Phononic Weyl Nodal Lines and Weyl Pairs in van der Waals Heavy Fermion Material CeSiI
Topological phonon is a new frontier in the field of topological materials. Different from electronic structures, phonons are bosons and most topological phonons are metallic form. Previous studies about topological phonon states were focused on three-dimensional (3D) materials. Owing to the lack of...
Saved in:
Published in | Chinese physics letters Vol. 41; no. 10; pp. 107301 - 102 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2024
|
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/41/10/107301 |
Cover
Abstract | Topological phonon is a new frontier in the field of topological materials. Different from electronic structures, phonons are bosons and most topological phonons are metallic form. Previous studies about topological phonon states were focused on three-dimensional (3D) materials. Owing to the lack of material candidates, two-dimensional (2D) and van der Waals
f
-electron-related topological phonons were rarely reported. Based on first-principles calculations, we investigate the topological phononic state in the heavy fermion material CeSiI with a layered structure. Both 3D bulk and 2D monolayers have topological nontrivial states in the rarely seen
f
electron dominated van der Waals metal. Owing to the
PT
and
C
3
z
symmetries, Weyl nodal lines with nonzero Chern numbers exist on the hinge of the Brillouin zone. Protected by
C
3
z
rotation symmetry, three pairs of Weyl points with ±
π
Berry phase exist at point
K
near the frequency of 8 and 10 THz. In addition to the bulk topological charges, corresponding surface/edge states are also systematically analyzed, which gives a consistent understanding. Our results propose another interesting point in the newly discovered rear earth heavy fermion material CeSiI and are helpful for future experimental research of CeSiI topological phonons. |
---|---|
AbstractList | Topological phonon is a new frontier in the field of topological materials.Different from electronic struc-tures,phonons are bosons and most topological phonons are metallic form.Previous studies about topological phonon states were focused on three-dimensional(3D)materials.Owing to the lack of material candidates,two-dimensional(2D)and van der Waals f-electron-related topological phonons were rarely reported.Based on first-principles calculations,we investigate the topological phononic state in the heavy fermion material CeSiI with a layered structure.Both 3D bulk and 2D monolayers have topological nontrivial states in the rarely seen f electron dominated van der Waals metal.Owing to the PT and C3z symmetries,Weyl nodal lines with nonzero Chern numbers exist on the hinge of the Brillouin zone.Protected by C3z rotation symmetry,three pairs of Weyl points with±π Berry phase exist at point K near the frequency of 8 and 10 THz.In addition to the bulk topological charges,corresponding surface/edge states are also systematically analyzed,which gives a consistent understanding.Our results propose another interesting point in the newly discovered rear earth heavy fermion material CeSiI and are helpful for future experimental research of CeSil topological phonons. Topological phonon is a new frontier in the field of topological materials. Different from electronic structures, phonons are bosons and most topological phonons are metallic form. Previous studies about topological phonon states were focused on three-dimensional (3D) materials. Owing to the lack of material candidates, two-dimensional (2D) and van der Waals f -electron-related topological phonons were rarely reported. Based on first-principles calculations, we investigate the topological phononic state in the heavy fermion material CeSiI with a layered structure. Both 3D bulk and 2D monolayers have topological nontrivial states in the rarely seen f electron dominated van der Waals metal. Owing to the PT and C 3 z symmetries, Weyl nodal lines with nonzero Chern numbers exist on the hinge of the Brillouin zone. Protected by C 3 z rotation symmetry, three pairs of Weyl points with ± π Berry phase exist at point K near the frequency of 8 and 10 THz. In addition to the bulk topological charges, corresponding surface/edge states are also systematically analyzed, which gives a consistent understanding. Our results propose another interesting point in the newly discovered rear earth heavy fermion material CeSiI and are helpful for future experimental research of CeSiI topological phonons. |
Author | Liu, Peitao Lai, Junwen Chen, Xing-Qiu Yu, Tianye Li, Fulei Sun, Yan Liu, Jiaxi |
Author_xml | – sequence: 1 givenname: Fulei surname: Li fullname: Li, Fulei organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 2 givenname: Tianye surname: Yu fullname: Yu, Tianye organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 3 givenname: Junwen surname: Lai fullname: Lai, Junwen organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 4 givenname: Jiaxi surname: Liu fullname: Liu, Jiaxi organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 5 givenname: Peitao surname: Liu fullname: Liu, Peitao organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 6 givenname: Xing-Qiu surname: Chen fullname: Chen, Xing-Qiu organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China – sequence: 7 givenname: Yan surname: Sun fullname: Sun, Yan organization: Chinese Academy of Sciences Shenyang National Laboratory for Materials Science, Institute of Metal Research, Shenyang 110016, China |
BookMark | eNqFkE9LAzEQxYMo2Fa_guTqYW1mN9mm4EWKtYWqBf_UW5husjV1my3ZtaV-elNWFLwUBgaG95t589rk2JXOEHIB7AqYlF0WizRKWO-ty6ELLFQvYXBEWtDjECWCs2PS-hWdknZVLRkDkAAt8jp9L8M-m9GZ2RX0odRY0Il1pqLodDOcovUVtY5u0FFtPJ0hFhUdGdzs6ND4lS0dvcfaeBvggXmy4zNykgeNOf_pHfIyvH0ejKLJ4914cDOJsiSJ6wgwZkyg1hKZ5HMtOEfdj00_1lkOMhG5FHkKWqeMi1TDXGYgMtHTBjVIliUdctns3aLL0S3Usvz0LlxUX4tt8TFXJmYxh_BuErTXjTbzZVV5k6vM1lgH87VHWyhgap-n2kel9lEpDs1wn2fA03_42tsV-t1hMG5AW67__B2AvgGmwojf |
CitedBy_id | crossref_primary_10_1088_0256_307X_42_2_027405 |
Cites_doi | 10.1016/0927-0256(96)00008-0 10.1103/PhysRevLett.126.185301 10.1103/RevModPhys.56.755 10.1103/PhysRevB.105.134303 10.1038/nature06843 10.1103/PhysRev.108.1175 10.1088/0256-307X/41/1/016302 10.1103/PhysRevB.85.195320 10.1103/PhysRevLett.124.105303 10.1088/1361-648X/ac4dbd 10.1103/PhysRevMaterials.6.034202 10.1038/s41467-017-00133-2 10.1038/nphys2513 10.1088/0305-4608/15/4/009 10.1088/0256-307X/41/7/077401 10.1146/annurev-conmatphys-031214-014529 10.1038/s41467-021-21293-2 10.1103/PhysRevB.104.045148 10.1103/RevModPhys.88.035005 10.1038/ncomms8373 10.1103/PhysRevB.101.081403 10.1103/PhysRevLett.123.136802 10.1038/s41467-019-09820-8 10.1038/nphys892 10.1103/PhysRevB.104.085118 10.1103/PhysRevB.103.094306 10.1103/PhysRevB.101.100303 10.1038/nphys1274 10.1103/PhysRevLett.123.245302 10.1103/PhysRevLett.115.115502 10.1038/s41586-019-0954-4 10.1103/PhysRevB.99.174306 10.1039/D2CP01992B 10.1103/PhysRevB.103.L161303 10.1103/PhysRevB.100.081204 10.1021/acs.jpclett.9b01159 10.1103/PhysRevLett.117.096401 10.1103/PhysRevB.97.054305 10.1002/adts.201800184 10.1038/ncomms10556 10.1039/D1CP05217A 10.1103/PhysRevB.104.134303 10.1103/PhysRevX.5.011029 10.1093/nsr/nwx086 10.1103/PhysRevB.104.L041107 10.1038/s41524-020-00354-y 10.1021/acs.nanolett.8b03492 10.1103/PhysRevMaterials.5.124203 10.1038/s41586-019-0944-6 10.1088/0256-307X/39/6/060301 10.1103/RevModPhys.79.1015 10.1038/nphoton.2013.42 10.1103/PhysRevLett.120.016401 10.1126/science.adf8458 10.1038/s41586-023-06868-x 10.1038/nphys3803 10.1126/science.1148047 10.1063/5.0102217 10.1038/s41586-020-2122-2 10.1016/j.cpc.2016.09.005 10.1103/PhysRevB.106.054306 10.1103/PhysRevB.104.L041104 10.1103/PhysRevB.98.220103 10.1103/RevModPhys.89.040501 10.1038/nature23268 10.1103/PhysRevB.96.064106 10.1016/j.cpc.2017.09.033 10.1103/PhysRevB.104.174108 10.1126/sciadv.abd1618 10.1038/27838 10.1038/ncomms11696 10.1103/PhysRevB.102.125148 10.1103/PhysRevLett.123.065501 10.1038/ncomms9682 10.1103/PhysRevMaterials.5.084202 10.1038/s41586-019-0937-5 10.1103/PhysRevLett.108.140405 10.1103/PhysRevB.104.024304 10.1103/PhysRevB.105.054307 10.1103/PhysRevB.105.094310 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.121.035302 10.1103/PhysRevB.104.L041405 10.1038/nphys3867 10.1038/s41586-020-2837-0 10.1103/PhysRevB.83.205101 10.1103/PhysRevB.101.024301 10.1038/s41524-021-00667-6 |
ContentType | Journal Article |
Copyright | 2024 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2024 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/0256-307X/41/10/107301 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1741-3540 |
EndPage | 102 |
ExternalDocumentID | zgwlkb_e202410013 10_1088_0256_307X_41_10_107301 cpl_41_10_107301 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 U1G U5K UCJ W28 XPP ~02 AAYXX ADEQX CITATION Q-- TGP 02O 042 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NS0 NT- NT. PSX Q02 S3P T37 TCJ |
ID | FETCH-LOGICAL-c332t-1a2005add8a084bd544ad92e92dcf1835f85f61dd60456d1b8c15c57dead180c3 |
IEDL.DBID | IOP |
ISSN | 0256-307X |
IngestDate | Thu May 29 04:07:19 EDT 2025 Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 01:35:39 EDT 2025 Tue Nov 19 23:09:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-1a2005add8a084bd544ad92e92dcf1835f85f61dd60456d1b8c15c57dead180c3 |
PageCount | 6 |
ParticipantIDs | wanfang_journals_zgwlkb_e202410013 crossref_citationtrail_10_1088_0256_307X_41_10_107301 iop_journals_10_1088_0256_307X_41_10_107301 crossref_primary_10_1088_0256_307X_41_10_107301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Phys. Lett |
PublicationTitle_FL | Chinese Physics Letters |
PublicationYear | 2024 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Liu (cpl_41_10_107301bib53) 2019; 100 Huang (cpl_41_10_107301bib51) 2020; 6 Lu (cpl_41_10_107301bib26) 2013; 7 Jin (cpl_41_10_107301bib55) 2018; 18 Ding (cpl_41_10_107301bib58) 2022; 24 Yang (cpl_41_10_107301bib56) 2022; 121 Bian (cpl_41_10_107301bib19) 2016; 7 Wang (cpl_41_10_107301bib50) 2020; 124 Goldman (cpl_41_10_107301bib3) 2016; 12 Wang (cpl_41_10_107301bib72) 2021; 104 Liu (cpl_41_10_107301bib27) 2018; 5 Li (cpl_41_10_107301bib68) 2020; 101 Chiu (cpl_41_10_107301bib2) 2016; 88 Vergniory (cpl_41_10_107301bib6) 2019; 566 Xia (cpl_41_10_107301bib10) 2009; 5 Wang (cpl_41_10_107301bib64) 2021; 5 Wu (cpl_41_10_107301bib87) 2018; 224 Young (cpl_41_10_107301bib12) 2012; 108 Stewart (cpl_41_10_107301bib82) 1984; 56 He (cpl_41_10_107301bib24) 2016; 12 Bradlyn (cpl_41_10_107301bib4) 2017; 547 Zhang (cpl_41_10_107301bib49) 2020; 102 Eriksson (cpl_41_10_107301bib86) 2019; 2 Jin (cpl_41_10_107301bib63) 2018; 98 Wan (cpl_41_10_107301bib14) 2011; 83 Mathur (cpl_41_10_107301bib78) 1998; 394 Liu (cpl_41_10_107301bib41) 2022; 106 Liu (cpl_41_10_107301bib35) 2017; 96 Weng (cpl_41_10_107301bib15) 2015; 5 Zhang (cpl_41_10_107301bib33) 2022; 39 Xu (cpl_41_10_107301bib22) 2020; 586 Li (cpl_41_10_107301bib60) 2020; 101 Yazdani (cpl_41_10_107301bib80) 2016; 7 Huang (cpl_41_10_107301bib16) 2015; 6 Mousavi (cpl_41_10_107301bib23) 2015; 6 Chen (cpl_41_10_107301bib54) 2021; 126 Kresse (cpl_41_10_107301bib84) 1996; 54 Chun Po (cpl_41_10_107301bib21) 2017; 8 Zheng (cpl_41_10_107301bib25) 2017; 210 Wang (cpl_41_10_107301bib73) 2022; 24 Zhang (cpl_41_10_107301bib5) 2019; 566 Tang (cpl_41_10_107301bib7) 2019; 566 Li (cpl_41_10_107301bib29) 2021; 12 Liu (cpl_41_10_107301bib48) 2021; 103 Wang (cpl_41_10_107301bib13) 2012; 85 Lopez Sancho (cpl_41_10_107301bib88) 1985; 15 Zhang (cpl_41_10_107301bib44) 2018; 120 Posey (cpl_41_10_107301bib77) 2024; 625 Bardeen (cpl_41_10_107301bib32) 1957; 108 Wang (cpl_41_10_107301bib36) 2021; 104 Li (cpl_41_10_107301bib31) 2024; 41 Zhou (cpl_41_10_107301bib66) 2021; 104 Xie (cpl_41_10_107301bib75) 2022; 105 Schoop (cpl_41_10_107301bib18) 2016; 7 Zheng (cpl_41_10_107301bib65) 2020; 101 Wang (cpl_41_10_107301bib59) 2021; 5 Liu (cpl_41_10_107301bib47) 2021; 103 Jiao (cpl_41_10_107301bib83) 2020; 579 Peng (cpl_41_10_107301bib70) 2021; 7 Li (cpl_41_10_107301bib20) 2019; 123 Zhong (cpl_41_10_107301bib39) 2021; 104 Zhang (cpl_41_10_107301bib57) 2019; 123 Xie (cpl_41_10_107301bib76) 2021; 104 Yu (cpl_41_10_107301bib40) 2022; 34 Kosterlitz (cpl_41_10_107301bib1) 2017; 89 Slager (cpl_41_10_107301bib11) 2013; 9 Ding (cpl_41_10_107301bib46) 2022; 105 Kresse (cpl_41_10_107301bib85) 1996; 6 Liu (cpl_41_10_107301bib61) 2021; 104 Miao (cpl_41_10_107301bib45) 2018; 121 Löhneysen (cpl_41_10_107301bib81) 2007; 79 Hsieh (cpl_41_10_107301bib9) 2008; 452 Zhang (cpl_41_10_107301bib28) 2015; 115 Deng (cpl_41_10_107301bib69) 2019; 10 Yang (cpl_41_10_107301bib38) 2022; 105 Xu (cpl_41_10_107301bib30) 2024; 384 Peng (cpl_41_10_107301bib67) 2020; 6 Konig (cpl_41_10_107301bib8) 2007; 318 Chen (cpl_41_10_107301bib71) 2022; 6 Liu (cpl_41_10_107301bib74) 2021; 104 Gegenwart (cpl_41_10_107301bib79) 2008; 4 Xie (cpl_41_10_107301bib37) 2021; 104 Xie (cpl_41_10_107301bib43) 2019; 99 Xia (cpl_41_10_107301bib52) 2019; 123 Li (cpl_41_10_107301bib42) 2018; 97 Liu (cpl_41_10_107301bib34) 2024; 41 Liu (cpl_41_10_107301bib62) 2019; 10 Li (cpl_41_10_107301bib17) 2016; 117 |
References_xml | – volume: 6 start-page: 15 year: 1996 ident: cpl_41_10_107301bib85 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 126 year: 2021 ident: cpl_41_10_107301bib54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.185301 – volume: 56 start-page: 755 year: 1984 ident: cpl_41_10_107301bib82 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.56.755 – volume: 105 year: 2022 ident: cpl_41_10_107301bib46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.134303 – volume: 452 start-page: 970 year: 2008 ident: cpl_41_10_107301bib9 publication-title: Nature doi: 10.1038/nature06843 – volume: 108 start-page: 1175 year: 1957 ident: cpl_41_10_107301bib32 publication-title: Phys. Rev. doi: 10.1103/PhysRev.108.1175 – volume: 41 year: 2024 ident: cpl_41_10_107301bib31 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/41/1/016302 – volume: 85 year: 2012 ident: cpl_41_10_107301bib13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.195320 – volume: 124 year: 2020 ident: cpl_41_10_107301bib50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.105303 – volume: 34 year: 2022 ident: cpl_41_10_107301bib40 publication-title: J. Phys.: Condens. Matter. doi: 10.1088/1361-648X/ac4dbd – volume: 6 year: 2022 ident: cpl_41_10_107301bib71 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.6.034202 – volume: 8 start-page: 50 year: 2017 ident: cpl_41_10_107301bib21 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00133-2 – volume: 9 start-page: 98 year: 2013 ident: cpl_41_10_107301bib11 publication-title: Nat. Phys. doi: 10.1038/nphys2513 – volume: 15 start-page: 851 year: 1985 ident: cpl_41_10_107301bib88 publication-title: J. Phys. F doi: 10.1088/0305-4608/15/4/009 – volume: 41 year: 2024 ident: cpl_41_10_107301bib34 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/41/7/077401 – volume: 7 start-page: 11 year: 2016 ident: cpl_41_10_107301bib80 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031214-014529 – volume: 12 start-page: 1204 year: 2021 ident: cpl_41_10_107301bib29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21293-2 – volume: 104 year: 2021 ident: cpl_41_10_107301bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.045148 – volume: 88 year: 2016 ident: cpl_41_10_107301bib2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.035005 – volume: 6 start-page: 7373 year: 2015 ident: cpl_41_10_107301bib16 publication-title: Nat. Commun. doi: 10.1038/ncomms8373 – volume: 101 year: 2020 ident: cpl_41_10_107301bib68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.081403 – volume: 123 year: 2019 ident: cpl_41_10_107301bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.136802 – volume: 10 start-page: 1769 year: 2019 ident: cpl_41_10_107301bib69 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09820-8 – volume: 4 start-page: 186 year: 2008 ident: cpl_41_10_107301bib79 publication-title: Nat. Phys. doi: 10.1038/nphys892 – volume: 104 year: 2021 ident: cpl_41_10_107301bib39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.085118 – volume: 103 year: 2021 ident: cpl_41_10_107301bib48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.094306 – volume: 101 year: 2020 ident: cpl_41_10_107301bib65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.100303 – volume: 5 start-page: 398 year: 2009 ident: cpl_41_10_107301bib10 publication-title: Nat. Phys. doi: 10.1038/nphys1274 – volume: 123 year: 2019 ident: cpl_41_10_107301bib57 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.245302 – volume: 115 year: 2015 ident: cpl_41_10_107301bib28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.115502 – volume: 566 start-page: 480 year: 2019 ident: cpl_41_10_107301bib6 publication-title: Nature doi: 10.1038/s41586-019-0954-4 – volume: 99 year: 2019 ident: cpl_41_10_107301bib43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.174306 – volume: 24 year: 2022 ident: cpl_41_10_107301bib58 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP01992B – volume: 103 year: 2021 ident: cpl_41_10_107301bib47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.L161303 – volume: 100 year: 2019 ident: cpl_41_10_107301bib53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.081204 – volume: 10 start-page: 4045 year: 2019 ident: cpl_41_10_107301bib62 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01159 – volume: 117 year: 2016 ident: cpl_41_10_107301bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.096401 – volume: 97 year: 2018 ident: cpl_41_10_107301bib42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.054305 – volume: 2 year: 2019 ident: cpl_41_10_107301bib86 publication-title: Adv. Theory Simul. doi: 10.1002/adts.201800184 – volume: 7 year: 2016 ident: cpl_41_10_107301bib19 publication-title: Nat. Commun. doi: 10.1038/ncomms10556 – volume: 24 start-page: 2752 year: 2022 ident: cpl_41_10_107301bib73 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP05217A – volume: 104 year: 2021 ident: cpl_41_10_107301bib76 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.134303 – volume: 5 year: 2015 ident: cpl_41_10_107301bib15 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.011029 – volume: 5 start-page: 314 year: 2018 ident: cpl_41_10_107301bib27 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx086 – volume: 104 year: 2021 ident: cpl_41_10_107301bib36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L041107 – volume: 6 start-page: 87 year: 2020 ident: cpl_41_10_107301bib51 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00354-y – volume: 18 start-page: 7755 year: 2018 ident: cpl_41_10_107301bib55 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03492 – volume: 5 year: 2021 ident: cpl_41_10_107301bib59 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.124203 – volume: 566 start-page: 475 year: 2019 ident: cpl_41_10_107301bib5 publication-title: Nature doi: 10.1038/s41586-019-0944-6 – volume: 39 year: 2022 ident: cpl_41_10_107301bib33 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/6/060301 – volume: 79 start-page: 1015 year: 2007 ident: cpl_41_10_107301bib81 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.79.1015 – volume: 7 start-page: 294 year: 2013 ident: cpl_41_10_107301bib26 publication-title: Nat. Photon. doi: 10.1038/nphoton.2013.42 – volume: 120 year: 2018 ident: cpl_41_10_107301bib44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.016401 – volume: 384 year: 2024 ident: cpl_41_10_107301bib30 publication-title: Science doi: 10.1126/science.adf8458 – volume: 625 start-page: 483 year: 2024 ident: cpl_41_10_107301bib77 publication-title: Nature doi: 10.1038/s41586-023-06868-x – volume: 12 start-page: 639 year: 2016 ident: cpl_41_10_107301bib3 publication-title: Nat. Phys. doi: 10.1038/nphys3803 – volume: 318 start-page: 766 year: 2007 ident: cpl_41_10_107301bib8 publication-title: Science doi: 10.1126/science.1148047 – volume: 121 year: 2022 ident: cpl_41_10_107301bib56 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0102217 – volume: 579 start-page: 523 year: 2020 ident: cpl_41_10_107301bib83 publication-title: Nature doi: 10.1038/s41586-020-2122-2 – volume: 210 start-page: 139 year: 2017 ident: cpl_41_10_107301bib25 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.09.005 – volume: 106 year: 2022 ident: cpl_41_10_107301bib41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.054306 – volume: 104 year: 2021 ident: cpl_41_10_107301bib72 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L041104 – volume: 98 year: 2018 ident: cpl_41_10_107301bib63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.220103 – volume: 89 year: 2017 ident: cpl_41_10_107301bib1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.040501 – volume: 547 start-page: 298 year: 2017 ident: cpl_41_10_107301bib4 publication-title: Nature doi: 10.1038/nature23268 – volume: 96 year: 2017 ident: cpl_41_10_107301bib35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.064106 – volume: 224 start-page: 405 year: 2018 ident: cpl_41_10_107301bib87 publication-title: Phys. Chem. Commun. doi: 10.1016/j.cpc.2017.09.033 – volume: 104 year: 2021 ident: cpl_41_10_107301bib66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.174108 – volume: 6 year: 2020 ident: cpl_41_10_107301bib67 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd1618 – volume: 394 start-page: 39 year: 1998 ident: cpl_41_10_107301bib78 publication-title: Nature doi: 10.1038/27838 – volume: 7 year: 2016 ident: cpl_41_10_107301bib18 publication-title: Nat. Commun. doi: 10.1038/ncomms11696 – volume: 102 year: 2020 ident: cpl_41_10_107301bib49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.125148 – volume: 123 year: 2019 ident: cpl_41_10_107301bib52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.065501 – volume: 6 start-page: 8682 year: 2015 ident: cpl_41_10_107301bib23 publication-title: Nat. Commun. doi: 10.1038/ncomms9682 – volume: 5 year: 2021 ident: cpl_41_10_107301bib64 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.084202 – volume: 566 start-page: 486 year: 2019 ident: cpl_41_10_107301bib7 publication-title: Nature doi: 10.1038/s41586-019-0937-5 – volume: 108 year: 2012 ident: cpl_41_10_107301bib12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.140405 – volume: 104 year: 2021 ident: cpl_41_10_107301bib61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.024304 – volume: 105 year: 2022 ident: cpl_41_10_107301bib75 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.054307 – volume: 105 year: 2022 ident: cpl_41_10_107301bib38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.105.094310 – volume: 54 year: 1996 ident: cpl_41_10_107301bib84 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 121 year: 2018 ident: cpl_41_10_107301bib45 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.035302 – volume: 104 year: 2021 ident: cpl_41_10_107301bib74 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L041405 – volume: 12 start-page: 1124 year: 2016 ident: cpl_41_10_107301bib24 publication-title: Nat. Phys. doi: 10.1038/nphys3867 – volume: 586 start-page: 702 year: 2020 ident: cpl_41_10_107301bib22 publication-title: Nature doi: 10.1038/s41586-020-2837-0 – volume: 83 year: 2011 ident: cpl_41_10_107301bib14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.205101 – volume: 101 year: 2020 ident: cpl_41_10_107301bib60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.024301 – volume: 7 start-page: 195 year: 2021 ident: cpl_41_10_107301bib70 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00667-6 |
SSID | ssj0011811 |
Score | 2.3901417 |
Snippet | Topological phonon is a new frontier in the field of topological materials. Different from electronic structures, phonons are bosons and most topological... Topological phonon is a new frontier in the field of topological materials.Different from electronic struc-tures,phonons are bosons and most topological... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107301 |
Title | Phononic Weyl Nodal Lines and Weyl Pairs in van der Waals Heavy Fermion Material CeSiI |
URI | https://iopscience.iop.org/article/10.1088/0256-307X/41/10/107301 https://d.wanfangdata.com.cn/periodical/zgwlkb-e202410013 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA4eCL54i_UiiG-y7aabbJNHKZYqHgWP9m3JtVUsW2m3iv31ZvbwAhER9mEJmSU7-TYzm8x8g9ChINJXgS89aRR3PygGKG9F6DWYiJkmwggFCc4Xl2H7lp71WBlNmOXCDJ-Kpb_qbnOi4FyFRUAcr4GVhi2TXo0S1-guQOksmofylQDy06vO-0GCM2BZ0bxSpkwS_vE5X-zTrBtDls2TxDLpfzI8rWWkyiHn8SaP1Umqqnr6jc3xX--0gpYKtxQf5wKraMYma2ghCw_V43V017kfJkCii7v2dYAvh8Z1PoeIeSwTkzd24GQIPyTY-ebY2BHuSgdt3Lby-RW3IOZmmOALmWaQx017_XC6gW5bJzfNtldUZPB0ENRTj0jYhHJLIpc-p8owSqURdSvqRsducWAxZ3FIjAnBUzREcU2YZg3j8Eq4r4NNNOdGa7cQbpDYKkW5BYacQHBhjIotZUHsGxVyWkGsnIdIF3TlUDVjEGXH5pxHoLMIdBZRkjeCziqo9i73lBN2_Cpx5KYlKr7d8a-9Dwo4fEhM-y-DRxXZunN4gNMq2P7TI3fQIkjmGY67aC4dTeyec3VStZ-B-Q1AS-xQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBdtx0Zf9l3W7kuMvQ0nViw50uPoGpKtzQJb17wZSSd1pcEJjbvR_vW7s53sA0YZAz8YoRP26Xx3ln73E2OvjbCpy1KbWHAaf1CAKG9NnvSVicoLA8ZRgfPROB8ey_dTNd1gB-tamPmidf0dvG2IghsVtoA43aUoTUsm064U2IgXWWl3AXGT3VLokAnZNfo4WW8mYBCrD85bya0Khf861m8xahOfo67oKaMtT38JPoN7DUhkWXMWEubkvHNZuY6__oPR8b_f6z6726an_G0j9IBthPIhu13DRP3yEfsy-ToviUyXn4SrGR_PATsfEnKe2xKaxgntEPGzkmOOziFc8BOLJs6HwX674gPC3sxLfmSr2vT5fvh0NnrMjgcHn_eHSXsyQ-KzrFclwtJiFLpGbVMtHSgpLZheMD3wEZ2EilrFXADklDGCcNoL5VUf0G6FTn22w7bwacMTxvsiBuekDsSUkxltAFwMUmUxBZdrucvUai4K39KW0-kZs6LePte6IL0VpLdCiqaR9LbLumu5RUPccaPEG5yaov2Glzf2ftWaxE-J69Pvs3NXhB4mPsRtle3905Av2Z3Ju0FxOBp_eMq2aZCm6PEZ26ouLsNzzH4q96K27R9tVvG0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phononic+Weyl+Nodal+Lines+and+Weyl+Pairs+in+van+der+Waals+Heavy+Fermion+Material+CeSiI&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Fulei+Li&rft.au=Tianye+Yu&rft.au=Junwen+Lai&rft.au=Jiaxi+Liu&rft.date=2024-11-01&rft.issn=0256-307X&rft.volume=41&rft.issue=10&rft.spage=97&rft.epage=102&rft_id=info:doi/10.1088%2F0256-307X%2F41%2F10%2F107301&rft.externalDocID=zgwlkb_e202410013 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg |