Low energy properties of SU(2) gauge theory with Nf = 3/2 flavours of adjoint fermions

A bstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3 / 2 flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound sta...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2018; no. 1; pp. 1 - 15
Main Authors Bergner, Georg, Giudice, Pietro, Münster, Gernot, Scior, Philipp, Montvay, Istvan, Piemonte, Stefano
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2018
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3 / 2 flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound states are considered as a function of the fundamental fermion mass, represented by the PCAC quark mass. The scaling of bound states masses indicates an infrared conformal behaviour of the theory. We obtain estimates for the fixed-point value of the mass anomalous dimension γ ∗ from the scaling of masses and from the scaling of the mode number of the Wilson-Dirac operator. The difference of the estimates at the two gauge couplings should be due to scaling violations and lattice spacing effects. The more reliable estimate at the smaller gauge coupling is γ ∗ ≈ 0 . 38(2).
AbstractList In this work we present the results of a numerical investigation of SU(2) gauge theory with Nf = 3/2 flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound states are considered as a function of the fundamental fermion mass, represented by the PCAC quark mass. The scaling of bound states masses indicates an infrared conformal behaviour of the theory. We obtain estimates for the fixed-point value of the mass anomalous dimension γ∗ from the scaling of masses and from the scaling of the mode number of the Wilson-Dirac operator. The difference of the estimates at the two gauge couplings should be due to scaling violations and lattice spacing effects. The more reliable estimate at the smaller gauge coupling is γ∗ ≈ 0.38(2).
A bstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3 / 2 flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound states are considered as a function of the fundamental fermion mass, represented by the PCAC quark mass. The scaling of bound states masses indicates an infrared conformal behaviour of the theory. We obtain estimates for the fixed-point value of the mass anomalous dimension γ ∗ from the scaling of masses and from the scaling of the mode number of the Wilson-Dirac operator. The difference of the estimates at the two gauge couplings should be due to scaling violations and lattice spacing effects. The more reliable estimate at the smaller gauge coupling is γ ∗ ≈ 0 . 38(2).
Abstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3/2 flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge coupling, the masses of bound states are considered as a function of the fundamental fermion mass, represented by the PCAC quark mass. The scaling of bound states masses indicates an infrared conformal behaviour of the theory. We obtain estimates for the fixed-point value of the mass anomalous dimension γ ∗ from the scaling of masses and from the scaling of the mode number of the Wilson-Dirac operator. The difference of the estimates at the two gauge couplings should be due to scaling violations and lattice spacing effects. The more reliable estimate at the smaller gauge coupling is γ ∗ ≈ 0.38(2).
ArticleNumber 119
Author Montvay, Istvan
Giudice, Pietro
Scior, Philipp
Piemonte, Stefano
Bergner, Georg
Münster, Gernot
Author_xml – sequence: 1
  givenname: Georg
  surname: Bergner
  fullname: Bergner, Georg
  organization: University of Jena, Institute for Theoretical Physics
– sequence: 2
  givenname: Pietro
  orcidid: 0000-0002-4138-8860
  surname: Giudice
  fullname: Giudice, Pietro
  organization: University of Münster, Institute for Theoretical Physics
– sequence: 3
  givenname: Gernot
  surname: Münster
  fullname: Münster, Gernot
  email: munsteg@uni-muenster.de
  organization: University of Münster, Institute for Theoretical Physics
– sequence: 4
  givenname: Philipp
  surname: Scior
  fullname: Scior, Philipp
  organization: University of Münster, Institute for Theoretical Physics
– sequence: 5
  givenname: Istvan
  surname: Montvay
  fullname: Montvay, Istvan
  organization: Deutsches Elektronen-Synchrotron DESY
– sequence: 6
  givenname: Stefano
  surname: Piemonte
  fullname: Piemonte, Stefano
  organization: University of Regensburg, Institute for Theoretical Physics
BookMark eNp1UT1PwzAQtRBIlMLMaokFhlJ_1vHAgFChRRUg8bFaTnJOU5W42ClV_z0uQYiF6U537737eEdov_ENIHRKySUlRA3vJ-MnQs8ZodkFpXoP9ShhepAJpff_5IfoKMYFIVRSTXrobeY3GBoI1Ravgl9BaGuI2Dv8_HrOLnBl1xXgdg4-bPGmbuf4weErzIcMu6X99OvwDbblwtdNix2E99o38RgdOLuMcPIT--j1dvxyMxnMHu-mN9ezQcF5WkgDA8IpU0qWTosR8MwRK6kkReZKUajUFq7Mc8a5opKD0yCthdzZUWaJ4H007XRLbxdmFep3G7bG29p8F3yojE0XFUswmXYFsILbTAqhmMjVSIg0qiyFs9TKpHXWaaU_fKwhtmaRzmvS-oZqzYUQWumEGnaoIvgYA7jfqZSYnRGmM8LsjDDJiMQgHSMmZFNB-KP7D-ULzb6J0A
CitedBy_id crossref_primary_10_1103_PhysRevD_103_014503
crossref_primary_10_1103_PhysRevD_99_105001
crossref_primary_10_1103_PhysRevD_100_091901
crossref_primary_10_1007_JHEP02_2019_187
crossref_primary_10_1007_JHEP05_2019_151
crossref_primary_10_1103_PhysRevD_106_016007
crossref_primary_10_1103_PhysRevD_98_034026
crossref_primary_10_1103_PhysRevD_106_094507
crossref_primary_10_1007_JHEP04_2020_097
crossref_primary_10_1103_PhysRevD_104_074519
crossref_primary_10_1103_PhysRevD_103_094022
Cites_doi 10.1088/1126-6708/2009/03/013
10.1103/PhysRevD.51.3745
10.1007/JHEP07(2013)061
10.1088/1126-6708/2009/04/050
10.1007/JHEP08(2014)127
10.1103/PhysRevD.86.025006
10.1016/0550-3213(82)90035-9
10.1016/j.physletb.2005.07.050
10.1103/PhysRevD.96.034504
10.1103/RevModPhys.88.015001
10.1103/PhysRevD.69.054501
10.1007/JHEP06(2016)114
10.1103/PhysRevD.82.014502
10.1103/PhysRevD.94.065026
10.1103/PhysRevD.75.085018
10.1103/PhysRevD.91.114508
ContentType Journal Article
Copyright The Author(s) 2018
Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Journal of High Energy Physics is a copyright of Springer, (2018). All Rights Reserved.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP01(2018)119
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 15
ExternalDocumentID oai_doaj_org_article_89fce2c3a8544724b7644515dd4fa1a5
10_1007_JHEP01_2018_119
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
EJD
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3329-9e2e0312775df946e38f0a5150c8fd4c72e04fdbb2337153ef9e5aaebfa68a043
IEDL.DBID 8FG
ISSN 1029-8479
IngestDate Tue Oct 22 15:11:07 EDT 2024
Thu Oct 10 20:19:37 EDT 2024
Thu Sep 26 19:45:50 EDT 2024
Sat Dec 16 12:00:26 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lattice Quantum Field Theory
Renormalization Group
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3329-9e2e0312775df946e38f0a5150c8fd4c72e04fdbb2337153ef9e5aaebfa68a043
ORCID 0000-0002-4138-8860
OpenAccessLink https://www.proquest.com/docview/1993444979?pq-origsite=%requestingapplication%
PQID 1993444979
PQPubID 2034718
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_89fce2c3a8544724b7644515dd4fa1a5
proquest_journals_1993444979
crossref_primary_10_1007_JHEP01_2018_119
springer_journals_10_1007_JHEP01_2018_119
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References D.D. Dietrich and F. Sannino, Conformal window of SU(N) gauge theories with fermions in higher dimensional representations, Phys. Rev.D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
A. Athenodorou et al., Large mass hierarchies from strongly-coupled dynamics, JHEP06 (2016) 114 [arXiv:1605.04258] [INSPIRE].
A. Patella, A precise determination of theψ¯ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{\psi}\psi $$\end{document}anomalous dimension in conformal gauge theories, Phys. Rev.D 86 (2012) 025006 [arXiv:1204.4432] [INSPIRE].
Z. Fodor, K. Holland, J. Kuti, D. Nógrádi and C.H. Wong, The chiral condensate from the Dirac spectrum in BSM gauge theories, PoS(LATTICE 2013)089 [arXiv:1402.6029] [INSPIRE].
G. Bergner and S. Piemonte, The running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions, arXiv:1709.07367 [INSPIRE].
HoldomBRaising the Sideways ScalePhys. Rev.1981D 2414411981PhRvD..24.1441H[INSPIRE]
GiustiLLüscherMChiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarksJHEP2009030132009JHEP...03..013G10.1088/1126-6708/2009/03/013[arXiv:0812.3638] [INSPIRE]
C. Pica, Beyond the Standard Model: Charting Fundamental Interactions via Lattice Simulations, PoS(LATTICE2016)015 [arXiv:1701.07782] [INSPIRE].
LutyMAStrong Conformal Dynamics at the LHC and on the LatticeJHEP2009040502009JHEP...04..050L10.1088/1126-6708/2009/04/050[arXiv:0806.1235] [INSPIRE]
G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, Spectrum and mass anomalous dimension of SU(2) adjoint QCD with two Dirac flavors, Phys. Rev.D 96 (2017) 034504 [arXiv:1610.01576] [INSPIRE].
L. Del Debbio and R. Zwicky, Hyperscaling relations in mass-deformed conformal gauge theories, Phys. Rev.D 82 (2010) 014502 [arXiv:1005.2371] [INSPIRE].
K. Cichy, Quark mass anomalous dimension andΛMS¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\varLambda}_{\overline{\mathrm{MS}}} $$\end{document}from the twisted mass Dirac operator spectrum, JHEP08 (2014) 127 [arXiv:1311.3572] [INSPIRE].
N. Karthik and R. Narayanan, Scale-invariance of parity-invariant three-dimensional QED, Phys. Rev.D 94 (2016) 065026 [arXiv:1606.04109] [INSPIRE].
I. Montvay and E. Scholz, Updating algorithms with multi-step stochastic correction, Phys. Lett.B 623 (2005) 73 [hep-lat/0506006] [INSPIRE].
G. Bergner, P. Giudice, G. Münster, I. Montvay and S. Piemonte, The light bound states of supersymmetric SU(2) Yang-Mills theory, JHEP03 (2016) 080 [arXiv:1512.07014] [INSPIRE].
C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev.D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].
T. DeGrand, Lattice tests of beyond Standard Model dynamics, Rev. Mod. Phys.88 (2016) 015001 [arXiv:1510.05018] [INSPIRE].
T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions, Nucl. Phys.B 196 (1982) 189 [INSPIRE].
A. Cheng, A. Hasenfratz, G. Petropoulos and D. Schaich, Determining the mass anomalous dimension through the eigenmodes of Dirac operator, PoS(LATTICE 2013)088 [arXiv:1311.1287] [INSPIRE].
A. Athenodorou, E. Bennett, G. Bergner and B. Lucini, Infrared regime of SU(2) with one adjoint Dirac flavor, Phys. Rev.D 91 (2015) 114508 [arXiv:1412.5994] [INSPIRE].
G. Bergner, P. Giudice, I. Montvay, G. Münster and S. Piemonte, Spectrum and mass anomalous dimension of SU(2) gauge theories with fermions in the adjoint representation: from Nf = 1/2 to Nf = 2, PoS(LATTICE2016)237 [arXiv:1701.08992] [INSPIRE].
C. Michael and A. McKerrell, Fitting correlated hadron mass spectrum data, Phys. Rev.D 51 (1995) 3745 [hep-lat/9412087] [INSPIRE].
7485_CR15
MA Luty (7485_CR13) 2009; 04
7485_CR18
7485_CR17
7485_CR19
7485_CR7
7485_CR6
7485_CR5
7485_CR10
7485_CR21
7485_CR4
7485_CR20
7485_CR12
7485_CR11
7485_CR22
7485_CR9
7485_CR14
7485_CR8
L Giusti (7485_CR16) 2009; 03
7485_CR3
7485_CR1
B Holdom (7485_CR2) 1981; D 24
References_xml – volume: D 24
  start-page: 1441
  year: 1981
  ident: 7485_CR2
  publication-title: Phys. Rev.
  contributor:
    fullname: B Holdom
– ident: 7485_CR6
– volume: 03
  start-page: 013
  year: 2009
  ident: 7485_CR16
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/03/013
  contributor:
    fullname: L Giusti
– ident: 7485_CR22
  doi: 10.1103/PhysRevD.51.3745
– ident: 7485_CR18
  doi: 10.1007/JHEP07(2013)061
– volume: 04
  start-page: 050
  year: 2009
  ident: 7485_CR13
  publication-title: JHEP
  doi: 10.1088/1126-6708/2009/04/050
  contributor:
    fullname: MA Luty
– ident: 7485_CR20
  doi: 10.1007/JHEP08(2014)127
– ident: 7485_CR17
  doi: 10.1103/PhysRevD.86.025006
– ident: 7485_CR1
  doi: 10.1016/0550-3213(82)90035-9
– ident: 7485_CR12
  doi: 10.1016/j.physletb.2005.07.050
– ident: 7485_CR19
– ident: 7485_CR4
  doi: 10.1103/PhysRevD.96.034504
– ident: 7485_CR5
  doi: 10.1103/RevModPhys.88.015001
– ident: 7485_CR10
  doi: 10.1103/PhysRevD.69.054501
– ident: 7485_CR15
  doi: 10.1007/JHEP06(2016)114
– ident: 7485_CR14
  doi: 10.1103/PhysRevD.82.014502
– ident: 7485_CR11
  doi: 10.1103/PhysRevD.94.065026
– ident: 7485_CR21
– ident: 7485_CR3
  doi: 10.1103/PhysRevD.75.085018
– ident: 7485_CR8
– ident: 7485_CR9
– ident: 7485_CR7
  doi: 10.1103/PhysRevD.91.114508
SSID ssj0015190
Score 2.4117813
Snippet A bstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3 / 2 flavours of fermions, corresponding to 3...
In this work we present the results of a numerical investigation of SU(2) gauge theory with Nf = 3/2 flavours of fermions, corresponding to 3 Majorana...
Abstract In this work we present the results of a numerical investigation of SU(2) gauge theory with N f = 3/2 flavours of fermions, corresponding to 3...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Classical and Quantum Gravitation
Couplings
Elementary Particles
Fermions
Flavor (particle physics)
Gauge theory
High energy physics
Lattice Quantum Field Theory
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Renormalization Group
Scaling
String Theory
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iCF7ET5xOycHDdihL07RpDx5UNsbQIehkt5KmyVBkHftQ_O99L21liuDFaxPSx-_l5b0kL79HyIVvpVXa556WSnsixkLuRlpPY11zHQScuWzCu2HUH4nBOByvlfrCnLCSHrgErhMnVhuuAxWHQkguMhkhp1aY58IqX5XspSypN1PV_QHEJawm8mGyM-h375nfAmcXt30k1VnzQY6q_1t8-eNK1Hma3i7ZqUJEelWKtkc2zHSfbLlUTb04IE-3xTs17skeneFR-hw5UWlh6cOoxdt0olYTQ90DxQ-Kx6x0aOklDTqc2lf1BqO7zip_KZ6nS2oxGwam3iEZ9bqPN32vqo7gIYQJQMoNWCSXMsxtIiITxJYpQIbp2OZCS2gWNs8yHgQS1jVjExMqZTKrolgxERyRzWkxNceEggvPmVZMygx2a2jS4Mf9LISuoMtINEirxiudlSQYaU13XEKbIrSwm0ga5Brx_OqG7NXuA-g0rXSa_qXTBmnW2kgrk1qkmGkohEgk_KNda2it-Xd5Tv5DnlOyjeOVJy9Nsrmcr8wZxCLL7NxNu0-o7tcO
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI6mISQuiKcYDJQDh-1QSNO0aQ8cBto0TTAhwdBuVZomEw-10x4g_j1O2k4MuHCrGreJ7Dh2bOcLQueu5lpIlzqSC-mw0Fzkrrh2pLnXXHoeJbaa8G4Y9EdsMPbHNURWoYvs9aLKSNqFujrrNuh374nbAnsVtl2D87nhGyw0mMEj2lnlDcAfIRWAz--P1myPhehf8yt_pEKthentoO3SNcSdQpa7qKayPbRpSzTlfB893eYfWNmjenhqQugzg4WKc40fRi3axhOxnChsDyZ-YhNexUONr7B3SbF-E-_wd0ss0pf8OVtgbapgYModoFGv-3jTd8pbERzDughYSRVoIuXcT3XEAuWFmghwS4gMdcokh2am0yShnsdhPVM6Ur4QKtEiCAVh3iGqZ3mmjhAG050SKQjnCezSjCqD_XYTH0hBhgFroFbFr3hagF_EFcxxwdrYsBZ2EVEDXRt-rsgMarV9kc8mcakEcRhpqaj0ROgzxilLoA8GI09TBj0Kv4GalTTiUpXmsakwZIxFHPpoVxL61vz3eI7_QXuCtsxjEVhpovpitlSn4GoskjM7u74AnfTKCA
  priority: 102
  providerName: Springer Nature
Title Low energy properties of SU(2) gauge theory with Nf = 3/2 flavours of adjoint fermions
URI https://link.springer.com/article/10.1007/JHEP01(2018)119
https://www.proquest.com/docview/1993444979
https://doaj.org/article/89fce2c3a8544724b7644515dd4fa1a5
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8NhaBnsp7T5Y1jbooQ_Jg4ksy5b9MEoSkobShrIto29GlqWwMeI0STv673un2F03Sl8Mtg5JvtPpPnS6AzgJnXLahCIwSptAplTI3SoXGKprbqJIcB9NeDlNJjN5fh1f1w63dR1W2eyJfqMuK0M-8h4FmkkpM5WdLm8CqhpFp6t1CY3XsBsKpcj4Ssdnj6cIqJ3wJp0PV73zyeiKhx0UeWk3pNQ6TySRT9j_j5b538GolzfjfdirFUXW31L2AF7ZxTt44wM2zfo9_Lio_jDrL-6xJTnUV5QZlVWOfZt1RJfN9e3cMn9N8Z6Rs5VNHfvCop5g7re-w949sC5_VT8XG-YoJgYX4AeYjUffh5OgrpEQECIzRKywyJf483HpMpnYKHVco5LCTepKaRQ2S1cWhYgihbubdZmNtbaF00mquYw-ws6iWthPwFCQl9xorlSBNhsxNkrzsIgRFCmayBZ0Gnzly20qjLxJerxFbU6oRZsia8GA8PkIRjms_YdqNc9rlsjTzBkrTKTTWEolZIFjSJx5WUocUcctOGqokdeMtc7_LoMWdBsKPWl-fj6fX-7qEN4S5NazcgQ7m9WtPUZdY1O0_YJqw-5gNL36im9DIemZDNveesfnTPQfADjD1BA
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74363,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8x0DReEOxDlK_5gYf2IarjOHXyME2AijooFRoU8RY5jl2BUFPaAtp_vzs34UvTXmPHtu58vvPd-XcA-6FTTptQBEZpE8iECrlb5QJDdc1NFAnuswnPBp3eUJ5cx9eVw21WpVXWZ6I_qIvSkI-8TYlmUspUpT8n9wFVjaLoalVC4wOsEFQVXr5WDruD89_PcQS0T3gN6MNV-6TXPedhE5Ve0goJXOeVLvKQ_W_szHehUa9xjtdhrTIV2cGCtxuwZMef4aNP2TSzL3DVL5-Y9U_32IRc6lPCRmWlYxfDpmixkX4YWeYfKv5h5G5lA8d-sKgtmLvTjzi676yL2_JmPGeOsmJwC36F4XH38qgXVFUSAiJliqQVFiVTKBUXLpUdGyWOazRTuElcIY3CZumKPBdRpPB8sy61sdY2d7qTaC6jb7A8Lsd2Exiq8oIbzZXK8dZGoo1EDfMYuyJPO7IBzZpe2WQBhpHVsMcL0mZEWrxVpA04JHo-dyMUa_-hnI6ySiiyJHXGChPpJJZSCZnjHBJXXhQSZ9RxA3ZqbmSVaM2yl43QgFbNoVfN_17P1v-H-g6fepdn_az_a3C6Dav018LPsgPL8-mD3UXLY57vVdvrL3PZ00I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB5BVyAuiKfosoAPHNpDVMd24uSAEAutyrJUFVC0t8hx7Aq0akrbBfHvmXGdZUGIa-zY1jw84_HnGYDnqdfe2FQkVhubqIIKuTvtE0t1za2Uggc04ftZPl2ok7PsLOKfthFW2e2JYaNuWksx8hEBzZRSpS5HPsIi5m8mL9ffEqogRTetsZzGdTjQKpe8BwfH49n8w-WdAvoqvEvuw_XoZDqe83SABrAYppRo54pdCun7__A5_7omDdZncgduR7eRvdrz-S5cc6t7cCPAN-32Pnw-bX8wF57xsTWF1zeUJ5W1nn1cDMSQLc3F0rHwaPEno9Arm3n2gsmRYP7cfMfRQ2fTfG2_rHbME0IGxfEBLCbjT6-nSayYkBBZSySzcKilQuus8aXKnSw8N-iycFv4RlmNzco3dS2k1LjXOV-6zBhXe5MXhiv5EHqrduUeAUOz3nBruNY1nuBIzdG2p3WGXZG_uerDoKNXtd4nxqi6FMh70lZEWjxhlH04JnpedqOM1uFDu1lWUUGqovTWCStNkSmlhapxDoUrbxqFM5qsD0cdN6qoZtvqt1D0Ydhx6Erzv9dz-P-hnsFNlKzq9O3s3WO4RT_tQy5H0NttLtwTdEJ29dMoXb8AX_PXcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low+energy+properties+of+SU%282%29+gauge+theory+with+Nf+%3D+3%2F2+flavours+of+adjoint+fermions&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Bergner%2C+Georg&rft.au=Giudice%2C+Pietro&rft.au=M%C3%BCnster%2C+Gernot&rft.au=Scior%2C+Philipp&rft.date=2018-01-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1007%2FJHEP01%282018%29119&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon