Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers

The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, w...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 937
Main Authors Romero, Sylvia, Zimmerman, Spencer, Philip, Jimmy, White, Christopher, Klewicki, Joseph
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.04.2022
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/jfm.2022.6

Cover

Abstract The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile.
AbstractList The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ( $7000 \lesssim \delta ^+ \lesssim 7800$ ), existing lower Reynolds number experimental ( $\delta ^+ \approx 1000$ ) and computational ( $\delta ^+<800$ ) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$ . Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile.
The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile.
ArticleNumber A30
Author Philip, Jimmy
Klewicki, Joseph
Romero, Sylvia
Zimmerman, Spencer
White, Christopher
Author_xml – sequence: 1
  givenname: Sylvia
  orcidid: 0000-0003-4358-2728
  surname: Romero
  fullname: Romero, Sylvia
  email: sylviar@student.unimelb.edu.au
  organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
– sequence: 2
  givenname: Spencer
  orcidid: 0000-0002-0189-9500
  surname: Zimmerman
  fullname: Zimmerman, Spencer
  organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
– sequence: 3
  givenname: Jimmy
  surname: Philip
  fullname: Philip, Jimmy
  organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
– sequence: 4
  givenname: Christopher
  orcidid: 0000-0001-8634-0441
  surname: White
  fullname: White, Christopher
  organization: 2Department of Mechanical Engineering, University of New Hampshire, NH 03824, USA
– sequence: 5
  givenname: Joseph
  orcidid: 0000-0002-4921-3272
  surname: Klewicki
  fullname: Klewicki, Joseph
  organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia
BookMark eNptkMtKw0AUhgepYFvd-AQD7sTUuWUmWUrxBgVd6MbNMJOc1ClpEmcmQt_exBYE6epc-P5z-Wdo0rQNIHRJyYISqm431XbBCGMLeYKmVMg8UVKkEzQlQzOhlJEzNAthQwjlJFdT9PHq2w58dBBwW-H4Cdg1Y21qHHpbmx34oYNN-Q0-AO48hNB7SNbelA6aiGPvbV-PmW37pjR-h39V4RydVqYOcHGIc_T-cP-2fEpWL4_Py7tVUnDOYkLzojBgraQ0T4UwGRjIhDQpz5QSRrCq5MaWlbVlLjgrUlIwA4UExQRkleBzdLWf2_n2q4cQ9abtfTOs1ExyobKUEDVQZE8Vvg3BQ6ULF010bRO9cbWmRI8O6sFBPTqo5SC5_ifpvNsODx6Hbw6w2VrvyjX8nXEE_wFyR4UE
CitedBy_id crossref_primary_10_1017_jfm_2023_570
crossref_primary_10_1017_jfm_2023_470
crossref_primary_10_1007_s10494_022_00367_1
crossref_primary_10_1017_jfm_2024_816
crossref_primary_10_1017_jfm_2024_97
crossref_primary_10_1103_PhysRevFluids_8_124604
crossref_primary_10_1063_5_0225020
crossref_primary_10_1063_5_0210872
crossref_primary_10_1063_5_0161939
crossref_primary_10_1103_PhysRevFluids_10_034601
crossref_primary_10_1016_j_ijheatfluidflow_2025_109821
crossref_primary_10_1080_14685248_2024_2361738
crossref_primary_10_1080_14685248_2024_2392572
crossref_primary_10_1017_jfm_2023_777
crossref_primary_10_1016_j_expthermflusci_2024_111327
crossref_primary_10_1016_j_ijheatfluidflow_2023_109143
Cites_doi 10.1016/j.ijheatfluidflow.2008.03.008
10.1063/1.868513
10.1063/1.4947532
10.1016/S0142-727X(98)10013-9
10.15632/jtam-pl.56.2.365
10.1016/j.expthermflusci.2019.109975
10.1017/jfm.2016.875
10.1017/CBO9780511840531
10.1017/S0022112069001418
10.1016/j.ijheatfluidflow.2018.04.017
10.3934/dcds.2009.24.781
10.1080/14685248.2017.1342827
10.1017/S0022112004001788
10.1017/jfm.2021.331
10.1017/S0022112001004840
10.1017/S0022112083001809
10.1146/annurev-fluid-122109-160753
10.1017/S0022112082001311
10.1017/S0022112059000015
10.1017/CBO9781139032810.006
10.1017/S0022112005003988
10.1017/S002211209300120X
10.1016/j.ijheatfluidflow.2014.02.006
10.1007/s10494-013-9479-3
10.1063/1.3006423
10.1103/PhysRevFluids.3.012602
10.1017/jfm.2019.182
10.1063/1.870250
10.1063/1.4823831
10.7551/mitpress/3014.001.0001
10.1007/s10494-017-9869-z
10.1017/jfm.2017.236
10.1017/S0022112004001958
10.1017/jfm.2018.193
10.1017/S002211200999084X
10.1016/j.ijheatfluidflow.2008.01.016
10.1080/14685248.2014.914217
10.1017/S0022112005004143
10.1017/jfm.2012.531
10.1016/j.ijheatfluidflow.2011.03.004
10.2514/2.1300
10.1063/1.4974354
10.1017/S0022112094004489
10.1017/S0022112009007423
10.1017/jfm.2013.641
10.1017/S0022112074000322
10.1016/j.ijheatfluidflow.2006.02.004
10.1017/S0022112010003113
10.1017/S0022112065001301
10.1017/jfm.2020.319
10.1017/jfm.2012.511
10.1007/s00348-015-2084-6
10.1017/jfm.2018.508
10.1017/jfm.2021.132
10.1007/s00348-013-1629-9
10.1017/jfm.2013.565
10.1115/1.4002167
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
– notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2022.6
DatabaseName Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI)
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI)
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2022_6
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
DC4
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c332t-19ccaebb6119544a8eae846a538774a42fd3abdfbbd9432c50c2aec6e724e8f43
IEDL.DBID IKXGN
ISSN 0022-1120
IngestDate Sat Aug 16 19:41:29 EDT 2025
Tue Jul 01 03:01:31 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Mar 13 05:49:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords turbulent boundary layers
boundary layer structure
Language English
License https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-19ccaebb6119544a8eae846a538774a42fd3abdfbbd9432c50c2aec6e724e8f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4358-2728
0000-0002-4921-3272
0000-0002-0189-9500
0000-0001-8634-0441
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112022000064/type/journal_article
PQID 2634785007
PQPubID 34769
PageCount 36
ParticipantIDs proquest_journals_2634785007
crossref_citationtrail_10_1017_jfm_2022_6
crossref_primary_10_1017_jfm_2022_6
cambridge_journals_10_1017_jfm_2022_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-25
PublicationDateYYYYMMDD 2022-04-25
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2022
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2013; 25
1993; 249
2004; 521
2018; 844
2005; 532
1969; 35
2009; 638
2009; 632
1959; 5
2021; 915
2018; 3
1998; 19
1965; 23
2021; 918
2013; 54
2013; 716
2000; 12
2013; 715
2006; 27
2008; 29
2018; 851
2020; 897
2014; 15
2018; 72
2008; 20
2015; 56
2017; 813
2009; 24
2014; 92
1983; 133
2019; 869
1994; 272
2014; 47
2011; 32
2017; 29
1995; 7
1974; 66
2010; 659
1982; 119
2013; 737
2017; 99
2005; 522
2010; 132
2011; 43
2017; 18
2020; 112
2001; 39
2018; 56
2016; 28
2001; 439
2017; 820
2014; 742
Townsend (S0022112022000064_ref56) 1956; 15
S0022112022000064_ref1
S0022112022000064_ref2
S0022112022000064_ref3
S0022112022000064_ref65
S0022112022000064_ref21
S0022112022000064_ref4
S0022112022000064_ref22
S0022112022000064_ref5
S0022112022000064_ref63
S0022112022000064_ref20
S0022112022000064_ref6
S0022112022000064_ref64
S0022112022000064_ref25
S0022112022000064_ref7
S0022112022000064_ref26
S0022112022000064_ref8
S0022112022000064_ref23
S0022112022000064_ref9
S0022112022000064_ref24
S0022112022000064_ref29
S0022112022000064_ref27
S0022112022000064_ref28
S0022112022000064_ref40
S0022112022000064_ref32
S0022112022000064_ref33
S0022112022000064_ref30
S0022112022000064_ref31
S0022112022000064_ref36
S0022112022000064_ref37
S0022112022000064_ref34
S0022112022000064_ref35
S0022112022000064_ref38
S0022112022000064_ref39
S0022112022000064_ref50
S0022112022000064_ref51
S0022112022000064_ref43
S0022112022000064_ref44
S0022112022000064_ref41
S0022112022000064_ref42
S0022112022000064_ref47
S0022112022000064_ref48
S0022112022000064_ref45
S0022112022000064_ref46
S0022112022000064_ref49
S0022112022000064_ref61
S0022112022000064_ref62
S0022112022000064_ref60
S0022112022000064_ref10
S0022112022000064_ref54
S0022112022000064_ref11
S0022112022000064_ref55
S0022112022000064_ref52
S0022112022000064_ref53
S0022112022000064_ref14
S0022112022000064_ref58
S0022112022000064_ref59
S0022112022000064_ref15
S0022112022000064_ref12
S0022112022000064_ref13
S0022112022000064_ref18
S0022112022000064_ref19
S0022112022000064_ref16
S0022112022000064_ref17
Townsend (S0022112022000064_ref57) 1976
References_xml – volume: 72
  start-page: 86
  year: 2018
  end-page: 99
  article-title: Turbulent boundary layers around wing sections up to ${R}e_c= 1, 000, 000$
  publication-title: Intl J. Heat Fluid Flow
– volume: 521
  start-page: 217
  year: 2004
  end-page: 239
  article-title: Inner scaling for wall-bounded flows subject to large pressure gradients
  publication-title: J. Fluid Mech.
– volume: 844
  start-page: 5
  year: 2018
  end-page: 35
  article-title: Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 439
  start-page: 395
  year: 2001
  article-title: A possible reinterpretation of the princeton superpipe data
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 781
  issue: 3
  year: 2009
  end-page: 807
  article-title: Time averaging in turbulence settings may reveal an infinite hierarchy of length scales
  publication-title: J. Discrete Continuous Dyn. Syst.
– volume: 249
  start-page: 337
  year: 1993
  end-page: 371
  article-title: Experimental and numerical study of a turbulent boundary layer with pressure gradients
  publication-title: J. Fluid Mech.
– volume: 20
  start-page: 101518
  issue: 10
  year: 2008
  article-title: Variations of von Kármán coefficient in canonical flows
  publication-title: Phys. Fluids
– volume: 737
  start-page: 176
  year: 2013
  end-page: 204
  article-title: A description of turbulent wall-flow vorticity consistent with mean dynamics
  publication-title: J. Fluid Mech.
– volume: 632
  start-page: 431
  year: 2009
  end-page: 442
  article-title: A comparison of turbulent pipe, channel and boundary layer flows
  publication-title: J. Fluid Mech.
– volume: 92
  start-page: 451
  issue: 1–2
  year: 2014
  end-page: 471
  article-title: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at ${R}e_{\theta }= 10\,000$
  publication-title: Flow Turbul. Combust.
– volume: 29
  start-page: 626
  issue: 3
  year: 2008
  end-page: 639
  article-title: Implicit les applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence
  publication-title: Intl J. Heat Fluid Flow
– volume: 915
  year: 2021
  article-title: Properties of turbulent channel flow similarity solutions
  publication-title: J. Fluid Mech.
– volume: 813
  start-page: 594
  year: 2017
  end-page: 617
  article-title: An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 41
  issue: 1
  year: 2001
  end-page: 47
  article-title: Similarity analysis for turbulent boundary layer with pressure gradient: outer flow
  publication-title: AIAA J.
– volume: 27
  start-page: 566
  issue: 4
  year: 2006
  end-page: 575
  article-title: Reynolds number scaling in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient
  publication-title: Intl J. Heat Fluid Flow
– volume: 742
  start-page: 119
  year: 2014
  end-page: 151
  article-title: The turbulent/non-turbulent interface and entrainment in a boundary layer
  publication-title: J. Fluid Mech.
– volume: 638
  start-page: 73
  year: 2009
  end-page: 93
  article-title: On the logarithmic mean profile
  publication-title: J. Fluid Mech.
– volume: 7
  start-page: 2014
  issue: 8
  year: 1995
  end-page: 2024
  article-title: Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer
  publication-title: Phys. Fluids
– volume: 659
  start-page: 116
  year: 2010
  end-page: 126
  article-title: Assessment of direct numerical simulation data of turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 185
  issue: 1
  year: 1965
  end-page: 208
  article-title: Calibration of the Preston tube and limitations on its use in pressure gradients
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 353
  year: 2011
  end-page: 375
  article-title: High-Reynolds number wall turbulence
  publication-title: Annu. Rev. Fluid Mech.
– volume: 272
  start-page: 319
  year: 1994
  end-page: 348
  article-title: A turbulent equilibrium boundary layer near separation
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 055101
  issue: 5
  year: 2016
  article-title: On determining characteristic length scales in pressure-gradient turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 869
  start-page: 182
  year: 2019
  end-page: 213
  article-title: A comparative study of the velocity and vorticity structure in pipes and boundary layers at friction Reynolds numbers up to $10^4$
  publication-title: J. Fluid Mech.
– volume: 851
  start-page: 391
  year: 2018
  end-page: 415
  article-title: Fully resolved measurements of turbulent boundary layer flows up to ${R}e_{\tau } = 20\,000$
  publication-title: J. Fluid Mech.
– volume: 532
  start-page: 345
  year: 2005
  end-page: 364
  article-title: Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 216
  issue: 12
  year: 2015
  article-title: Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers
  publication-title: Exp. Fluids
– volume: 820
  start-page: 667
  year: 2017
  end-page: 692
  article-title: History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 715
  start-page: 477
  year: 2013
  end-page: 498
  article-title: Pressure gradient effects on the large-scale structure of turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 132
  issue: 9
  year: 2010
  article-title: Reynolds number dependence, scaling, and dynamics of turbulent boundary layers
  publication-title: Trans. ASME J. Fluids Engng
– volume: 5
  start-page: 1
  issue: 1
  year: 1959
  end-page: 16
  article-title: The prediction of separation of the turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 35
  start-page: 737
  issue: 4
  year: 1969
  end-page: 757
  article-title: The measurement of skin friction in turbulent boundary layers with adverse pressure gradients
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 473
  issue: 8
  year: 2014
  end-page: 515
  article-title: Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation
  publication-title: J. Turbul.
– volume: 532
  start-page: 165
  year: 2005
  end-page: 190
  article-title: Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows
  publication-title: J. Fluid Mech.
– volume: 119
  start-page: 173
  year: 1982
  end-page: 217
  article-title: On the mechanism of wall turbulence
  publication-title: J. Fluid Mech.
– volume: 19
  start-page: 563
  issue: 5
  year: 1998
  end-page: 572
  article-title: Structure of turbulent boundary layer subjected to adverse pressure gradient
  publication-title: Intl J. Heat Fluid Flow
– volume: 12
  start-page: 1
  issue: 1
  year: 2000
  end-page: 4
  article-title: A note on the overlap region in turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 18
  start-page: 929
  issue: 10
  year: 2017
  end-page: 972
  article-title: Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology
  publication-title: J. Turbul.
– volume: 3
  start-page: 012602
  issue: 1
  year: 2018
  article-title: Numerical evidence of logarithmic regions in channel flow at $Re_{\tau }= 8000$
  publication-title: Phys. Rev. Fluids
– volume: 522
  start-page: 303
  year: 2005
  end-page: 327
  article-title: Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows
  publication-title: J. Fluid Mech.
– volume: 897
  start-page: A2
  year: 2020
  article-title: Non-equilibrium development in turbulent boundary layers with changing pressure gradients
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 575
  issue: 3
  year: 2011
  end-page: 585
  article-title: A parametric study of adverse pressure gradient turbulent boundary layers
  publication-title: Intl J. Heat Fluid Flow
– volume: 99
  start-page: 589
  issue: 3–4
  year: 2017
  end-page: 612
  article-title: Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization
  publication-title: Flow Turbul. Combust.
– volume: 133
  start-page: 83
  year: 1983
  end-page: 112
  article-title: A digital technique for the simultaneous measurement of streamwise and lateral velocities in turbulent flows
  publication-title: J. Fluid Mech.
– volume: 47
  start-page: 57
  year: 2014
  end-page: 69
  article-title: Simulation and validation of a spatially evolving turbulent boundary layer up to ${R}e_{\theta }= 8300$
  publication-title: Intl J. Heat Fluid Flow
– volume: 29
  start-page: 020712
  issue: 2
  year: 2017
  article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows
  publication-title: Phys. Fluids
– volume: 56
  start-page: 365
  issue: 2
  year: 2018
  end-page: 376
  article-title: Skin friction estimation in a strong decelerating flow
  publication-title: J. Theor. Appl. Mech.
– volume: 54
  start-page: 1629
  issue: 12
  year: 2013
  article-title: Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number
  publication-title: Exp. Fluids
– volume: 66
  start-page: 481
  issue: 3
  year: 1974
  end-page: 505
  article-title: A boundary layer developing in an increasingly adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 105102
  issue: 10
  year: 2013
  article-title: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^+\approx 2000$
  publication-title: Phys. Fluids
– volume: 716
  start-page: R3
  year: 2013
  article-title: On the logarithmic region in wall turbulence
  publication-title: J. Fluid Mech.
– volume: 918
  year: 2021
  article-title: Experimental analysis of the log law at adverse pressure gradient
  publication-title: J. Fluid Mech.
– volume: 112
  start-page: 109975
  year: 2020
  article-title: Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers
  publication-title: J. Expl Therm. Fluid Sci.
– volume: 29
  start-page: 568
  issue: 3
  year: 2008
  end-page: 578
  article-title: Effects of an adverse pressure gradient on a turbulent boundary layer
  publication-title: Intl J. Heat Fluid Flow
– ident: S0022112022000064_ref17
  doi: 10.1016/j.ijheatfluidflow.2008.03.008
– ident: S0022112022000064_ref26
  doi: 10.1063/1.868513
– ident: S0022112022000064_ref59
  doi: 10.1063/1.4947532
– ident: S0022112022000064_ref3
– ident: S0022112022000064_ref37
  doi: 10.1016/S0142-727X(98)10013-9
– ident: S0022112022000064_ref11
  doi: 10.15632/jtam-pl.56.2.365
– ident: S0022112022000064_ref48
  doi: 10.1016/j.expthermflusci.2019.109975
– ident: S0022112022000064_ref36
  doi: 10.1017/jfm.2016.875
– ident: S0022112022000064_ref44
  doi: 10.1017/CBO9780511840531
– ident: S0022112022000064_ref6
  doi: 10.1017/S0022112069001418
– ident: S0022112022000064_ref60
  doi: 10.1016/j.ijheatfluidflow.2018.04.017
– volume: 15
  volume-title: The structure of turbulent shear flow
  year: 1956
  ident: S0022112022000064_ref56
– ident: S0022112022000064_ref13
  doi: 10.3934/dcds.2009.24.781
– ident: S0022112022000064_ref10
  doi: 10.1080/14685248.2017.1342827
– ident: S0022112022000064_ref39
  doi: 10.1017/S0022112004001788
– ident: S0022112022000064_ref24
  doi: 10.1017/jfm.2021.331
– ident: S0022112022000064_ref43
  doi: 10.1017/S0022112001004840
– ident: S0022112022000064_ref18
  doi: 10.1017/S0022112083001809
– ident: S0022112022000064_ref52
  doi: 10.1146/annurev-fluid-122109-160753
– ident: S0022112022000064_ref42
  doi: 10.1017/S0022112082001311
– ident: S0022112022000064_ref54
  doi: 10.1017/S0022112059000015
– ident: S0022112022000064_ref34
– ident: S0022112022000064_ref29
  doi: 10.1017/CBO9781139032810.006
– ident: S0022112022000064_ref14
  doi: 10.1017/S0022112005003988
– ident: S0022112022000064_ref53
  doi: 10.1017/S002211209300120X
– ident: S0022112022000064_ref12
  doi: 10.1016/j.ijheatfluidflow.2014.02.006
– ident: S0022112022000064_ref25
  doi: 10.1007/s10494-013-9479-3
– volume-title: Structure of Turbulent Shear Flow
  year: 1976
  ident: S0022112022000064_ref57
– ident: S0022112022000064_ref38
  doi: 10.1063/1.3006423
– ident: S0022112022000064_ref63
  doi: 10.1103/PhysRevFluids.3.012602
– ident: S0022112022000064_ref65
  doi: 10.1017/jfm.2019.182
– ident: S0022112022000064_ref40
  doi: 10.1063/1.870250
– ident: S0022112022000064_ref50
  doi: 10.1063/1.4823831
– ident: S0022112022000064_ref55
  doi: 10.7551/mitpress/3014.001.0001
– ident: S0022112022000064_ref31
– ident: S0022112022000064_ref47
  doi: 10.1007/s10494-017-9869-z
– ident: S0022112022000064_ref64
– ident: S0022112022000064_ref5
  doi: 10.1017/jfm.2017.236
– ident: S0022112022000064_ref62
  doi: 10.1017/S0022112004001958
– ident: S0022112022000064_ref28
  doi: 10.1017/jfm.2018.193
– ident: S0022112022000064_ref23
  doi: 10.1017/S002211200999084X
– ident: S0022112022000064_ref27
  doi: 10.1016/j.ijheatfluidflow.2008.01.016
– ident: S0022112022000064_ref16
– ident: S0022112022000064_ref9
  doi: 10.1080/14685248.2014.914217
– ident: S0022112022000064_ref1
  doi: 10.1017/S0022112005004143
– ident: S0022112022000064_ref15
  doi: 10.1017/jfm.2012.531
– ident: S0022112022000064_ref32
  doi: 10.1016/j.ijheatfluidflow.2011.03.004
– ident: S0022112022000064_ref7
  doi: 10.2514/2.1300
– ident: S0022112022000064_ref4
  doi: 10.1063/1.4974354
– ident: S0022112022000064_ref51
  doi: 10.1017/S0022112094004489
– ident: S0022112022000064_ref33
  doi: 10.1017/S0022112009007423
– ident: S0022112022000064_ref8
  doi: 10.1017/jfm.2013.641
– ident: S0022112022000064_ref46
  doi: 10.1017/S0022112074000322
– ident: S0022112022000064_ref2
  doi: 10.1016/j.ijheatfluidflow.2006.02.004
– ident: S0022112022000064_ref49
  doi: 10.1017/S0022112010003113
– ident: S0022112022000064_ref41
  doi: 10.1017/S0022112065001301
– ident: S0022112022000064_ref19
– ident: S0022112022000064_ref61
  doi: 10.1017/jfm.2020.319
– ident: S0022112022000064_ref30
  doi: 10.1017/jfm.2012.511
– ident: S0022112022000064_ref35
  doi: 10.1007/s00348-015-2084-6
– ident: S0022112022000064_ref45
  doi: 10.1017/jfm.2018.508
– ident: S0022112022000064_ref22
  doi: 10.1017/jfm.2021.132
– ident: S0022112022000064_ref58
  doi: 10.1007/s00348-013-1629-9
– ident: S0022112022000064_ref20
  doi: 10.1017/jfm.2013.565
– ident: S0022112022000064_ref21
  doi: 10.1115/1.4002167
SSID ssj0013097
Score 2.4962492
Snippet The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta...
The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ( $7000 \lesssim \delta...
The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements (\(7000 \lesssim \delta...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary layers
Computer applications
Distance
Empirical equations
Fluid flow
Fluid mechanics
JFM Papers
Mathematical models
Physics
Pressure
Reynolds number
Scaling
Self-similarity
Shear stress
Turbulent boundary layer
Velocity
Velocity distribution
Velocity profiles
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA1aEfTgR1WsVgmoBw_RbpL9OomItQiKBwvFy5JkE0FKW3e3B_-9kzTbWihed5MszCTz3iaTNwhdsiBPqQ45sdpXBBAiJ4kJcmIgWgqmGBPUXk5-eY16ff48CAd-w630aZV1THSBOh8ru0d-SyPG4yQESLubfBNbNcqervoSGutoIwCksfM86T4tThE6aVyrhQOv6NTypEF8-2XsNXRKb5ZEFZbBaTk2O8Dp7qEdzxTx_cy1-2hNj5po17NG7Ndk2UTbfyQFm2jTpXSq8gB9vNl99sIKpuKxwUD0sL3oByt6iMupHAog2_AEC1uSudTYZcROC00-C5cGVmFAIzm1qISlK75U_GDXqzxE_e7j-0OP-EoKBKxNKxKk4CgtZeQE3rhItNBAPAREO6B_glOTMyFzI2WeckZV2FFUaBXpmHKdGM6OUGM0HuljhKVQHH56NGBrzKUUSR5KroI0EVQa6NdCV3NzZn49lNkslyzOwOyZNXsWtdB1bepMeTlyWxVjuLLtxbztZCbCsbJVu_bY4sOLaXPy_-tTtGWHsQdFNGyjRlVM9RnwjUqeu0n1CyD81nQ
  priority: 102
  providerName: ProQuest
Title Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers
URI https://www.cambridge.org/core/product/identifier/S0022112022000064/type/journal_article
https://www.proquest.com/docview/2634785007
Volume 937
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60RdCDj6pYH2VBPXiIbTab11HF-sIiolC8hN1kI0qpkrQH_70zm0214MFbCLvZMJPd78vuzDcAR56bxVz7wiHtKwcRInOi3M2cHFdL6aWeJzklJ98PgutncTv0hwswrHNhKKxypnFgTvJNfbTPSv60-5ZVMTS6oBxfjn8vnFJFDbJ2adOya12QWMMvQhM5g4szoHlzN7wa_Jww9OKwVhKnp9TSpW7Yfc8pRZ3z0znBhXngml-3DRj112HVskh2Vo2-AQt63II1yyiZna9lC1Z-yQ22YMmEe6blJrw80B58QWKq7CNnSAIZJQHibB-xcqpGEok43mGSyjWXmplo2WmhndfChIhNGCKVmhJiMWUKMxVfzPQqt-C5f_l0ce3YKgsOeoJPHDdGJ2qlAiP-JmSkpUZSInElRGooBc8zT6osVyqLhcdTv5dyqdNAh1zoKBfeNjTGH2O9A0zJVOAPkUbcDYVSMsp8JVI3jiRXOfZrw_HMnIl1VJlUcWZhgmZPyOxJ0IaT2tRJaqXKqWLG6M-2h7O2n5VAx5-t9muP_QzMA0-EkY8safefL7YHy3RBp0nc34fGpJjqAyQlE9WBxah_1YHm-eXg4bFjv7ZvIaXmCA
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BEYI9LFAWwfKyBBw4mDaO8zqsEE-VV4UQSIhL1nYcJFS1kLRa8af2NzKTJpRKiBvXxI9oPJ5vYs98A7DtOkkkrCc5cV9xRIiEh6mT8BStpXKN6ypByclXbb91J8_vvfsJ-F_lwlBYZWUTC0Od9AydkTeE78og9BDS9p9fOFWNotvVqoTGUC0u7Os__GXL_5wd4_ruCHF6cnvU4mVVAY4ziz53Ivxoq7VfkJ1JFVplEYQV7nx0hZQUaeIqnaRaJ5F0hfGaRihrfBsIacNUujjuJExJymitwdThSfv6ZnRv0YyCip8cPZlmRYjqBI2nlBLfhdgbo3EYh8NxNCgg7nQefpa-KTsYKtMCTNhuHeZKP5WVViCvw48PJIZ1mC6CSE2-CA_XdLKfEUUr66UMXUtGqYVoQzosH-iOQvcenzBFRaBzy4oY3EFm-WNWBJ71GeKfHhAOMl2Ue8peWdEr_wV33yLlJah1e127DEwrI_E3yyKaB1JrFSaelsaJQiV0iv1WYOddnHG5A_N4GL0WxCj2mMQe-yuwW4k6NiUBOtXh6Hzaduu97fOQ9uPTVmvVio0mHinq769fb8JM6_bqMr48a1-swiwNSddUwluDWj8b2HX0dvp6o1QxBn-_W6vfALrIFmw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+inertial+sublayer+in+adverse+pressure-gradient+turbulent+boundary+layers&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Romero%2C+Sylvia&rft.au=Zimmerman%2C+Spencer&rft.au=Philip%2C+Jimmy&rft.au=White%2C+Christopher&rft.date=2022-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=937&rft_id=info:doi/10.1017%2Fjfm.2022.6&rft.externalDocID=10_1017_jfm_2022_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon