Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals

The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrm...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 40; no. 11; pp. 117501 - 218
Main Authors Zhang, Gaojie, Luo, Qingyuan, Wen, Xiaokun, Wu, Hao, Yang, Li, Jin, Wen, Li, Luji, Zhang, Jia, Zhang, Wenfeng, Shu, Haibo, Chang, Haixin
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.11.2023
Online AccessGet full text

Cover

Loading…
Abstract The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe 3 GaTe 2− x crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of ∼ 5.4 μΩ⋅cm at 10 K and ∼ 0.15 μΩ⋅cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of ∼ 6.2 × 10 5 A⋅cm −2 . First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
AbstractList The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction (DMI), are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions. However, most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation. It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation. Here, using controllable, naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe 3 GaTe 2− x crystals, we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K, in combination with giant THE of ∼ 5.4 μΩ⋅cm at 10 K and ∼ 0.15 μΩ⋅cm at 300 K, which is 1–3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems. Moreover, room-temperature current-controlled THE is also realized with a low critical current density of ∼ 6.2 × 10 5 A⋅cm −2 . First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE. This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii-Moriya interaction(DMI),are promising for next-generation spintronic devices based on topological spin textures such as magnetic skyrmions.However,most skyrmions and THE are stabilized in a narrow temperature window either below or over room temperature with high critical current manipulation.It is still elusive and challenging to achieve large THE with both wide temperature window till room temperature and low critical current manipulation.Here,using controllable,naturally oxidized sub-20 and sub-10 nm 2D van der Waals room-temperature ferromagnetic Fe3GaTe2-x crystals,we report robust 2D skyrmion THE with ultrawide temperature window ranging in three orders of magnitude from 2 to 300 K,in combination with giant THE of~5.4μΩ·cm at 10 K and~0.15μΩ·cm at 300 K,which is 1-3 orders of magnitude larger than that of all known room-temperature 2D skyrmion systems.Moreover,room-temperature current-controlled THE is also realized with a low critical current density of~6.2 × 105 A·cm-2.First-principles calculations unveil natural oxidation-induced highly enhanced 2D interfacial DMI reasonable for robust giant THE.This work paves the way to room-temperature electrically controlled 2D THE-based practical spintronic devices.
Author Luo, Qingyuan
Chang, Haixin
Wu, Hao
Yang, Li
Zhang, Gaojie
Zhang, Wenfeng
Jin, Wen
Wen, Xiaokun
Li, Luji
Shu, Haibo
Zhang, Jia
Author_xml – sequence: 1
  givenname: Gaojie
  surname: Zhang
  fullname: Zhang, Gaojie
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 2
  givenname: Qingyuan
  surname: Luo
  fullname: Luo, Qingyuan
  organization: College of Optical and Electronic Technology, China Jiliang University , China
– sequence: 3
  givenname: Xiaokun
  surname: Wen
  fullname: Wen, Xiaokun
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 4
  givenname: Hao
  surname: Wu
  fullname: Wu, Hao
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 5
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 6
  givenname: Wen
  surname: Jin
  fullname: Jin, Wen
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 7
  givenname: Luji
  surname: Li
  fullname: Li, Luji
  organization: Wuhan National High Magnetic Field Center and Institute for Quantum Science and Engineering, Huazhong University of Science and Technology , China
– sequence: 8
  givenname: Jia
  surname: Zhang
  fullname: Zhang, Jia
  organization: School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology , China
– sequence: 9
  givenname: Wenfeng
  surname: Zhang
  fullname: Zhang, Wenfeng
  organization: Shenzhen R&D Center of Huazhong University of Science and Technology , China
– sequence: 10
  givenname: Haibo
  surname: Shu
  fullname: Shu, Haibo
  organization: College of Optical and Electronic Technology, China Jiliang University , China
– sequence: 11
  givenname: Haixin
  surname: Chang
  fullname: Chang, Haixin
  organization: Shenzhen R&D Center of Huazhong University of Science and Technology , China
BookMark eNqFkd1q3DAQhUVJoZufVyi67YW7GsuyNpCbss1PYUsh3ZDeCVmWNkpkychazOZB8ryRuyUJvQkMDAznOyOdOUQHPniN0GcgX4EsFnNSsrqghP-ZV2QOkIszAh_QDHgFBWUVOUCzF9EndDgM94QALABm6OnSSp9w-R3_ftjFzgaP16EPLmyskg5fSefwuTFaJTzadIdvXIpytK3Ga931Osq0jRrfWt-GEUvf4lUYi-U2Rp1df0pv-62TabK1ftpyHUJXvEUvdIyhkxuvk1V4GXdDkm44Rh9NbvrkXz9CNxfn6-VVsfp1-WP5bVUoSstUAONg6pq2BgyTylSN5hWvTxeGcE4ZaxpOm9ooJlnZKq2bUlXKgKrbWssGCD1CX_a-o_RG-o24D9vo80bxuBndQyN0SUoKkOPL2rO9VsUwDFEboWz6-7cciXUCiJjuIaaoxRS1qPIExP4eGa__w_toOxl374PlHrShf33fO9AzmxmixA
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c04031
crossref_primary_10_1021_acs_nanolett_4c06408
crossref_primary_10_1088_0256_307X_42_2_027502
crossref_primary_10_1016_j_xcrp_2024_102356
crossref_primary_10_1021_acs_nanolett_4c00496
crossref_primary_10_1021_jacs_4c13391
crossref_primary_10_1039_D4CE00926F
crossref_primary_10_1103_PhysRevB_111_014442
crossref_primary_10_1063_5_0230385
crossref_primary_10_1021_acsmaterialslett_4c02526
crossref_primary_10_1016_j_jmmm_2025_172919
crossref_primary_10_1021_acsmaterialslett_3c01090
crossref_primary_10_1038_s41467_024_47579_9
crossref_primary_10_1088_0256_307X_41_10_107503
crossref_primary_10_1002_adfm_202402091
crossref_primary_10_1088_0256_307X_41_6_067501
crossref_primary_10_1016_j_jmat_2024_03_010
Cites_doi 10.1038/ncomms9217
10.1103/PhysRevB.54.11169
10.1088/0256-307X/39/1/017501
10.1103/PhysRevB.103.054429
10.1038/s41586-021-03219-6
10.1038/nphys2231
10.1103/PhysRevB.103.104410
10.1126/science.1166767
10.1103/PhysRevLett.115.267210
10.1126/sciadv.aaz3902
10.1038/nature09124
10.1021/acs.nanolett.0c04567
10.1126/sciadv.aba4924
10.1038/s41467-022-32605-5
10.1021/acsnano.1c05519
10.1103/PhysRevB.87.134424
10.1126/science.aau0968
10.1038/nnano.2013.243
10.1038/nmat4934
10.1126/sciadv.abm7103
10.1088/0256-307X/39/12/128501
10.1038/s41467-018-03378-7
10.1103/PhysRevLett.108.267201
10.1038/s41467-020-17566-x
10.1103/PhysRev.120.91
10.1088/0256-307X/37/7/077303
10.1002/smll.202004683
10.1002/adfm.202103583
10.1103/PhysRevB.101.054421
10.1002/adma.202110583
10.1088/0953-8984/21/8/084204
10.1038/srep24634
10.1088/0256-307X/40/5/057301
10.1002/jcc.20495
10.1038/s41928-019-0246-x
10.1103/PhysRevLett.107.136804
10.1038/natrevmats.2017.31
10.1021/acsnano.2c08155
10.1021/acs.nanolett.6b04010
10.1038/nmat4593
10.1038/s42254-022-00529-0
10.1103/RevModPhys.64.1045
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.84.224429
10.1103/PhysRevB.47.558
10.1103/PhysRevB.49.16223
10.1126/science.aaa1442
10.1021/acsnano.2c00025
10.1038/s43246-022-00238-2
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/0256-307X/40/11/117501
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1741-3540
EndPage 218
ExternalDocumentID zgwlkb_e202311025
10_1088_0256_307X_40_11_117501
cpl_40_11_117501
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
Q--
R4D
RIN
RNS
RO9
ROL
RPA
SY9
U1G
U5K
UCJ
W28
XPP
~02
AAYXX
ADEQX
CITATION
TGP
02O
042
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NS0
NT-
NT.
PSX
Q02
S3P
T37
TCJ
ID FETCH-LOGICAL-c332t-1571f663df1f5acf4be747698f077355bb73b6fc5a52dceeb2c4cf1c6d6eab103
IEDL.DBID IOP
ISSN 0256-307X
IngestDate Thu May 29 04:07:19 EDT 2025
Tue Jul 01 01:35:39 EDT 2025
Thu Apr 24 22:49:38 EDT 2025
Sun Aug 18 14:40:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c332t-1571f663df1f5acf4be747698f077355bb73b6fc5a52dceeb2c4cf1c6d6eab103
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_0256_307X_40_11_117501
crossref_primary_10_1088_0256_307X_40_11_117501
wanfang_journals_zgwlkb_e202311025
iop_journals_10_1088_0256_307X_40_11_117501
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics letters
PublicationTitleAlternate Chinese Phys. Lett
PublicationTitle_FL Chinese Physics Letters
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Li (cpl_40_11_117501bib15) 2020; 37
Shao (cpl_40_11_117501bib10) 2019; 2
Woo (cpl_40_11_117501bib34) 2018; 9
Park (cpl_40_11_117501bib27) 2021; 103
Belabbes (cpl_40_11_117501bib38) 2016; 6
Zhang (cpl_40_11_117501bib13) 2021; 15
Liu (cpl_40_11_117501bib7) 2022; 39
Zhu (cpl_40_11_117501bib22) 2022; 39
Yang (cpl_40_11_117501bib48) 2023; 5
Zang (cpl_40_11_117501bib31) 2011; 107
Sapozhnikov (cpl_40_11_117501bib30) 2021; 103
Peng (cpl_40_11_117501bib28) 2021; 31
Jin (cpl_40_11_117501bib23) 2023; 40
Moriya (cpl_40_11_117501bib49) 1960; 120
Kurumaji (cpl_40_11_117501bib8) 2019; 365
Yu (cpl_40_11_117501bib5) 2010; 465
Lim (cpl_40_11_117501bib18) 2020; 16
Wu (cpl_40_11_117501bib14) 2022; 34
Yang (cpl_40_11_117501bib47) 2015; 115
Jeon (cpl_40_11_117501bib26) 2022; 16
Wu (cpl_40_11_117501bib11) 2020; 11
Chen (cpl_40_11_117501bib36) 2020; 6
Kresse (cpl_40_11_117501bib41) 1993; 47
Arora (cpl_40_11_117501bib37) 2020; 101
Zhang (cpl_40_11_117501bib6) 2022; 8
Tai (cpl_40_11_117501bib25) 2022; 16
Grimme (cpl_40_11_117501bib44) 2006; 27
Ritz (cpl_40_11_117501bib19) 2013; 87
Woo (cpl_40_11_117501bib33) 2016; 15
Huang (cpl_40_11_117501bib20) 2012; 108
Kimbell (cpl_40_11_117501bib24) 2022; 3
Jiang (cpl_40_11_117501bib2) 2015; 349
Schulz (cpl_40_11_117501bib17) 2012; 8
Kresse (cpl_40_11_117501bib43) 1999; 59
Blöchl (cpl_40_11_117501bib40) 1994; 49
Mühlbauer (cpl_40_11_117501bib4) 2009; 323
Wang (cpl_40_11_117501bib29) 2021; 21
Xiang (cpl_40_11_117501bib45) 2011; 84
Liang (cpl_40_11_117501bib16) 2015; 6
Fert (cpl_40_11_117501bib3) 2017; 2
Zhang (cpl_40_11_117501bib21) 2022; 13
Yu (cpl_40_11_117501bib35) 2017; 17
Skoropata (cpl_40_11_117501bib9) 2020; 6
Nagaosa (cpl_40_11_117501bib32) 2013; 8
Jani (cpl_40_11_117501bib1) 2021; 590
Tang (cpl_40_11_117501bib46) 2009; 21
Payne (cpl_40_11_117501bib42) 1992; 64
Soumyanarayanan (cpl_40_11_117501bib12) 2017; 16
Kresse (cpl_40_11_117501bib39) 1996; 54
References_xml – volume: 6
  start-page: 8217
  year: 2015
  ident: cpl_40_11_117501bib16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9217
– volume: 54
  year: 1996
  ident: cpl_40_11_117501bib39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 39
  year: 2022
  ident: cpl_40_11_117501bib7
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/1/017501
– volume: 103
  year: 2021
  ident: cpl_40_11_117501bib30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.054429
– volume: 590
  start-page: 74
  year: 2021
  ident: cpl_40_11_117501bib1
  publication-title: Nature
  doi: 10.1038/s41586-021-03219-6
– volume: 8
  start-page: 301
  year: 2012
  ident: cpl_40_11_117501bib17
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2231
– volume: 103
  year: 2021
  ident: cpl_40_11_117501bib27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.104410
– volume: 323
  start-page: 915
  year: 2009
  ident: cpl_40_11_117501bib4
  publication-title: Science
  doi: 10.1126/science.1166767
– volume: 115
  year: 2015
  ident: cpl_40_11_117501bib47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.267210
– volume: 6
  year: 2020
  ident: cpl_40_11_117501bib9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz3902
– volume: 465
  start-page: 901
  year: 2010
  ident: cpl_40_11_117501bib5
  publication-title: Nature
  doi: 10.1038/nature09124
– volume: 21
  start-page: 1108
  year: 2021
  ident: cpl_40_11_117501bib29
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04567
– volume: 6
  year: 2020
  ident: cpl_40_11_117501bib36
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba4924
– volume: 13
  start-page: 5067
  year: 2022
  ident: cpl_40_11_117501bib21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32605-5
– volume: 15
  year: 2021
  ident: cpl_40_11_117501bib13
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c05519
– volume: 87
  year: 2013
  ident: cpl_40_11_117501bib19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.134424
– volume: 365
  start-page: 914
  year: 2019
  ident: cpl_40_11_117501bib8
  publication-title: Science
  doi: 10.1126/science.aau0968
– volume: 8
  start-page: 899
  year: 2013
  ident: cpl_40_11_117501bib32
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.243
– volume: 16
  start-page: 898
  year: 2017
  ident: cpl_40_11_117501bib12
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4934
– volume: 8
  year: 2022
  ident: cpl_40_11_117501bib6
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abm7103
– volume: 39
  year: 2022
  ident: cpl_40_11_117501bib22
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/12/128501
– volume: 9
  start-page: 959
  year: 2018
  ident: cpl_40_11_117501bib34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03378-7
– volume: 108
  year: 2012
  ident: cpl_40_11_117501bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.267201
– volume: 11
  start-page: 3860
  year: 2020
  ident: cpl_40_11_117501bib11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17566-x
– volume: 120
  start-page: 91
  year: 1960
  ident: cpl_40_11_117501bib49
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.120.91
– volume: 37
  year: 2020
  ident: cpl_40_11_117501bib15
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/37/7/077303
– volume: 16
  year: 2020
  ident: cpl_40_11_117501bib18
  publication-title: Small
  doi: 10.1002/smll.202004683
– volume: 31
  year: 2021
  ident: cpl_40_11_117501bib28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103583
– volume: 101
  year: 2020
  ident: cpl_40_11_117501bib37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.054421
– volume: 34
  year: 2022
  ident: cpl_40_11_117501bib14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110583
– volume: 21
  year: 2009
  ident: cpl_40_11_117501bib46
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 6
  year: 2016
  ident: cpl_40_11_117501bib38
  publication-title: Sci. Rep.
  doi: 10.1038/srep24634
– volume: 40
  year: 2023
  ident: cpl_40_11_117501bib23
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/40/5/057301
– volume: 27
  start-page: 1787
  year: 2006
  ident: cpl_40_11_117501bib44
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 2
  start-page: 182
  year: 2019
  ident: cpl_40_11_117501bib10
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0246-x
– volume: 107
  year: 2011
  ident: cpl_40_11_117501bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.136804
– volume: 2
  year: 2017
  ident: cpl_40_11_117501bib3
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.31
– volume: 16
  year: 2022
  ident: cpl_40_11_117501bib25
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c08155
– volume: 17
  start-page: 261
  year: 2017
  ident: cpl_40_11_117501bib35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04010
– volume: 15
  start-page: 501
  year: 2016
  ident: cpl_40_11_117501bib33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4593
– volume: 5
  start-page: 43
  year: 2023
  ident: cpl_40_11_117501bib48
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-022-00529-0
– volume: 64
  start-page: 1045
  year: 1992
  ident: cpl_40_11_117501bib42
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.64.1045
– volume: 59
  start-page: 1758
  year: 1999
  ident: cpl_40_11_117501bib43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 84
  year: 2011
  ident: cpl_40_11_117501bib45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.224429
– volume: 47
  start-page: 558
  year: 1993
  ident: cpl_40_11_117501bib41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 49
  year: 1994
  ident: cpl_40_11_117501bib40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.16223
– volume: 349
  start-page: 283
  year: 2015
  ident: cpl_40_11_117501bib2
  publication-title: Science
  doi: 10.1126/science.aaa1442
– volume: 16
  start-page: 8974
  year: 2022
  ident: cpl_40_11_117501bib26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00025
– volume: 3
  start-page: 19
  year: 2022
  ident: cpl_40_11_117501bib24
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-022-00238-2
SSID ssj0011811
Score 2.460503
Snippet The discovery and manipulation of topological Hall effect (THE), an abnormal magnetoelectric response mostly related to the Dzyaloshinskii–Moriya interaction...
The discovery and manipulation of topological Hall effect(THE),an abnormal magnetoelectric response mostly related to the Dzyaloshinskii-Moriya...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 117501
Title Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals
URI https://iopscience.iop.org/article/10.1088/0256-307X/40/11/117501
https://d.wanfangdata.com.cn/periodical/zgwlkb-e202311025
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKKyQuQAuI8iUL9YayiRPHmxxRYdlWLSDYFb1FtmOvVhucKptq1f4Qfi8zcVIKEqoQtxwyTjK2M8_2zHuEHEgpNG4sBHle5gHPuAwUAPtAyFgoHeU6sXiie_pRTOf8-Cwdsgm7Wpj6vP_1j-DSEwV7F_YJcVmIURq3TM5CHoWMhUg2iRVcO0kmBIoYHH36fH2QAAGsE80bbIYi4b-281t8ugPv0FXzOCvd4kbgmTwganhln2-yGl20aqSv_mBz_K9vekju97CUvvUGu2TLuD1yt0sP1etH5McHGEUtjd_Rr6tLGBq1ozOvroB9TKeyqqjnQaa4sUvnVdvIzbI0dGYAl3veZvoN1v_1hkpX0pN6M1BD0VPploOKGF06fMoXgPPBTdOJaZr6u1w4rLmkh80lgNpq_ZjMJ-9nh9OgV3QIdJLEbcDSMbOAcUrLbCq15crAckbkmY3GY0A-So0TrD5KZRqXEL5VrLm2TItSGKlYlDwh26525imhnGkby6i0Gtao3ESZ5CicnjMOiEyYbJ-kQz8Wuqc7R9WNquiO3bOsQJ8X6POC40Ko8D7fJ-G13bkn_LjV4g10a9HP_fWtd7_uh9Mvi6vFplqpwqCUPcCxOH32T00-J_fQ0ldIviDbbXNhXgJUatWrbjL8BLqsBWA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW2IRAv43NibICFeENp4sRJk0e0retgGxO0om-RP6uqwanSTNX2Q_i9842TbiChCfGWh1wnuXZ8j-17z0HoA2OJgI0FL8tk5tGUMo9bYO8lLEy4CDIRaTjRPTtPhmP6eRJPNtDRuhamXLRTf89eOqJg58I2IS71IUrDlsnEp4FPiA9kkwHxF1JvogdxlERAoX_y9WJ9mGCDWCOc19l1hcJ_beu3GLVp36Op6DGamemd4DN44pJElg1nIeSczHuXNe-J6z8YHf_7u56i7Rae4k_O6BnaUOY5etikiYrlC_Tr2I6mGoeH-Pv8yg6R0uCRU1mAvsZDVhTY8SFj2ODF46Ku2GomFR4pi88dfzP-MTOyXGFmJD4tVx1FFD5jZtapieGZgad8s7Deu2s6UFVV_mRTA7WX-KC6suC2WL5E48HR6GDotcoOnoiisPZI3CfaYh2piY6Z0JQru6xJslQH_b5FQJz3I6hCilkcShvGeSio0EQkMlGMkyDaQVumNOoVwpQIHbJAamHXqlQFKaMgoJ4RapFZotJdFHd9mYuW9hzUN4q8OX5P0xz8noPfcwoLotz5fRf5a7uFI_641-Kj7dq8nQOW9979vh1StxbX01Ux57kCSXsLy8L49T81-Q49ujgc5Kcn51_20GNoxBVN7qOturpUbyx6qvnb5t-4Aa9HCsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+2D+Skyrmion+Topological+Hall+Effect+with+Ultrawide+Temperature+Window+and+Low-Current+Manipulation+in+2D+Room-Temperature+Ferromagnetic+Crystals&rft.jtitle=Chinese+physics+letters&rft.au=Zhang%2C+Gaojie&rft.au=Luo%2C+Qingyuan&rft.au=Wen%2C+Xiaokun&rft.au=Wu%2C+Hao&rft.date=2023-11-01&rft.pub=Chinese+Physical+Society+and+IOP+Publishing+Ltd&rft.issn=0256-307X&rft.volume=40&rft.issue=11&rft_id=info:doi/10.1088%2F0256-307X%2F40%2F11%2F117501&rft.externalDocID=cpl_40_11_117501
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwlkb-e%2Fzgwlkb-e.jpg