A convolutional neural network machine learning based navigation of underwater vehicles under limited communication
This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering...
Saved in:
Published in | Archives of control sciences Vol. 34; no. 3; pp. 537 - 568 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
De Gruyter Poland
01.01.2024
Polish Academy of Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 1230-2384 2300-2611 |
DOI | 10.24425/acs.2024.149671 |
Cover
Abstract | This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme. |
---|---|
AbstractList | This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme. |
Author | Sahoo, Sarada Prasanna Das, Bikramaditya Pati, Bibhuti Bhusan |
Author_xml | – sequence: 1 givenname: Sarada Prasanna surname: Sahoo fullname: Sahoo, Sarada Prasanna organization: Department of Electrical Engineering, VSS University of Technology, Burla, India – sequence: 2 givenname: Bibhuti Bhusan surname: Pati fullname: Pati, Bibhuti Bhusan – sequence: 3 givenname: Bikramaditya surname: Das fullname: Das, Bikramaditya organization: Department of Electronics andTelecommunication Engineering, VSSUT Burla, Odisha, India but now joined as Associate Professor inDepartment of Electronics and Communication Engineering, CUPGS, BPUT, Rourkela, Odisha, India |
BookMark | eNo9UU1r3DAQFSWFbtPcexT07K0-bekYQtsEAr0kZzGWxhttbSmV7A399_WuS4eBYR5v3gzzPpKrlBMS8pmzvVBK6K_g614wofZc2bbj78hOSMYa0XJ-RXZ8bRohjfpAbmo9sjWktZZ1O1Jvqc_plMdljjnBSBMu5VLmt1x-0Qn8S0xIR4SSYjrQHioGmuAUD3AeoXmgSwpY3mDGQk_4Ev2IdcPoGKc4r3yfp2lJ0V9GPpH3A4wVb_7Va_L8_dvT3X3z-PPHw93tY-OlFHMjQuftOY00XANIL3zQAoMOupdd2ysIWoVOyQGZtlax0HtupDK6Dz4weU0eNt2Q4eheS5yg_HEZorsAuRwclPl8rpOtMi1YrQGlwiANcrBMmQEHE5g2q9aXTeu15N8L1tkd81LWh1UnuWBGtYK3K4ttLF9yrQWH_1s5cxen3OqUOzvlNqfkX380ilg |
ContentType | Journal Article |
Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.24425/acs.2024.149671 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2300-2611 |
EndPage | 568 |
ExternalDocumentID | oai_doaj_org_article_36486a955ae34ed38e1a9048fef8d058 10_24425_acs_2024_149671 |
GroupedDBID | .4S .DC 0R~ 4.4 5VS AAYXX ABUWG ACGFS ADBBV ADBLJ AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E0C EBS EDO EOJEC GNUQQ GROUPED_DOAJ HCIFZ HZ~ K7- KQ8 O9- OBODZ OK1 P2P PHGZM PHGZT PIMPY PROAC SA. TUS Y2W 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK JQ2 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c332t-2d7c97c9783815aa3c2cd52ed5d5b376b4ad54d743fe059940dbc183485bdcd03 |
IEDL.DBID | 8FG |
ISSN | 1230-2384 |
IngestDate | Wed Aug 27 01:29:32 EDT 2025 Sat Jul 26 00:38:03 EDT 2025 Tue Jul 01 02:37:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-2d7c97c9783815aa3c2cd52ed5d5b376b4ad54d743fe059940dbc183485bdcd03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3120846216?pq-origsite=%requestingapplication% |
PQID | 3120846216 |
PQPubID | 2026349 |
PageCount | 32 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_36486a955ae34ed38e1a9048fef8d058 proquest_journals_3120846216 crossref_primary_10_24425_acs_2024_149671 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw |
PublicationTitle | Archives of control sciences |
PublicationYear | 2024 |
Publisher | De Gruyter Poland Polish Academy of Sciences |
Publisher_xml | – name: De Gruyter Poland – name: Polish Academy of Sciences |
SSID | ssj0000399907 |
Score | 2.2796762 |
Snippet | This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 537 |
SubjectTerms | Algorithms Artificial neural networks Autonomous navigation autonomous underwater vehicle (auv) Autonomous underwater vehicles Cluster analysis Clustering Communication Computer simulation convolutional neural network (cnn) Data compression hierarchical clustering Localization Machine learning Neural networks Underwater communication Vector quantization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPNFChuLxWwee5vyFEUsrBTsQjYz0UL35Dz17ztJVjmxsBEWFkLYhJlkvpnszBfGjimiEGiFrUIUsdIIWNlYQ6UAwQusYwM5QfamubrT1_fmfuGqr5QTVuiBi-BOVaPbxltjPCr6lGqx9paWXcTYgjC5zFdYsRBMZRtMuGtzrTRZZlERLunyj5LQTJpTHxJTt9RkJ2wzrn9gUqbu_2WZM9xcrrO1wU_kkzK_DbaE_SZbXWAP3GKvE55yxoe1Q50TN2V-5cxu_pzzJJEPF0M88IRYwHv_nmk1pj2fRp5qyGYf5HDO-Ds-5hy50safSukTjbFQQrLN7i4vbs-vquEOhSooJeeVhHGw6WkJmo33KsgARiIYMB0Zl057MBrIj4iYqFq0gC7QNtet6SCAUDtsuZ_2uMt4JwETQSE2EXQI4MnXsyiR4mvbaj0esZMvKbqXQpXhKMTIEnckcZck7orER-wsifm7XyK5zg2kejeo3v2l-hE7-FKSG3beq1O1FORTybrZ-48x9tlKmnY5dDlgy_PZGx6SGzLvjvKK-wSmQ9so priority: 102 providerName: Directory of Open Access Journals |
Title | A convolutional neural network machine learning based navigation of underwater vehicles under limited communication |
URI | https://www.proquest.com/docview/3120846216 https://doaj.org/article/36486a955ae34ed38e1a9048fef8d058 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABUR5ioax84MLBquNHNj6hFnVb9VBViEq9WY5nXA6QtLtL-fuMHW8pQkKKFCmxlGg8nm88nvmGsQ-0o5DopBMxySQMAgqXGhAaEILEJrVQEmTP29NLc3Zlr2rAbV3TKrc2sRhqGGOOkR_oRknCStW0n25uRe4alU9XawuNx2y3IaTJet4tT-5jLJLQ15WKabLPUhA6memkkjBN2YMQM1-3MmQtXLto_kKmQuD_j30uoLN8zp5Vb5EfTtO7xx7h8II9fcAh-JKtD3nOHK8aRIMzQ2W5lfxu_qNkSyKv7SGuecYt4EO4K-Qa48DHxHMl2eoXuZ0rfoffSqbc9Ix_nwqg6BsPCklescvl8dfPp6J2UhBRa7URChbR5asjgLYh6KgiWIVgwfZkYnoTwBogbyJhJmwxEvpIi910tocIUr9mO8M44BvGewWYaQqxTWBihEAen0OFtMt2nTGLGfu4laK_mQgzPG00isQ9SdxniftJ4jN2lMV8Py5TXZcH4-ra15XjdWu6NjhrA2rSJd1hExzZnYSpA2m7GdvfTpKv62_t_2jL2_-_fsee5B-agir7bGez-onvyc3Y9POiS3O2e3R8fvFlXjbrvwF--dVB |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEf4MAhquPY2fiAUAuttrSsEGql3ozjmZQDbMru0oo_xW9k7CSlCIlbpUiRHCuJxp_n89jzAHjBFoUkK20WGtlkmpAy2-SYFUjoJeVNiclBdlZOj_X7E3OyBr-GWJjoVjnoxKSosQ1xj3yryJVkrlR5-ebsexarRsXT1aGERgeLA_p5wSbb8vX-Ox7fl0rt7R69nWZ9VYEsFIVaZQonwcarYrIy3hdBBTSK0KCpebrV2qPRyMzaUExeoiXWgYGvK1NjQFnwe2_Auo4RrSNY39mdffx0uasjme9titFmRpAZ86HuzkaZRZXZ8iFmCFea9ZMtJ_lfXJhKBvzDCInm9u7CnX59KrY7QN2DNZrfh9tXshY-gOW2iL7qPWa5c8yJmW7Jo1x8S_6ZJPqCFKciMiWKuT9P6TzauWgbEWPXFhe80F2Ic_qSfPO6NvG1C7nib1wJXXkIx9ci5Ucwmrdz2gBRK6SYGJHKBnUI6HmNaUkR2_W20noyhleDFN1Zl6LDsWmTJO5Y4i5K3HUSH8NOFPNlv5hcOzW0i1PXz1VXlLoqvTXGU8HoLSrKvWVN11BToTTVGDaHQXL9jF-6P_h8_P_Hz-Hm9OjDoTvcnx08gVvx57otnU0YrRY_6Ckvclb1sx5ZAj5fN5h_A_59EUA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network+machine+learning+based+navigation+of+underwater+vehicles+under+limited+communication&rft.jtitle=Archives+of+control+sciences&rft.au=Sahoo%2C+Sarada+Prasanna&rft.au=Pati%2C+Bibhuti+Bhusan&rft.au=Das%2C+Bikramaditya&rft.date=2024-01-01&rft.pub=De+Gruyter+Poland&rft.issn=1230-2384&rft.eissn=2300-2611&rft.volume=34&rft.issue=3&rft.spage=537&rft_id=info:doi/10.24425%2Facs.2024.149671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1230-2384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1230-2384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1230-2384&client=summon |