131632079904b47987db63
ISSN 2334-2536
IngestDate Fri Jul 11 02:02:31 EDT 2025
Mon Jul 21 06:06:20 EDT 2025
Tue Jul 01 01:58:44 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c332t-34fdf99e571ec68800f357c025ac15866b745037844131632079904b47987db63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2830-209X
0000-0002-7673-9771
OpenAccessLink https://doi.org/10.1364/optica.515226
PMID 39989466
PQID 3170268391
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3170268391
pubmed_primary_39989466
crossref_citationtrail_10_1364_OPTICA_515226
crossref_primary_10_1364_OPTICA_515226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-20
PublicationDateYYYYMMDD 2024-04-20
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-20
  day: 20
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Optica
PublicationTitleAlternate Optica
PublicationYear 2024
References Vrljic (optica-11-4-464-R4) 2007
Rittweger (optica-11-4-464-R13) 2007; 442
Barentine (optica-11-4-464-R16) 2023; 41
Loudon (optica-11-4-464-R17) 1973
Kleppner (optica-11-4-464-R6) 2005; 58
Hwang (optica-11-4-464-R7) 2009; 460
Schmidt (optica-11-4-464-R2) 1996; 93
Cray (optica-11-4-464-R19) 1982; 50
Vahala (optica-11-4-464-R11) 1993; 2
Pollnau (optica-11-4-464-R18) 2018; 5
Einstein (optica-11-4-464-R5) 1917; 18
Comerci (optica-11-4-464-R14) 2019; 10
Deich (optica-11-4-464-R3) 2004; 101
Wong-Campos (optica-11-4-464-R12) 2021; 125
Ellinger (optica-11-4-464-R1) 1940; 15
optica-11-4-464-R20
Sargent (optica-11-4-464-R15) 1974
Piatkowski (optica-11-4-464-R10) 2019; 366
Min (optica-11-4-464-R9) 2009; 461
38196744 - ArXiv. 2024 Mar 6:arXiv:2312.02333v2.
References_xml – volume: 442
  start-page: 483
  year: 2007
  ident: optica-11-4-464-R13
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.06.017
– volume-title: The Quantum Theory of Light
  year: 1973
  ident: optica-11-4-464-R17
  article-title: Interaction of the radiation field with an atom
– volume: 50
  start-page: 1016
  year: 1982
  ident: optica-11-4-464-R19
  publication-title: Am. J. Phys.
  doi: 10.1119/1.12956
– volume: 18
  start-page: 121
  year: 1917
  ident: optica-11-4-464-R5
  publication-title: Phys. Z
– volume: 101
  start-page: 15921
  year: 2004
  ident: optica-11-4-464-R3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0404200101
– start-page: 193
  volume-title: Methods in Molecular Biology, Vol. 398: Lipid Rafts
  year: 2007
  ident: optica-11-4-464-R4
  article-title: Single-molecule tracking
  doi: 10.1007/978-1-59745-513-8_14
– volume: 461
  start-page: 1105
  year: 2009
  ident: optica-11-4-464-R9
  publication-title: Nature
  doi: 10.1038/nature08438
– ident: optica-11-4-464-R20
  doi: 10.1364/OPTICA.515226
– volume: 2
  start-page: 549
  year: 1993
  ident: optica-11-4-464-R11
  publication-title: Pure Appl. Opt.
  doi: 10.1088/0963-9659/2/5/014
– volume: 125
  start-page: 10667
  year: 2021
  ident: optica-11-4-464-R12
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.1c07713
– volume-title: Laser Physics
  year: 1974
  ident: optica-11-4-464-R15
  article-title: Stimulated emission and dipole oscillators
– volume: 5
  start-page: 465
  year: 2018
  ident: optica-11-4-464-R18
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000465
– volume: 93
  start-page: 2926
  year: 1996
  ident: optica-11-4-464-R2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.7.2926
– volume: 58
  start-page: 30
  year: 2005
  ident: optica-11-4-464-R6
  publication-title: Phys. Today
  doi: 10.1063/1.1897520
– volume: 41
  start-page: 1549
  year: 2023
  ident: optica-11-4-464-R16
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01702-1
– volume: 15
  start-page: 323
  year: 1940
  ident: optica-11-4-464-R1
  publication-title: Biol. Rev.
  doi: 10.1111/j.1469-185X.1940.tb00761.x
– volume: 10
  start-page: 2731
  year: 2019
  ident: optica-11-4-464-R14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10650-x
– volume: 460
  start-page: 76
  year: 2009
  ident: optica-11-4-464-R7
  publication-title: Nature
  doi: 10.1038/nature08134
– volume: 366
  start-page: 1240
  year: 2019
  ident: optica-11-4-464-R10
  publication-title: Science
  doi: 10.1126/science.aay1821
– reference: 38196744 - ArXiv. 2024 Mar 6:arXiv:2312.02333v2.
SSID ssj0001340590
Score 2.3163638
Snippet Stimulated emission (StE) remains relatively unused as an image-forming signal despite having potential advantages over fluorescence in speed, coherence, and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 464
Title Stimulated emission does not radiate in a pure dipole pattern
URI https://www.ncbi.nlm.nih.gov/pubmed/39989466
https://www.proquest.com/docview/3170268391
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtSqGXkvS5SVtUKL24Tm1LsuxjKRtCSbKFeunejCRrYSG1Tda59NdnRtauHbqBpBdhhCSL-cTwaTQPQj7lzDKLj6y80irk0sgwj-AsKxMZGYlKpQoN-ucX6emc_1iIxVDn00WXdPrY_N0ZV_I_qEIf4IpRsg9AdrsodMA34AstIAztvTD-1a3-YPktII1Ytg0NX0HV2HVQN11whVkHOpcTRAUtvhNUqxZ9CVuXUrMe09JZ2418drAGAhaQsIPHYzAdbKTnDczukf7tAxm82SBx3iZJNGiXhDHoEMznod7Rt1GP8egY8JGu43368X90MEs5CK5xGz8GupQkO3JdX8zKk_nZWVlMF8Vj8iQBkj--EDsLGeMYGeuqA_p9-SSp8Ievt9a_TSruuCk4xlDsk-ee6tNvPW4H5JGtX5CnzuXWrF-SEXp0gx5F9CigRz16dFVTRRE92qNHPXqvyPxkWnw_DX0xi9AwlnQh48tqmedWyNiaFLRmtGRCGqCcysQiS1MtuYiYzICfMiDJSSSBKHDNZZ7JSqfsNdmrm9q-JTTLY80MThEVBwKqMquEzqThWkqp7YR82UijND7TOxYcuSzd82XKy9nPArZW9sKbkM_b4W2f4uSugR83oi1BLPiypGrbXK9LIKFwlweuHU_Im17m26WAAWdYxODwHrOPyLPhrL4je93VtX0PpK_TH9zZuAEKHlSv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulated+emission+does+not+radiate+in+a+pure+dipole+pattern&rft.jtitle=Optica&rft.au=Barentine%2C+Andrew+E+S&rft.au=Moerner%2C+W+E&rft.date=2024-04-20&rft.issn=2334-2536&rft.eissn=2334-2536&rft.volume=11&rft.issue=4&rft.spage=464&rft_id=info:doi/10.1364%2Foptica.515226&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-2536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-2536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-2536&client=summon