A convolutional neural network machine learning based navigation of underwater vehicles under limited communication

This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering...

Full description

Saved in:
Bibliographic Details
Published inArchives of control sciences Vol. 34; no. 3; pp. 537 - 568
Main Authors Sahoo, Sarada Prasanna, Pati, Bibhuti Bhusan, Das, Bikramaditya
Format Journal Article
LanguageEnglish
Published Warsaw De Gruyter Poland 01.01.2024
Polish Academy of Sciences
Subjects
Online AccessGet full text
ISSN1230-2384
2300-2611
DOI10.24425/acs.2024.149671

Cover

Abstract This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme.
AbstractList This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate.We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme.
Author Sahoo, Sarada Prasanna
Das, Bikramaditya
Pati, Bibhuti Bhusan
Author_xml – sequence: 1
  givenname: Sarada Prasanna
  surname: Sahoo
  fullname: Sahoo, Sarada Prasanna
  organization: Department of Electrical Engineering, VSS University of Technology, Burla, India
– sequence: 2
  givenname: Bibhuti Bhusan
  surname: Pati
  fullname: Pati, Bibhuti Bhusan
– sequence: 3
  givenname: Bikramaditya
  surname: Das
  fullname: Das, Bikramaditya
  organization: Department of Electronics andTelecommunication Engineering, VSSUT Burla, Odisha, India but now joined as Associate Professor inDepartment of Electronics and Communication Engineering, CUPGS, BPUT, Rourkela, Odisha, India
BookMark eNo9UU1r3DAQFSWFbtPcexT07K0-bekYQtsEAr0kZzGWxhttbSmV7A399_WuS4eBYR5v3gzzPpKrlBMS8pmzvVBK6K_g614wofZc2bbj78hOSMYa0XJ-RXZ8bRohjfpAbmo9sjWktZZ1O1Jvqc_plMdljjnBSBMu5VLmt1x-0Qn8S0xIR4SSYjrQHioGmuAUD3AeoXmgSwpY3mDGQk_4Ev2IdcPoGKc4r3yfp2lJ0V9GPpH3A4wVb_7Va_L8_dvT3X3z-PPHw93tY-OlFHMjQuftOY00XANIL3zQAoMOupdd2ysIWoVOyQGZtlax0HtupDK6Dz4weU0eNt2Q4eheS5yg_HEZorsAuRwclPl8rpOtMi1YrQGlwiANcrBMmQEHE5g2q9aXTeu15N8L1tkd81LWh1UnuWBGtYK3K4ttLF9yrQWH_1s5cxen3OqUOzvlNqfkX380ilg
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.24425/acs.2024.149671
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2300-2611
EndPage 568
ExternalDocumentID oai_doaj_org_article_36486a955ae34ed38e1a9048fef8d058
10_24425_acs_2024_149671
GroupedDBID .4S
.DC
0R~
4.4
5VS
AAYXX
ABUWG
ACGFS
ADBBV
ADBLJ
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E0C
EBS
EDO
EOJEC
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
K7-
KQ8
O9-
OBODZ
OK1
P2P
PHGZM
PHGZT
PIMPY
PROAC
SA.
TUS
Y2W
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
JQ2
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c332t-2d7c97c9783815aa3c2cd52ed5d5b376b4ad54d743fe059940dbc183485bdcd03
IEDL.DBID 8FG
ISSN 1230-2384
IngestDate Wed Aug 27 01:29:32 EDT 2025
Sat Jul 26 00:38:03 EDT 2025
Tue Jul 01 02:37:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-2d7c97c9783815aa3c2cd52ed5d5b376b4ad54d743fe059940dbc183485bdcd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3120846216?pq-origsite=%requestingapplication%
PQID 3120846216
PQPubID 2026349
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_36486a955ae34ed38e1a9048fef8d058
proquest_journals_3120846216
crossref_primary_10_24425_acs_2024_149671
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
PublicationTitle Archives of control sciences
PublicationYear 2024
Publisher De Gruyter Poland
Polish Academy of Sciences
Publisher_xml – name: De Gruyter Poland
– name: Polish Academy of Sciences
SSID ssj0000399907
Score 2.2796762
Snippet This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 537
SubjectTerms Algorithms
Artificial neural networks
Autonomous navigation
autonomous underwater vehicle (auv)
Autonomous underwater vehicles
Cluster analysis
Clustering
Communication
Computer simulation
convolutional neural network (cnn)
Data compression
hierarchical clustering
Localization
Machine learning
Neural networks
Underwater communication
Vector quantization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPNFChuLxWwee5vyFEUsrBTsQjYz0UL35Dz17ztJVjmxsBEWFkLYhJlkvpnszBfGjimiEGiFrUIUsdIIWNlYQ6UAwQusYwM5QfamubrT1_fmfuGqr5QTVuiBi-BOVaPbxltjPCr6lGqx9paWXcTYgjC5zFdYsRBMZRtMuGtzrTRZZlERLunyj5LQTJpTHxJTt9RkJ2wzrn9gUqbu_2WZM9xcrrO1wU_kkzK_DbaE_SZbXWAP3GKvE55yxoe1Q50TN2V-5cxu_pzzJJEPF0M88IRYwHv_nmk1pj2fRp5qyGYf5HDO-Ds-5hy50safSukTjbFQQrLN7i4vbs-vquEOhSooJeeVhHGw6WkJmo33KsgARiIYMB0Zl057MBrIj4iYqFq0gC7QNtet6SCAUDtsuZ_2uMt4JwETQSE2EXQI4MnXsyiR4mvbaj0esZMvKbqXQpXhKMTIEnckcZck7orER-wsifm7XyK5zg2kejeo3v2l-hE7-FKSG3beq1O1FORTybrZ-48x9tlKmnY5dDlgy_PZGx6SGzLvjvKK-wSmQ9so
  priority: 102
  providerName: Directory of Open Access Journals
Title A convolutional neural network machine learning based navigation of underwater vehicles under limited communication
URI https://www.proquest.com/docview/3120846216
https://doaj.org/article/36486a955ae34ed38e1a9048fef8d058
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcABUR5ioax84MLBquNHNj6hFnVb9VBViEq9WY5nXA6QtLtL-fuMHW8pQkKKFCmxlGg8nm88nvmGsQ-0o5DopBMxySQMAgqXGhAaEILEJrVQEmTP29NLc3Zlr2rAbV3TKrc2sRhqGGOOkR_oRknCStW0n25uRe4alU9XawuNx2y3IaTJet4tT-5jLJLQ15WKabLPUhA6memkkjBN2YMQM1-3MmQtXLto_kKmQuD_j30uoLN8zp5Vb5EfTtO7xx7h8II9fcAh-JKtD3nOHK8aRIMzQ2W5lfxu_qNkSyKv7SGuecYt4EO4K-Qa48DHxHMl2eoXuZ0rfoffSqbc9Ix_nwqg6BsPCklescvl8dfPp6J2UhBRa7URChbR5asjgLYh6KgiWIVgwfZkYnoTwBogbyJhJmwxEvpIi910tocIUr9mO8M44BvGewWYaQqxTWBihEAen0OFtMt2nTGLGfu4laK_mQgzPG00isQ9SdxniftJ4jN2lMV8Py5TXZcH4-ra15XjdWu6NjhrA2rSJd1hExzZnYSpA2m7GdvfTpKv62_t_2jL2_-_fsee5B-agir7bGez-onvyc3Y9POiS3O2e3R8fvFlXjbrvwF--dVB
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ7qQgEf4MAhquPY2fiAUAuttrSsEGql3ozjmZQDbMru0oo_xW9k7CSlCIlbpUiRHCuJxp_n89jzAHjBFoUkK20WGtlkmpAy2-SYFUjoJeVNiclBdlZOj_X7E3OyBr-GWJjoVjnoxKSosQ1xj3yryJVkrlR5-ebsexarRsXT1aGERgeLA_p5wSbb8vX-Ox7fl0rt7R69nWZ9VYEsFIVaZQonwcarYrIy3hdBBTSK0KCpebrV2qPRyMzaUExeoiXWgYGvK1NjQFnwe2_Auo4RrSNY39mdffx0uasjme9titFmRpAZ86HuzkaZRZXZ8iFmCFea9ZMtJ_lfXJhKBvzDCInm9u7CnX59KrY7QN2DNZrfh9tXshY-gOW2iL7qPWa5c8yJmW7Jo1x8S_6ZJPqCFKciMiWKuT9P6TzauWgbEWPXFhe80F2Ic_qSfPO6NvG1C7nib1wJXXkIx9ci5Ucwmrdz2gBRK6SYGJHKBnUI6HmNaUkR2_W20noyhleDFN1Zl6LDsWmTJO5Y4i5K3HUSH8NOFPNlv5hcOzW0i1PXz1VXlLoqvTXGU8HoLSrKvWVN11BToTTVGDaHQXL9jF-6P_h8_P_Hz-Hm9OjDoTvcnx08gVvx57otnU0YrRY_6Ckvclb1sx5ZAj5fN5h_A_59EUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+neural+network+machine+learning+based+navigation+of+underwater+vehicles+under+limited+communication&rft.jtitle=Archives+of+control+sciences&rft.au=Sahoo%2C+Sarada+Prasanna&rft.au=Pati%2C+Bibhuti+Bhusan&rft.au=Das%2C+Bikramaditya&rft.date=2024-01-01&rft.pub=De+Gruyter+Poland&rft.issn=1230-2384&rft.eissn=2300-2611&rft.volume=34&rft.issue=3&rft.spage=537&rft_id=info:doi/10.24425%2Facs.2024.149671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1230-2384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1230-2384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1230-2384&client=summon