Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals
The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrm...
Saved in:
Published in | Chinese physics letters Vol. 40; no. 11; pp. 117501 - 218 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.11.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe
3
GaTe
2−
x
crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of ∼ 5.4 μΩ⋅cm at 10 K and ∼ 0.15 μΩ⋅cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of ∼ 6.2 × 10
5
A⋅cm
−2
. First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices. |
---|---|
AbstractList | The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe
3
GaTe
2−
x
crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of ∼ 5.4 μΩ⋅cm at 10 K and ∼ 0.15 μΩ⋅cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of ∼ 6.2 × 10
5
A⋅cm
−2
. First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices. The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii-Moriya interaction(DMI),are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions.However,most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation.It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation.Here,using controllable,naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe3GaTe2-x crystals,we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K,in combination with giant THE of~5.4μΩ·cm at 10 K and~0.15μΩ·cm at 300 K,which is 1-3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems.Moreover,room-temperature current-controlled THE is also realized with a low critical current density of~6.2 × 105 A·cm-2.First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE.This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices. |
Author | Luo, Qingyuan Chang, Haixin Wu, Hao Yang, Li Zhang, Gaojie Zhang, Wenfeng Jin, Wen Wen, Xiaokun Li, Luji Shu, Haibo Zhang, Jia |
Author_xml | – sequence: 1 givenname: Gaojie surname: Zhang fullname: Zhang, Gaojie organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 2 givenname: Qingyuan surname: Luo fullname: Luo, Qingyuan organization: College of Optical and Electronic Technology, China Jiliang University , China – sequence: 3 givenname: Xiaokun surname: Wen fullname: Wen, Xiaokun organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 4 givenname: Hao surname: Wu fullname: Wu, Hao organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 5 givenname: Li surname: Yang fullname: Yang, Li organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 6 givenname: Wen surname: Jin fullname: Jin, Wen organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 7 givenname: Luji surname: Li fullname: Li, Luji organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China – sequence: 8 givenname: Jia surname: Zhang fullname: Zhang, Jia organization: School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology , China – sequence: 9 givenname: Wenfeng surname: Zhang fullname: Zhang, Wenfeng organization: Shenzhen R&D Center of Huazhong University of Science and Technology , China – sequence: 10 givenname: Haibo surname: Shu fullname: Shu, Haibo organization: College of Optical and Electronic Technology, China Jiliang University , China – sequence: 11 givenname: Haixin surname: Chang fullname: Chang, Haixin organization: Shenzhen R&D Center of Huazhong University of Science and Technology , China |
BookMark | eNqFkd1q3DAQhUVJoZufVyi67YW7GsuyNpCbss1PYUsh3ZDeCVmWNkpkychazOZB8ryRuyUJvQkMDAznOyOdOUQHPniN0GcgX4EsFnNSsrqghP-ZV2QOkIszAh_QDHgFBWUVOUCzF9EndDgM94QALABm6OnSSp9w-R3_ftjFzgaP16EPLmyskg5fSefwuTFaJTzadIdvXIpytK3Ga931Osq0jRrfWt-GEUvf4lUYi-U2Rp1df0pv-62TabK1ftpyHUJXvEUvdIyhkxuvk1V4GXdDkm44Rh9NbvrkXz9CNxfn6-VVsfp1-WP5bVUoSstUAONg6pq2BgyTylSN5hWvTxeGcE4ZaxpOm9ooJlnZKq2bUlXKgKrbWssGCD1CX_a-o_RG-o24D9vo80bxuBndQyN0SUoKkOPL2rO9VsUwDFEboWz6-7cciXUCiJjuIaaoxRS1qPIExP4eGa__w_toOxl374PlHrShf33fO9AzmxmixA |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c04031 crossref_primary_10_1021_acs_nanolett_4c06408 crossref_primary_10_1088_0256_307X_42_2_027502 crossref_primary_10_1016_j_xcrp_2024_102356 crossref_primary_10_1021_acs_nanolett_4c00496 crossref_primary_10_1021_jacs_4c13391 crossref_primary_10_1039_D4CE00926F crossref_primary_10_1103_PhysRevB_111_014442 crossref_primary_10_1063_5_0230385 crossref_primary_10_1021_acsmaterialslett_4c02526 crossref_primary_10_1016_j_jmmm_2025_172919 crossref_primary_10_1021_acsmaterialslett_3c01090 crossref_primary_10_1038_s41467_024_47579_9 crossref_primary_10_1088_0256_307X_41_10_107503 crossref_primary_10_1002_adfm_202402091 crossref_primary_10_1088_0256_307X_41_6_067501 crossref_primary_10_1016_j_jmat_2024_03_010 |
Cites_doi | 10.1038/ncomms9217 10.1103/PhysRevB.54.11169 10.1088/0256-307X/39/1/017501 10.1103/PhysRevB.103.054429 10.1038/s41586-021-03219-6 10.1038/nphys2231 10.1103/PhysRevB.103.104410 10.1126/science.1166767 10.1103/PhysRevLett.115.267210 10.1126/sciadv.aaz3902 10.1038/nature09124 10.1021/acs.nanolett.0c04567 10.1126/sciadv.aba4924 10.1038/s41467-022-32605-5 10.1021/acsnano.1c05519 10.1103/PhysRevB.87.134424 10.1126/science.aau0968 10.1038/nnano.2013.243 10.1038/nmat4934 10.1126/sciadv.abm7103 10.1088/0256-307X/39/12/128501 10.1038/s41467-018-03378-7 10.1103/PhysRevLett.108.267201 10.1038/s41467-020-17566-x 10.1103/PhysRev.120.91 10.1088/0256-307X/37/7/077303 10.1002/smll.202004683 10.1002/adfm.202103583 10.1103/PhysRevB.101.054421 10.1002/adma.202110583 10.1088/0953-8984/21/8/084204 10.1038/srep24634 10.1088/0256-307X/40/5/057301 10.1002/jcc.20495 10.1038/s41928-019-0246-x 10.1103/PhysRevLett.107.136804 10.1038/natrevmats.2017.31 10.1021/acsnano.2c08155 10.1021/acs.nanolett.6b04010 10.1038/nmat4593 10.1038/s42254-022-00529-0 10.1103/RevModPhys.64.1045 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.84.224429 10.1103/PhysRevB.47.558 10.1103/PhysRevB.49.16223 10.1126/science.aaa1442 10.1021/acsnano.2c00025 10.1038/s43246-022-00238-2 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/0256-307X/40/11/117501 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1741-3540 |
EndPage | 218 |
ExternalDocumentID | zgwlkb_e202311025 10_1088_0256_307X_40_11_117501 cpl_40_11_117501 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CEBXE CJUJL CRLBU CS3 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE Q-- R4D RIN RNS RO9 ROL RPA SY9 U1G U5K UCJ W28 XPP ~02 AAYXX ADEQX CITATION TGP 02O 042 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NS0 NT- NT. PSX Q02 S3P T37 TCJ |
ID | FETCH-LOGICAL-c332t-1571f663df1f5acf4be747698f077355bb73b6fc5a52dceeb2c4cf1c6d6eab103 |
IEDL.DBID | IOP |
ISSN | 0256-307X |
IngestDate | Thu May 29 04:07:19 EDT 2025 Tue Jul 01 01:35:39 EDT 2025 Thu Apr 24 22:49:38 EDT 2025 Sun Aug 18 14:40:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c332t-1571f663df1f5acf4be747698f077355bb73b6fc5a52dceeb2c4cf1c6d6eab103 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_0256_307X_40_11_117501 crossref_primary_10_1088_0256_307X_40_11_117501 wanfang_journals_zgwlkb_e202311025 iop_journals_10_1088_0256_307X_40_11_117501 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics letters |
PublicationTitleAlternate | Chinese Phys. Lett |
PublicationTitle_FL | Chinese Physics Letters |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Li (cpl_40_11_117501bib15) 2020; 37 Shao (cpl_40_11_117501bib10) 2019; 2 Woo (cpl_40_11_117501bib34) 2018; 9 Park (cpl_40_11_117501bib27) 2021; 103 Belabbes (cpl_40_11_117501bib38) 2016; 6 Zhang (cpl_40_11_117501bib13) 2021; 15 Liu (cpl_40_11_117501bib7) 2022; 39 Zhu (cpl_40_11_117501bib22) 2022; 39 Yang (cpl_40_11_117501bib48) 2023; 5 Zang (cpl_40_11_117501bib31) 2011; 107 Sapozhnikov (cpl_40_11_117501bib30) 2021; 103 Peng (cpl_40_11_117501bib28) 2021; 31 Jin (cpl_40_11_117501bib23) 2023; 40 Moriya (cpl_40_11_117501bib49) 1960; 120 Kurumaji (cpl_40_11_117501bib8) 2019; 365 Yu (cpl_40_11_117501bib5) 2010; 465 Lim (cpl_40_11_117501bib18) 2020; 16 Wu (cpl_40_11_117501bib14) 2022; 34 Yang (cpl_40_11_117501bib47) 2015; 115 Jeon (cpl_40_11_117501bib26) 2022; 16 Wu (cpl_40_11_117501bib11) 2020; 11 Chen (cpl_40_11_117501bib36) 2020; 6 Kresse (cpl_40_11_117501bib41) 1993; 47 Arora (cpl_40_11_117501bib37) 2020; 101 Zhang (cpl_40_11_117501bib6) 2022; 8 Tai (cpl_40_11_117501bib25) 2022; 16 Grimme (cpl_40_11_117501bib44) 2006; 27 Ritz (cpl_40_11_117501bib19) 2013; 87 Woo (cpl_40_11_117501bib33) 2016; 15 Huang (cpl_40_11_117501bib20) 2012; 108 Kimbell (cpl_40_11_117501bib24) 2022; 3 Jiang (cpl_40_11_117501bib2) 2015; 349 Schulz (cpl_40_11_117501bib17) 2012; 8 Kresse (cpl_40_11_117501bib43) 1999; 59 Blöchl (cpl_40_11_117501bib40) 1994; 49 Mühlbauer (cpl_40_11_117501bib4) 2009; 323 Wang (cpl_40_11_117501bib29) 2021; 21 Xiang (cpl_40_11_117501bib45) 2011; 84 Liang (cpl_40_11_117501bib16) 2015; 6 Fert (cpl_40_11_117501bib3) 2017; 2 Zhang (cpl_40_11_117501bib21) 2022; 13 Yu (cpl_40_11_117501bib35) 2017; 17 Skoropata (cpl_40_11_117501bib9) 2020; 6 Nagaosa (cpl_40_11_117501bib32) 2013; 8 Jani (cpl_40_11_117501bib1) 2021; 590 Tang (cpl_40_11_117501bib46) 2009; 21 Payne (cpl_40_11_117501bib42) 1992; 64 Soumyanarayanan (cpl_40_11_117501bib12) 2017; 16 Kresse (cpl_40_11_117501bib39) 1996; 54 |
References_xml | – volume: 6 start-page: 8217 year: 2015 ident: cpl_40_11_117501bib16 publication-title: Nat. Commun. doi: 10.1038/ncomms9217 – volume: 54 year: 1996 ident: cpl_40_11_117501bib39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 39 year: 2022 ident: cpl_40_11_117501bib7 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/1/017501 – volume: 103 year: 2021 ident: cpl_40_11_117501bib30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.054429 – volume: 590 start-page: 74 year: 2021 ident: cpl_40_11_117501bib1 publication-title: Nature doi: 10.1038/s41586-021-03219-6 – volume: 8 start-page: 301 year: 2012 ident: cpl_40_11_117501bib17 publication-title: Nat. Phys. doi: 10.1038/nphys2231 – volume: 103 year: 2021 ident: cpl_40_11_117501bib27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.104410 – volume: 323 start-page: 915 year: 2009 ident: cpl_40_11_117501bib4 publication-title: Science doi: 10.1126/science.1166767 – volume: 115 year: 2015 ident: cpl_40_11_117501bib47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.267210 – volume: 6 year: 2020 ident: cpl_40_11_117501bib9 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz3902 – volume: 465 start-page: 901 year: 2010 ident: cpl_40_11_117501bib5 publication-title: Nature doi: 10.1038/nature09124 – volume: 21 start-page: 1108 year: 2021 ident: cpl_40_11_117501bib29 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04567 – volume: 6 year: 2020 ident: cpl_40_11_117501bib36 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba4924 – volume: 13 start-page: 5067 year: 2022 ident: cpl_40_11_117501bib21 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32605-5 – volume: 15 year: 2021 ident: cpl_40_11_117501bib13 publication-title: ACS Nano doi: 10.1021/acsnano.1c05519 – volume: 87 year: 2013 ident: cpl_40_11_117501bib19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.134424 – volume: 365 start-page: 914 year: 2019 ident: cpl_40_11_117501bib8 publication-title: Science doi: 10.1126/science.aau0968 – volume: 8 start-page: 899 year: 2013 ident: cpl_40_11_117501bib32 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.243 – volume: 16 start-page: 898 year: 2017 ident: cpl_40_11_117501bib12 publication-title: Nat. Mater. doi: 10.1038/nmat4934 – volume: 8 year: 2022 ident: cpl_40_11_117501bib6 publication-title: Sci. Adv. doi: 10.1126/sciadv.abm7103 – volume: 39 year: 2022 ident: cpl_40_11_117501bib22 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/39/12/128501 – volume: 9 start-page: 959 year: 2018 ident: cpl_40_11_117501bib34 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03378-7 – volume: 108 year: 2012 ident: cpl_40_11_117501bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.267201 – volume: 11 start-page: 3860 year: 2020 ident: cpl_40_11_117501bib11 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17566-x – volume: 120 start-page: 91 year: 1960 ident: cpl_40_11_117501bib49 publication-title: Phys. Rev. doi: 10.1103/PhysRev.120.91 – volume: 37 year: 2020 ident: cpl_40_11_117501bib15 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/37/7/077303 – volume: 16 year: 2020 ident: cpl_40_11_117501bib18 publication-title: Small doi: 10.1002/smll.202004683 – volume: 31 year: 2021 ident: cpl_40_11_117501bib28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103583 – volume: 101 year: 2020 ident: cpl_40_11_117501bib37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.054421 – volume: 34 year: 2022 ident: cpl_40_11_117501bib14 publication-title: Adv. Mater. doi: 10.1002/adma.202110583 – volume: 21 year: 2009 ident: cpl_40_11_117501bib46 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 6 year: 2016 ident: cpl_40_11_117501bib38 publication-title: Sci. Rep. doi: 10.1038/srep24634 – volume: 40 year: 2023 ident: cpl_40_11_117501bib23 publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/40/5/057301 – volume: 27 start-page: 1787 year: 2006 ident: cpl_40_11_117501bib44 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 2 start-page: 182 year: 2019 ident: cpl_40_11_117501bib10 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0246-x – volume: 107 year: 2011 ident: cpl_40_11_117501bib31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.136804 – volume: 2 year: 2017 ident: cpl_40_11_117501bib3 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.31 – volume: 16 year: 2022 ident: cpl_40_11_117501bib25 publication-title: ACS Nano doi: 10.1021/acsnano.2c08155 – volume: 17 start-page: 261 year: 2017 ident: cpl_40_11_117501bib35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04010 – volume: 15 start-page: 501 year: 2016 ident: cpl_40_11_117501bib33 publication-title: Nat. Mater. doi: 10.1038/nmat4593 – volume: 5 start-page: 43 year: 2023 ident: cpl_40_11_117501bib48 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-022-00529-0 – volume: 64 start-page: 1045 year: 1992 ident: cpl_40_11_117501bib42 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.64.1045 – volume: 59 start-page: 1758 year: 1999 ident: cpl_40_11_117501bib43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 84 year: 2011 ident: cpl_40_11_117501bib45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.224429 – volume: 47 start-page: 558 year: 1993 ident: cpl_40_11_117501bib41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 49 year: 1994 ident: cpl_40_11_117501bib40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.16223 – volume: 349 start-page: 283 year: 2015 ident: cpl_40_11_117501bib2 publication-title: Science doi: 10.1126/science.aaa1442 – volume: 16 start-page: 8974 year: 2022 ident: cpl_40_11_117501bib26 publication-title: ACS Nano doi: 10.1021/acsnano.2c00025 – volume: 3 start-page: 19 year: 2022 ident: cpl_40_11_117501bib24 publication-title: Commun. Mater. doi: 10.1038/s43246-022-00238-2 |
SSID | ssj0011811 |
Score | 2.460503 |
Snippet | The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction... The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii-Moriya... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 117501 |
Title | Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals |
URI | https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117501 https://d.wanfangdata.com.cn/periodical/zgwlkb-e202311025 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKKyQuQAuI8iUL9YayiRPHmxxRYdlWLSDYFb1FtmOvVhucKptq1f4Qfi8zcVIKEqoQtxwyTjK2M8_2zHuEHEgpNG4sBHle5gHPuAwUAPtAyFgoHeU6sXiie_pRTOf8-Cwdsgm7Wpj6vP_1j-DSEwV7F_YJcVmIURq3TM5CHoWMhUg2iRVcO0kmBIoYHH36fH2QAAGsE80bbIYi4b-281t8ugPv0FXzOCvd4kbgmTwganhln2-yGl20aqSv_mBz_K9vekju97CUvvUGu2TLuD1yt0sP1etH5McHGEUtjd_Rr6tLGBq1ozOvroB9TKeyqqjnQaa4sUvnVdvIzbI0dGYAl3veZvoN1v_1hkpX0pN6M1BD0VPploOKGF06fMoXgPPBTdOJaZr6u1w4rLmkh80lgNpq_ZjMJ-9nh9OgV3QIdJLEbcDSMbOAcUrLbCq15crAckbkmY3GY0A-So0TrD5KZRqXEL5VrLm2TItSGKlYlDwh26525imhnGkby6i0Gtao3ESZ5CicnjMOiEyYbJ-kQz8Wuqc7R9WNquiO3bOsQJ8X6POC40Ko8D7fJ-G13bkn_LjV4g10a9HP_fWtd7_uh9Mvi6vFplqpwqCUPcCxOH32T00-J_fQ0ldIviDbbXNhXgJUatWrbjL8BLqsBWA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW2IRAv43NibICFeENp4sRJk0e0retgGxO0om-RP6uqwanSTNX2Q_i9842TbiChCfGWh1wnuXZ8j-17z0HoA2OJgI0FL8tk5tGUMo9bYO8lLEy4CDIRaTjRPTtPhmP6eRJPNtDRuhamXLRTf89eOqJg58I2IS71IUrDlsnEp4FPiA9kkwHxF1JvogdxlERAoX_y9WJ9mGCDWCOc19l1hcJ_beu3GLVp36Op6DGamemd4DN44pJElg1nIeSczHuXNe-J6z8YHf_7u56i7Rae4k_O6BnaUOY5etikiYrlC_Tr2I6mGoeH-Pv8yg6R0uCRU1mAvsZDVhTY8SFj2ODF46Ku2GomFR4pi88dfzP-MTOyXGFmJD4tVx1FFD5jZtapieGZgad8s7Deu2s6UFVV_mRTA7WX-KC6suC2WL5E48HR6GDotcoOnoiisPZI3CfaYh2piY6Z0JQru6xJslQH_b5FQJz3I6hCilkcShvGeSio0EQkMlGMkyDaQVumNOoVwpQIHbJAamHXqlQFKaMgoJ4RapFZotJdFHd9mYuW9hzUN4q8OX5P0xz8noPfcwoLotz5fRf5a7uFI_641-Kj7dq8nQOW9979vh1StxbX01Ux57kCSXsLy8L49T81-Q49ujgc5Kcn51_20GNoxBVN7qOturpUbyx6qvnb5t-4Aa9HCsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+2D+Skyrmion+Topological+Hall+Effect+with+Ultrawide+Temperature+Window+and+Low-Current+Manipulation+in+2D+Room-Temperature+Ferromagnetic+Crystals&rft.jtitle=Chinese+physics+letters&rft.au=Zhang%2C+Gaojie&rft.au=Luo%2C+Qingyuan&rft.au=Wen%2C+Xiaokun&rft.au=Wu%2C+Hao&rft.date=2023-11-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=40&rft.issue=11&rft_id=info:doi/10.1088%2F0256-307X%2F40%2F11%2F117501&rft.externalDocID=cpl_40_11_117501 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg |