Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers
The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, w...
Saved in:
Published in | Journal of fluid mechanics Vol. 937 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2022.6 |
Cover
Abstract | The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile. |
---|---|
AbstractList | The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements (
$7000 \lesssim \delta ^+ \lesssim 7800$
), existing lower Reynolds number experimental (
$\delta ^+ \approx 1000$
) and computational (
$\delta ^+<800$
) data sets, where
$\delta ^+$
is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter
$\beta$
is
${\leq }1.8$
. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile. The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta ^+ \lesssim 7800$), existing lower Reynolds number experimental ($\delta ^+ \approx 1000$) and computational ($\delta ^+<800$) data sets, where $\delta ^+$ is the friction Reynolds number. In the present experimental set-up the boundary layer is under modest APG conditions, where the Clauser PG parameter $\beta$ is ${\leq }1.8$. Well-resolved hot-wire measurements are obtained at the Flow Physics Facility at the University of New Hampshire in the region of an APG ramp. Comparisons are made with zero pressure-gradient turbulent boundary layer (ZPG TBL) experimental data at similar Reynolds number and numerical simulation data at lower Reynolds number. The main aims of the present study centre on the inertial sublayer of the APG TBL and the degree to which its characteristics are similar to those of the ZPG TBL. This investigation utilizes equation-based analyses and empirical approaches. Among other results, the data suggest that even though the APG TBL streamwise variance does not exhibit a logarithmic profile (unlike the ZPG TBL) both ZPG and APG TBLs exhibit distance-from-the-wall scaling on the inertial sublayer. Theoretical arguments suggest that wall-distance scaling resulting from a self-similar dynamics is consistent with both a single velocity scale leading to a log-law in mean velocity profile as well as multiple velocity scales leading to a power-law mean velocity profile. |
ArticleNumber | A30 |
Author | Philip, Jimmy Klewicki, Joseph Romero, Sylvia Zimmerman, Spencer White, Christopher |
Author_xml | – sequence: 1 givenname: Sylvia orcidid: 0000-0003-4358-2728 surname: Romero fullname: Romero, Sylvia email: sylviar@student.unimelb.edu.au organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia – sequence: 2 givenname: Spencer orcidid: 0000-0002-0189-9500 surname: Zimmerman fullname: Zimmerman, Spencer organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia – sequence: 3 givenname: Jimmy surname: Philip fullname: Philip, Jimmy organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia – sequence: 4 givenname: Christopher orcidid: 0000-0001-8634-0441 surname: White fullname: White, Christopher organization: 2Department of Mechanical Engineering, University of New Hampshire, NH 03824, USA – sequence: 5 givenname: Joseph orcidid: 0000-0002-4921-3272 surname: Klewicki fullname: Klewicki, Joseph organization: 1Department of Mechanical Engineering, University of Melbourne, Victoria 3010, Australia |
BookMark | eNptkMtKw0AUhgepYFvd-AQD7sTUuWUmWUrxBgVd6MbNMJOc1ClpEmcmQt_exBYE6epc-P5z-Wdo0rQNIHRJyYISqm431XbBCGMLeYKmVMg8UVKkEzQlQzOhlJEzNAthQwjlJFdT9PHq2w58dBBwW-H4Cdg1Y21qHHpbmx34oYNN-Q0-AO48hNB7SNbelA6aiGPvbV-PmW37pjR-h39V4RydVqYOcHGIc_T-cP-2fEpWL4_Py7tVUnDOYkLzojBgraQ0T4UwGRjIhDQpz5QSRrCq5MaWlbVlLjgrUlIwA4UExQRkleBzdLWf2_n2q4cQ9abtfTOs1ExyobKUEDVQZE8Vvg3BQ6ULF010bRO9cbWmRI8O6sFBPTqo5SC5_ifpvNsODx6Hbw6w2VrvyjX8nXEE_wFyR4UE |
CitedBy_id | crossref_primary_10_1017_jfm_2023_570 crossref_primary_10_1017_jfm_2023_470 crossref_primary_10_1007_s10494_022_00367_1 crossref_primary_10_1017_jfm_2024_816 crossref_primary_10_1017_jfm_2024_97 crossref_primary_10_1103_PhysRevFluids_8_124604 crossref_primary_10_1063_5_0225020 crossref_primary_10_1063_5_0210872 crossref_primary_10_1063_5_0161939 crossref_primary_10_1103_PhysRevFluids_10_034601 crossref_primary_10_1016_j_ijheatfluidflow_2025_109821 crossref_primary_10_1080_14685248_2024_2361738 crossref_primary_10_1080_14685248_2024_2392572 crossref_primary_10_1017_jfm_2023_777 crossref_primary_10_1016_j_expthermflusci_2024_111327 crossref_primary_10_1016_j_ijheatfluidflow_2023_109143 |
Cites_doi | 10.1016/j.ijheatfluidflow.2008.03.008 10.1063/1.868513 10.1063/1.4947532 10.1016/S0142-727X(98)10013-9 10.15632/jtam-pl.56.2.365 10.1016/j.expthermflusci.2019.109975 10.1017/jfm.2016.875 10.1017/CBO9780511840531 10.1017/S0022112069001418 10.1016/j.ijheatfluidflow.2018.04.017 10.3934/dcds.2009.24.781 10.1080/14685248.2017.1342827 10.1017/S0022112004001788 10.1017/jfm.2021.331 10.1017/S0022112001004840 10.1017/S0022112083001809 10.1146/annurev-fluid-122109-160753 10.1017/S0022112082001311 10.1017/S0022112059000015 10.1017/CBO9781139032810.006 10.1017/S0022112005003988 10.1017/S002211209300120X 10.1016/j.ijheatfluidflow.2014.02.006 10.1007/s10494-013-9479-3 10.1063/1.3006423 10.1103/PhysRevFluids.3.012602 10.1017/jfm.2019.182 10.1063/1.870250 10.1063/1.4823831 10.7551/mitpress/3014.001.0001 10.1007/s10494-017-9869-z 10.1017/jfm.2017.236 10.1017/S0022112004001958 10.1017/jfm.2018.193 10.1017/S002211200999084X 10.1016/j.ijheatfluidflow.2008.01.016 10.1080/14685248.2014.914217 10.1017/S0022112005004143 10.1017/jfm.2012.531 10.1016/j.ijheatfluidflow.2011.03.004 10.2514/2.1300 10.1063/1.4974354 10.1017/S0022112094004489 10.1017/S0022112009007423 10.1017/jfm.2013.641 10.1017/S0022112074000322 10.1016/j.ijheatfluidflow.2006.02.004 10.1017/S0022112010003113 10.1017/S0022112065001301 10.1017/jfm.2020.319 10.1017/jfm.2012.511 10.1007/s00348-015-2084-6 10.1017/jfm.2018.508 10.1017/jfm.2021.132 10.1007/s00348-013-1629-9 10.1017/jfm.2013.565 10.1115/1.4002167 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press – notice: The Author(s), 2022. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1017/jfm.2022.6 |
DatabaseName | Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge Univ. Press Open Journals (Free internet resource, activated by CARLI) url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | 10_1017_jfm_2022_6 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IKXGN IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION DC4 PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c332t-19ccaebb6119544a8eae846a538774a42fd3abdfbbd9432c50c2aec6e724e8f43 |
IEDL.DBID | IKXGN |
ISSN | 0022-1120 |
IngestDate | Sat Aug 16 19:41:29 EDT 2025 Tue Jul 01 03:01:31 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Wed Mar 13 05:49:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | turbulent boundary layers boundary layer structure |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-19ccaebb6119544a8eae846a538774a42fd3abdfbbd9432c50c2aec6e724e8f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4358-2728 0000-0002-4921-3272 0000-0002-0189-9500 0000-0001-8634-0441 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0022112022000064/type/journal_article |
PQID | 2634785007 |
PQPubID | 34769 |
PageCount | 36 |
ParticipantIDs | proquest_journals_2634785007 crossref_citationtrail_10_1017_jfm_2022_6 crossref_primary_10_1017_jfm_2022_6 cambridge_journals_10_1017_jfm_2022_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-25 |
PublicationDateYYYYMMDD | 2022-04-25 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2022 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2013; 25 1993; 249 2004; 521 2018; 844 2005; 532 1969; 35 2009; 638 2009; 632 1959; 5 2021; 915 2018; 3 1998; 19 1965; 23 2021; 918 2013; 54 2013; 716 2000; 12 2013; 715 2006; 27 2008; 29 2018; 851 2020; 897 2014; 15 2018; 72 2008; 20 2015; 56 2017; 813 2009; 24 2014; 92 1983; 133 2019; 869 1994; 272 2014; 47 2011; 32 2017; 29 1995; 7 1974; 66 2010; 659 1982; 119 2013; 737 2017; 99 2005; 522 2010; 132 2011; 43 2017; 18 2020; 112 2001; 39 2018; 56 2016; 28 2001; 439 2017; 820 2014; 742 Townsend (S0022112022000064_ref56) 1956; 15 S0022112022000064_ref1 S0022112022000064_ref2 S0022112022000064_ref3 S0022112022000064_ref65 S0022112022000064_ref21 S0022112022000064_ref4 S0022112022000064_ref22 S0022112022000064_ref5 S0022112022000064_ref63 S0022112022000064_ref20 S0022112022000064_ref6 S0022112022000064_ref64 S0022112022000064_ref25 S0022112022000064_ref7 S0022112022000064_ref26 S0022112022000064_ref8 S0022112022000064_ref23 S0022112022000064_ref9 S0022112022000064_ref24 S0022112022000064_ref29 S0022112022000064_ref27 S0022112022000064_ref28 S0022112022000064_ref40 S0022112022000064_ref32 S0022112022000064_ref33 S0022112022000064_ref30 S0022112022000064_ref31 S0022112022000064_ref36 S0022112022000064_ref37 S0022112022000064_ref34 S0022112022000064_ref35 S0022112022000064_ref38 S0022112022000064_ref39 S0022112022000064_ref50 S0022112022000064_ref51 S0022112022000064_ref43 S0022112022000064_ref44 S0022112022000064_ref41 S0022112022000064_ref42 S0022112022000064_ref47 S0022112022000064_ref48 S0022112022000064_ref45 S0022112022000064_ref46 S0022112022000064_ref49 S0022112022000064_ref61 S0022112022000064_ref62 S0022112022000064_ref60 S0022112022000064_ref10 S0022112022000064_ref54 S0022112022000064_ref11 S0022112022000064_ref55 S0022112022000064_ref52 S0022112022000064_ref53 S0022112022000064_ref14 S0022112022000064_ref58 S0022112022000064_ref59 S0022112022000064_ref15 S0022112022000064_ref12 S0022112022000064_ref13 S0022112022000064_ref18 S0022112022000064_ref19 S0022112022000064_ref16 S0022112022000064_ref17 Townsend (S0022112022000064_ref57) 1976 |
References_xml | – volume: 72 start-page: 86 year: 2018 end-page: 99 article-title: Turbulent boundary layers around wing sections up to ${R}e_c= 1, 000, 000$ publication-title: Intl J. Heat Fluid Flow – volume: 521 start-page: 217 year: 2004 end-page: 239 article-title: Inner scaling for wall-bounded flows subject to large pressure gradients publication-title: J. Fluid Mech. – volume: 844 start-page: 5 year: 2018 end-page: 35 article-title: Outer scales and parameters of adverse-pressure-gradient turbulent boundary layers publication-title: J. Fluid Mech. – volume: 439 start-page: 395 year: 2001 article-title: A possible reinterpretation of the princeton superpipe data publication-title: J. Fluid Mech. – volume: 24 start-page: 781 issue: 3 year: 2009 end-page: 807 article-title: Time averaging in turbulence settings may reveal an infinite hierarchy of length scales publication-title: J. Discrete Continuous Dyn. Syst. – volume: 249 start-page: 337 year: 1993 end-page: 371 article-title: Experimental and numerical study of a turbulent boundary layer with pressure gradients publication-title: J. Fluid Mech. – volume: 20 start-page: 101518 issue: 10 year: 2008 article-title: Variations of von Kármán coefficient in canonical flows publication-title: Phys. Fluids – volume: 737 start-page: 176 year: 2013 end-page: 204 article-title: A description of turbulent wall-flow vorticity consistent with mean dynamics publication-title: J. Fluid Mech. – volume: 632 start-page: 431 year: 2009 end-page: 442 article-title: A comparison of turbulent pipe, channel and boundary layer flows publication-title: J. Fluid Mech. – volume: 92 start-page: 451 issue: 1–2 year: 2014 end-page: 471 article-title: Experimental investigation of the log-law for an adverse pressure gradient turbulent boundary layer flow at ${R}e_{\theta }= 10\,000$ publication-title: Flow Turbul. Combust. – volume: 29 start-page: 626 issue: 3 year: 2008 end-page: 639 article-title: Implicit les applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence publication-title: Intl J. Heat Fluid Flow – volume: 915 year: 2021 article-title: Properties of turbulent channel flow similarity solutions publication-title: J. Fluid Mech. – volume: 813 start-page: 594 year: 2017 end-page: 617 article-title: An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers publication-title: J. Fluid Mech. – volume: 39 start-page: 41 issue: 1 year: 2001 end-page: 47 article-title: Similarity analysis for turbulent boundary layer with pressure gradient: outer flow publication-title: AIAA J. – volume: 27 start-page: 566 issue: 4 year: 2006 end-page: 575 article-title: Reynolds number scaling in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient publication-title: Intl J. Heat Fluid Flow – volume: 742 start-page: 119 year: 2014 end-page: 151 article-title: The turbulent/non-turbulent interface and entrainment in a boundary layer publication-title: J. Fluid Mech. – volume: 638 start-page: 73 year: 2009 end-page: 93 article-title: On the logarithmic mean profile publication-title: J. Fluid Mech. – volume: 7 start-page: 2014 issue: 8 year: 1995 end-page: 2024 article-title: Influence of a strong adverse pressure gradient on the turbulent structure in a boundary layer publication-title: Phys. Fluids – volume: 659 start-page: 116 year: 2010 end-page: 126 article-title: Assessment of direct numerical simulation data of turbulent boundary layers publication-title: J. Fluid Mech. – volume: 23 start-page: 185 issue: 1 year: 1965 end-page: 208 article-title: Calibration of the Preston tube and limitations on its use in pressure gradients publication-title: J. Fluid Mech. – volume: 43 start-page: 353 year: 2011 end-page: 375 article-title: High-Reynolds number wall turbulence publication-title: Annu. Rev. Fluid Mech. – volume: 272 start-page: 319 year: 1994 end-page: 348 article-title: A turbulent equilibrium boundary layer near separation publication-title: J. Fluid Mech. – volume: 28 start-page: 055101 issue: 5 year: 2016 article-title: On determining characteristic length scales in pressure-gradient turbulent boundary layers publication-title: Phys. Fluids – volume: 869 start-page: 182 year: 2019 end-page: 213 article-title: A comparative study of the velocity and vorticity structure in pipes and boundary layers at friction Reynolds numbers up to $10^4$ publication-title: J. Fluid Mech. – volume: 851 start-page: 391 year: 2018 end-page: 415 article-title: Fully resolved measurements of turbulent boundary layer flows up to ${R}e_{\tau } = 20\,000$ publication-title: J. Fluid Mech. – volume: 532 start-page: 345 year: 2005 end-page: 364 article-title: Turbulence development in a non-equilibrium turbulent boundary layer with mild adverse pressure gradient publication-title: J. Fluid Mech. – volume: 56 start-page: 216 issue: 12 year: 2015 article-title: Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers publication-title: Exp. Fluids – volume: 820 start-page: 667 year: 2017 end-page: 692 article-title: History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers publication-title: J. Fluid Mech. – volume: 715 start-page: 477 year: 2013 end-page: 498 article-title: Pressure gradient effects on the large-scale structure of turbulent boundary layers publication-title: J. Fluid Mech. – volume: 132 issue: 9 year: 2010 article-title: Reynolds number dependence, scaling, and dynamics of turbulent boundary layers publication-title: Trans. ASME J. Fluids Engng – volume: 5 start-page: 1 issue: 1 year: 1959 end-page: 16 article-title: The prediction of separation of the turbulent boundary layer publication-title: J. Fluid Mech. – volume: 35 start-page: 737 issue: 4 year: 1969 end-page: 757 article-title: The measurement of skin friction in turbulent boundary layers with adverse pressure gradients publication-title: J. Fluid Mech. – volume: 15 start-page: 473 issue: 8 year: 2014 end-page: 515 article-title: Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation publication-title: J. Turbul. – volume: 532 start-page: 165 year: 2005 end-page: 190 article-title: Stress gradient balance layers and scale hierarchies in wall-bounded turbulent flows publication-title: J. Fluid Mech. – volume: 119 start-page: 173 year: 1982 end-page: 217 article-title: On the mechanism of wall turbulence publication-title: J. Fluid Mech. – volume: 19 start-page: 563 issue: 5 year: 1998 end-page: 572 article-title: Structure of turbulent boundary layer subjected to adverse pressure gradient publication-title: Intl J. Heat Fluid Flow – volume: 12 start-page: 1 issue: 1 year: 2000 end-page: 4 article-title: A note on the overlap region in turbulent boundary layers publication-title: Phys. Fluids – volume: 18 start-page: 929 issue: 10 year: 2017 end-page: 972 article-title: Extensive characterisation of a high Reynolds number decelerating boundary layer using advanced optical metrology publication-title: J. Turbul. – volume: 3 start-page: 012602 issue: 1 year: 2018 article-title: Numerical evidence of logarithmic regions in channel flow at $Re_{\tau }= 8000$ publication-title: Phys. Rev. Fluids – volume: 522 start-page: 303 year: 2005 end-page: 327 article-title: Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows publication-title: J. Fluid Mech. – volume: 897 start-page: A2 year: 2020 article-title: Non-equilibrium development in turbulent boundary layers with changing pressure gradients publication-title: J. Fluid Mech. – volume: 32 start-page: 575 issue: 3 year: 2011 end-page: 585 article-title: A parametric study of adverse pressure gradient turbulent boundary layers publication-title: Intl J. Heat Fluid Flow – volume: 99 start-page: 589 issue: 3–4 year: 2017 end-page: 612 article-title: Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization publication-title: Flow Turbul. Combust. – volume: 133 start-page: 83 year: 1983 end-page: 112 article-title: A digital technique for the simultaneous measurement of streamwise and lateral velocities in turbulent flows publication-title: J. Fluid Mech. – volume: 47 start-page: 57 year: 2014 end-page: 69 article-title: Simulation and validation of a spatially evolving turbulent boundary layer up to ${R}e_{\theta }= 8300$ publication-title: Intl J. Heat Fluid Flow – volume: 29 start-page: 020712 issue: 2 year: 2017 article-title: Distance-from-the-wall scaling of turbulent motions in wall-bounded flows publication-title: Phys. Fluids – volume: 56 start-page: 365 issue: 2 year: 2018 end-page: 376 article-title: Skin friction estimation in a strong decelerating flow publication-title: J. Theor. Appl. Mech. – volume: 54 start-page: 1629 issue: 12 year: 2013 article-title: Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number publication-title: Exp. Fluids – volume: 66 start-page: 481 issue: 3 year: 1974 end-page: 505 article-title: A boundary layer developing in an increasingly adverse pressure gradient publication-title: J. Fluid Mech. – volume: 25 start-page: 105102 issue: 10 year: 2013 article-title: One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^+\approx 2000$ publication-title: Phys. Fluids – volume: 716 start-page: R3 year: 2013 article-title: On the logarithmic region in wall turbulence publication-title: J. Fluid Mech. – volume: 918 year: 2021 article-title: Experimental analysis of the log law at adverse pressure gradient publication-title: J. Fluid Mech. – volume: 112 start-page: 109975 year: 2020 article-title: Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers publication-title: J. Expl Therm. Fluid Sci. – volume: 29 start-page: 568 issue: 3 year: 2008 end-page: 578 article-title: Effects of an adverse pressure gradient on a turbulent boundary layer publication-title: Intl J. Heat Fluid Flow – ident: S0022112022000064_ref17 doi: 10.1016/j.ijheatfluidflow.2008.03.008 – ident: S0022112022000064_ref26 doi: 10.1063/1.868513 – ident: S0022112022000064_ref59 doi: 10.1063/1.4947532 – ident: S0022112022000064_ref3 – ident: S0022112022000064_ref37 doi: 10.1016/S0142-727X(98)10013-9 – ident: S0022112022000064_ref11 doi: 10.15632/jtam-pl.56.2.365 – ident: S0022112022000064_ref48 doi: 10.1016/j.expthermflusci.2019.109975 – ident: S0022112022000064_ref36 doi: 10.1017/jfm.2016.875 – ident: S0022112022000064_ref44 doi: 10.1017/CBO9780511840531 – ident: S0022112022000064_ref6 doi: 10.1017/S0022112069001418 – ident: S0022112022000064_ref60 doi: 10.1016/j.ijheatfluidflow.2018.04.017 – volume: 15 volume-title: The structure of turbulent shear flow year: 1956 ident: S0022112022000064_ref56 – ident: S0022112022000064_ref13 doi: 10.3934/dcds.2009.24.781 – ident: S0022112022000064_ref10 doi: 10.1080/14685248.2017.1342827 – ident: S0022112022000064_ref39 doi: 10.1017/S0022112004001788 – ident: S0022112022000064_ref24 doi: 10.1017/jfm.2021.331 – ident: S0022112022000064_ref43 doi: 10.1017/S0022112001004840 – ident: S0022112022000064_ref18 doi: 10.1017/S0022112083001809 – ident: S0022112022000064_ref52 doi: 10.1146/annurev-fluid-122109-160753 – ident: S0022112022000064_ref42 doi: 10.1017/S0022112082001311 – ident: S0022112022000064_ref54 doi: 10.1017/S0022112059000015 – ident: S0022112022000064_ref34 – ident: S0022112022000064_ref29 doi: 10.1017/CBO9781139032810.006 – ident: S0022112022000064_ref14 doi: 10.1017/S0022112005003988 – ident: S0022112022000064_ref53 doi: 10.1017/S002211209300120X – ident: S0022112022000064_ref12 doi: 10.1016/j.ijheatfluidflow.2014.02.006 – ident: S0022112022000064_ref25 doi: 10.1007/s10494-013-9479-3 – volume-title: Structure of Turbulent Shear Flow year: 1976 ident: S0022112022000064_ref57 – ident: S0022112022000064_ref38 doi: 10.1063/1.3006423 – ident: S0022112022000064_ref63 doi: 10.1103/PhysRevFluids.3.012602 – ident: S0022112022000064_ref65 doi: 10.1017/jfm.2019.182 – ident: S0022112022000064_ref40 doi: 10.1063/1.870250 – ident: S0022112022000064_ref50 doi: 10.1063/1.4823831 – ident: S0022112022000064_ref55 doi: 10.7551/mitpress/3014.001.0001 – ident: S0022112022000064_ref31 – ident: S0022112022000064_ref47 doi: 10.1007/s10494-017-9869-z – ident: S0022112022000064_ref64 – ident: S0022112022000064_ref5 doi: 10.1017/jfm.2017.236 – ident: S0022112022000064_ref62 doi: 10.1017/S0022112004001958 – ident: S0022112022000064_ref28 doi: 10.1017/jfm.2018.193 – ident: S0022112022000064_ref23 doi: 10.1017/S002211200999084X – ident: S0022112022000064_ref27 doi: 10.1016/j.ijheatfluidflow.2008.01.016 – ident: S0022112022000064_ref16 – ident: S0022112022000064_ref9 doi: 10.1080/14685248.2014.914217 – ident: S0022112022000064_ref1 doi: 10.1017/S0022112005004143 – ident: S0022112022000064_ref15 doi: 10.1017/jfm.2012.531 – ident: S0022112022000064_ref32 doi: 10.1016/j.ijheatfluidflow.2011.03.004 – ident: S0022112022000064_ref7 doi: 10.2514/2.1300 – ident: S0022112022000064_ref4 doi: 10.1063/1.4974354 – ident: S0022112022000064_ref51 doi: 10.1017/S0022112094004489 – ident: S0022112022000064_ref33 doi: 10.1017/S0022112009007423 – ident: S0022112022000064_ref8 doi: 10.1017/jfm.2013.641 – ident: S0022112022000064_ref46 doi: 10.1017/S0022112074000322 – ident: S0022112022000064_ref2 doi: 10.1016/j.ijheatfluidflow.2006.02.004 – ident: S0022112022000064_ref49 doi: 10.1017/S0022112010003113 – ident: S0022112022000064_ref41 doi: 10.1017/S0022112065001301 – ident: S0022112022000064_ref19 – ident: S0022112022000064_ref61 doi: 10.1017/jfm.2020.319 – ident: S0022112022000064_ref30 doi: 10.1017/jfm.2012.511 – ident: S0022112022000064_ref35 doi: 10.1007/s00348-015-2084-6 – ident: S0022112022000064_ref45 doi: 10.1017/jfm.2018.508 – ident: S0022112022000064_ref22 doi: 10.1017/jfm.2021.132 – ident: S0022112022000064_ref58 doi: 10.1007/s00348-013-1629-9 – ident: S0022112022000064_ref20 doi: 10.1017/jfm.2013.565 – ident: S0022112022000064_ref21 doi: 10.1115/1.4002167 |
SSID | ssj0013097 |
Score | 2.4962492 |
Snippet | The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ($7000 \lesssim \delta... The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements ( $7000 \lesssim \delta... The inertial sublayer of adverse pressure-gradient (APG) turbulent boundary layers is investigated using new experimental measurements (\(7000 \lesssim \delta... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Boundary layers Computer applications Distance Empirical equations Fluid flow Fluid mechanics JFM Papers Mathematical models Physics Pressure Reynolds number Scaling Self-similarity Shear stress Turbulent boundary layer Velocity Velocity distribution Velocity profiles |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA1aEfTgR1WsVgmoBw_RbpL9OomItQiKBwvFy5JkE0FKW3e3B_-9kzTbWihed5MszCTz3iaTNwhdsiBPqQ45sdpXBBAiJ4kJcmIgWgqmGBPUXk5-eY16ff48CAd-w630aZV1THSBOh8ru0d-SyPG4yQESLubfBNbNcqervoSGutoIwCksfM86T4tThE6aVyrhQOv6NTypEF8-2XsNXRKb5ZEFZbBaTk2O8Dp7qEdzxTx_cy1-2hNj5po17NG7Ndk2UTbfyQFm2jTpXSq8gB9vNl99sIKpuKxwUD0sL3oByt6iMupHAog2_AEC1uSudTYZcROC00-C5cGVmFAIzm1qISlK75U_GDXqzxE_e7j-0OP-EoKBKxNKxKk4CgtZeQE3rhItNBAPAREO6B_glOTMyFzI2WeckZV2FFUaBXpmHKdGM6OUGM0HuljhKVQHH56NGBrzKUUSR5KroI0EVQa6NdCV3NzZn49lNkslyzOwOyZNXsWtdB1bepMeTlyWxVjuLLtxbztZCbCsbJVu_bY4sOLaXPy_-tTtGWHsQdFNGyjRlVM9RnwjUqeu0n1CyD81nQ priority: 102 providerName: ProQuest |
Title | Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers |
URI | https://www.cambridge.org/core/product/identifier/S0022112022000064/type/journal_article https://www.proquest.com/docview/2634785007 |
Volume | 937 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60RdCDj6pYH2VBPXiIbTab11HF-sIiolC8hN1kI0qpkrQH_70zm0214MFbCLvZMJPd78vuzDcAR56bxVz7wiHtKwcRInOi3M2cHFdL6aWeJzklJ98PgutncTv0hwswrHNhKKxypnFgTvJNfbTPSv60-5ZVMTS6oBxfjn8vnFJFDbJ2adOya12QWMMvQhM5g4szoHlzN7wa_Jww9OKwVhKnp9TSpW7Yfc8pRZ3z0znBhXngml-3DRj112HVskh2Vo2-AQt63II1yyiZna9lC1Z-yQ22YMmEe6blJrw80B58QWKq7CNnSAIZJQHibB-xcqpGEok43mGSyjWXmplo2WmhndfChIhNGCKVmhJiMWUKMxVfzPQqt-C5f_l0ce3YKgsOeoJPHDdGJ2qlAiP-JmSkpUZSInElRGooBc8zT6osVyqLhcdTv5dyqdNAh1zoKBfeNjTGH2O9A0zJVOAPkUbcDYVSMsp8JVI3jiRXOfZrw_HMnIl1VJlUcWZhgmZPyOxJ0IaT2tRJaqXKqWLG6M-2h7O2n5VAx5-t9muP_QzMA0-EkY8safefL7YHy3RBp0nc34fGpJjqAyQlE9WBxah_1YHm-eXg4bFjv7ZvIaXmCA |
linkProvider | Cambridge University Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB5BEYI9LFAWwfKyBBw4mDaO8zqsEE-VV4UQSIhL1nYcJFS1kLRa8af2NzKTJpRKiBvXxI9oPJ5vYs98A7DtOkkkrCc5cV9xRIiEh6mT8BStpXKN6ypByclXbb91J8_vvfsJ-F_lwlBYZWUTC0Od9AydkTeE78og9BDS9p9fOFWNotvVqoTGUC0u7Os__GXL_5wd4_ruCHF6cnvU4mVVAY4ziz53Ivxoq7VfkJ1JFVplEYQV7nx0hZQUaeIqnaRaJ5F0hfGaRihrfBsIacNUujjuJExJymitwdThSfv6ZnRv0YyCip8cPZlmRYjqBI2nlBLfhdgbo3EYh8NxNCgg7nQefpa-KTsYKtMCTNhuHeZKP5WVViCvw48PJIZ1mC6CSE2-CA_XdLKfEUUr66UMXUtGqYVoQzosH-iOQvcenzBFRaBzy4oY3EFm-WNWBJ71GeKfHhAOMl2Ue8peWdEr_wV33yLlJah1e127DEwrI_E3yyKaB1JrFSaelsaJQiV0iv1WYOddnHG5A_N4GL0WxCj2mMQe-yuwW4k6NiUBOtXh6Hzaduu97fOQ9uPTVmvVio0mHinq769fb8JM6_bqMr48a1-swiwNSddUwluDWj8b2HX0dvp6o1QxBn-_W6vfALrIFmw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+inertial+sublayer+in+adverse+pressure-gradient+turbulent+boundary+layers&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Romero%2C+Sylvia&rft.au=Zimmerman%2C+Spencer&rft.au=Philip%2C+Jimmy&rft.au=White%2C+Christopher&rft.date=2022-04-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=937&rft_id=info:doi/10.1017%2Fjfm.2022.6&rft.externalDocID=10_1017_jfm_2022_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |