Fatigue delamination propagation: Various effects on results

In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a b...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 47; no. 2; pp. 275 - 297
Main Authors Singh, Anuwedita, Aizen, Snir, Mega, Mor, Rifkind, Shira, Banks‐Sills, Leslie
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length a, as well as on delamination propagation rate da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized. Highlights Impact of human factor on fatigue delamination tests in laminate composites. Limited influence of the human factor on delamination length and propagation rate. The lower the R‐ratio, the higher the delamination propagation rate. The crack driving force for laminates should be taken as GImax.
AbstractList In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length , as well as on delamination propagation rate , is observed in this study. Secondly, the paper proceeds to discuss the influence of the ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized. Impact of human factor on fatigue delamination tests in laminate composites. Limited influence of the human factor on delamination length and propagation rate. The lower the ratio, the higher the delamination propagation rate. The crack driving force for laminates should be taken as .
In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length a, as well as on delamination propagation rate da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized. Highlights Impact of human factor on fatigue delamination tests in laminate composites. Limited influence of the human factor on delamination length and propagation rate. The lower the R‐ratio, the higher the delamination propagation rate. The crack driving force for laminates should be taken as GImax.
In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length a, as well as on delamination propagation rate da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized.
Author Banks‐Sills, Leslie
Aizen, Snir
Singh, Anuwedita
Mega, Mor
Rifkind, Shira
Author_xml – sequence: 1
  givenname: Anuwedita
  surname: Singh
  fullname: Singh, Anuwedita
  email: anuweditavishen@gmail.com
  organization: Tel Aviv University
– sequence: 2
  givenname: Snir
  surname: Aizen
  fullname: Aizen, Snir
  organization: Tel Aviv University
– sequence: 3
  givenname: Mor
  surname: Mega
  fullname: Mega, Mor
  organization: Ariel University
– sequence: 4
  givenname: Shira
  surname: Rifkind
  fullname: Rifkind, Shira
  organization: Ariel University
– sequence: 5
  givenname: Leslie
  orcidid: 0000-0002-0123-9414
  surname: Banks‐Sills
  fullname: Banks‐Sills, Leslie
  organization: Tel Aviv University
BookMark eNp9UE1LAzEQDVLBVj34DxY8edg2H5sv8SKlq0LBi4q3kOajpGx3a7KL9N8bW0-CzmVmmDdv5r0JGLVd6wC4QnCKcsy8d1NUIS5PwBhVDJaYSToCY8EpKzkV72dgktIGQsQqQsbgrtZ9WA-usK7R29DmrmuLXex2en2ob4s3HUM3pMJlbtOnIs-jS0PTpwtw6nWT3OVPPgev9eJl_lgunx-e5vfL0hCCZSm5N5pWVq-IFUILTTCxlHIMNaeWGwsNlIRKhjxyUK-4YFYz5zHjFq2sJefg-sib__oYXOrVphtim08qLBGGTGR5GXVzRJnYpRSdV7sYtjruFYLq2xyVBaiDORk7-4U1oT_o7aMOzX8bn6Fx-7-pVV0vjhtfFnd3yA
CitedBy_id crossref_primary_10_1111_ffe_14199
crossref_primary_10_1111_ffe_14362
Cites_doi 10.1016/j.engfracmech.2014.10.027
10.1007/s10704-019-00388-4
10.1016/j.compositesa.2015.08.005
10.1016/j.compscitech.2015.10.011
10.1016/j.engfracmech.2013.12.002
10.1016/S0013-7944(00)00099-0
10.1134/S1029959919020036
10.1111/ffe.12241
10.1016/0013-7944(70)90003-2
10.1016/0266-3538(87)90076-5
10.1016/j.compositesa.2011.10.018
10.1115/1.3656900
10.1007/s10704-013-9868-6
10.1016/j.compstruct.2015.01.016
10.1115/1.1504848
10.1016/j.compstruct.2013.12.009
10.1016/j.compstruct.2011.11.030
10.1016/j.ijfatigue.2012.01.004
10.1016/1359-8368(95)00035-6
10.1016/j.ijfatigue.2016.03.008
10.1016/j.ijfatigue.2016.12.005
10.1533/9781845694821.1.3
10.1016/j.prostr.2020.10.064
10.1016/j.compositesb.2014.05.013
10.1016/j.ijfatigue.2015.11.019
10.1016/S1566-1369(01)80040-6
10.3390/met11050807
10.1016/j.engfracmech.2022.108340
10.1016/j.ijfatigue.2006.02.006
10.1016/j.ijfatigue.2013.10.003
10.1016/j.ijfatigue.2005.04.006
10.1016/j.engfracmech.2009.07.014
10.1038/nmeth.2089
10.1016/0010-4361(89)90211-5
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/ffe.14179
DatabaseName Wiley Online Library Open Access
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1460-2695
EndPage 297
ExternalDocumentID 10_1111_ffe_14179
FFE14179
Genre researchArticle
GrantInformation_xml – fundername: Top‐Ariel Scholarship
– fundername: Israel Academy of Sciences and Humanities & Council for Higher Education Excellence Fellowship Program for International Postdoctoral Researchers
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SR
7TB
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JG9
KR7
ID FETCH-LOGICAL-c3329-97fca54dab3d88a8a323d55720a75d7cd0c0935961f1e0ab786da6ef267d1bdd3
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Fri Jul 25 19:20:03 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 04:04:46 EDT 2025
Wed Jan 22 16:17:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3329-97fca54dab3d88a8a323d55720a75d7cd0c0935961f1e0ab786da6ef267d1bdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0123-9414
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14179
PQID 2912068875
PQPubID 45644
PageCount 23
ParticipantIDs proquest_journals_2912068875
crossref_primary_10_1111_ffe_14179
crossref_citationtrail_10_1111_ffe_14179
wiley_primary_10_1111_ffe_14179_FFE14179
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 78
2014; 116
2015; 38
1989; 20
2012
2015; 124
1963; 85
2015; 120
2009
2008
2007
2014; 110
1970; 1
1961; 13
2001; 68
2013; 182
2014; 66
2014; 65
2003; 56
2012; 94
2022; 264
2017; 96
2009; 76
2021; 11
2023
2001
2022
2019; 22
2020
2015; 133
2006; 28
2020; 28
2019
2016; 84
2017
2016
2019; 219
2015
2014
1996; 27
2012; 43
1987; 29
2016; 88
2012; 40
2012; 9
e_1_2_11_32_1
e_1_2_11_30_1
e_1_2_11_36_1
ISO 15114 (e_1_2_11_44_1) 2014
e_1_2_11_51_1
e_1_2_11_13_1
Aboudi J (e_1_2_11_38_1) 2012
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
ISO 15024‐23 (e_1_2_11_7_1) 2023
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_22_1
e_1_2_11_17_1
Paris PC (e_1_2_11_12_1) 1961; 13
e_1_2_11_15_1
e_1_2_11_19_1
ASTM D5528/D5528M‐21 (e_1_2_11_6_1) 2022
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_33_1
ASTM E647‐15e1 (e_1_2_11_46_1) 2023
e_1_2_11_28_1
e_1_2_11_5_1
ASTM D6115‐97(2019) (e_1_2_11_8_1) 2019
e_1_2_11_26_1
e_1_2_11_3_1
Parnes R (e_1_2_11_42_1) 2001
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_25_1
e_1_2_11_40_1
ASTM D7905/D7905M‐19e1 (e_1_2_11_43_1) 2019
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 13
  start-page: 9
  year: 1961
  end-page: 14
  article-title: A rational analytic theory of fatigue
  publication-title: Trends Engin
– volume: 43
  start-page: 1689
  issue: 10
  year: 2012
  end-page: 1697
  article-title: Experimental investigation of R‐ratio effects on fatigue crack growth of adhesively‐bonded pultruded GFRP DCB joints under CA loading
  publication-title: Compos Part A: Appl S
– volume: 78
  start-page: 135
  year: 2015
  end-page: 142
  article-title: Interpreting the stress ratio effect on delamination growth in composite laminates using the concept of fatigue fracture toughness
  publication-title: Compos Part A‐Appl S
– volume: 27
  start-page: 129
  issue: 2
  year: 1996
  end-page: 145
  article-title: Delaminations in composite structures: its origin, buckling, growth and stability
  publication-title: Compos Part B: Eng.
– volume: 133
  start-page: 1
  year: 2015
  end-page: 13
  article-title: On the relationship between disbond growth and the release of strain energy
  publication-title: Eng Fract Mech
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  article-title: NIH Image to Image J: 25 years of image analysis
  publication-title: Nat Methods
– volume: 28
  start-page: 33
  issue: 1
  year: 2006
  end-page: 42
  article-title: A total fatigue life model for mode I delaminated composite laminates
  publication-title: Int J Fatigue
– volume: 68
  start-page: 129
  issue: 2
  year: 2001
  end-page: 147
  article-title: Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V
  publication-title: Eng Fract Mech
– volume: 76
  start-page: 2678
  issue: 18
  year: 2009
  end-page: 2689
  article-title: Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions
  publication-title: Eng Fract Mech
– year: 2001
– volume: 11
  start-page: 807
  issue: 5
  year: 2021
  article-title: Fatigue and crack growth under constant‐ and variable‐amplitude loading in 9310 steel using “rainflow‐on‐the‐fly” methodology
  publication-title: Metals
– volume: 124
  start-page: 214
  year: 2015
  end-page: 227
  article-title: Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review
  publication-title: Compos Struct
– start-page: 335
  year: 2001
  end-page: 342
– volume: 20
  start-page: 423
  issue: 5
  year: 1989
  end-page: 435
  article-title: Interlaminar fracture toughness and toughening of laminated composite materials: a review
  publication-title: Composites
– volume: 110
  start-page: 317
  year: 2014
  end-page: 324
  article-title: Mode I, II and mixed mode I/II delamination growth in composites
  publication-title: Compos Struct
– volume: 56
  start-page: 1
  issue: 1
  year: 2003
  end-page: 32
  article-title: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001
  publication-title: Appl Mech Rev
– year: 2016
– volume: 264
  year: 2022
  article-title: Fracture mechanics testing of fiber‐reinforced polymer composites: the effects of the “human factor” on repeatability and reproducibility of test data
  publication-title: Eng Fract Mech
– year: 2014
– volume: 219
  start-page: 175
  issue: 2
  year: 2019
  end-page: 185
  article-title: Multi‐directional composite laminates: fatigue delamination propagation in mode I‐a comparison
  publication-title: Int J Fract
– start-page: 1
  year: 2009
  end-page: 11
– year: 2012
– volume: 182
  start-page: 187
  issue: 2
  year: 2013
  end-page: 207
  article-title: Interface fracture toughness of a multi‐directional woven composite
  publication-title: Int J Fract
– start-page: 3
  year: 2008
  end-page: 27
– volume: 65
  start-page: 33
  year: 2014
  end-page: 43
  article-title: Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios
  publication-title: Int J Fatigue
– volume: 88
  start-page: 10
  year: 2016
  end-page: 18
  article-title: Cyclic‐fatigue crack growth in composite and adhesively‐bonded structures: the FAA slow crack growth approach to certification and the problem of similitude
  publication-title: Int J Fatigue
– volume: 66
  start-page: 180
  year: 2014
  end-page: 189
  article-title: Delamination propagation in a multi‐directional woven composite DCB specimen subjected to fatigue loading
  publication-title: Compos Part B–Eng
– volume: 38
  start-page: 379
  issue: 4
  year: 2015
  end-page: 391
  article-title: A convenient way to represent fatigue crack growth in structural adhesives
  publication-title: Fatigue Fract Eng M
– year: 2022
– volume: 1
  start-page: 615
  year: 1970
  end-page: 631
  article-title: The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys
  publication-title: Eng Fract Mech
– year: 2020
– year: 2023
– volume: 84
  start-page: 97
  year: 2016
  end-page: 103
  article-title: A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: evaluation of empirical relations
  publication-title: Int J Fatigue
– start-page: 206
  year: 2007
  end-page: 228
– volume: 28
  start-page: 546
  year: 2020
  end-page: 554
  article-title: Fracture mechanics test standards for fiber‐reinforced polymer composites: suggestions for adapting them to Industry 4.0 and the digital age
  publication-title: Procedia Struct Integr
– volume: 28
  start-page: 1177
  issue: 10
  year: 2006
  end-page: 1186
  article-title: Mode II fatigue crack growth from delamination in unidirectional tape and satin‐woven fabric laminates of high strength GFRP
  publication-title: Int J Fatigue
– volume: 96
  start-page: 237
  year: 2017
  end-page: 251
  article-title: Mode I delamination propagation and R‐ratio effects in woven composite DCB specimens for a multi‐directional layup
  publication-title: Int J Fatigue
– volume: 29
  start-page: 273
  issue: 4
  year: 1987
  end-page: 292
  article-title: Effect of stress ratio on near‐threshold propagation of delamination fatigue cracks in unidirectional CFRP
  publication-title: Compos Sci Technol
– year: 2017
– volume: 22
  start-page: 107
  year: 2019
  end-page: 140
  article-title: Nearly mode I fracture toughness and fatigue delamination propagation in a multidirectional laminate fabricated by a wet‐layup
  publication-title: Phys Mesomech
– year: 2019
– volume: 94
  start-page: 1343
  issue: 4
  year: 2012
  end-page: 1351
  article-title: Application of the Hartman–Schijve equation to represent mode I and mode II fatigue delamination growth in composites
  publication-title: Compos Struct
– volume: 116
  start-page: 92
  year: 2014
  end-page: 107
  article-title: Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round‐robins
  publication-title: Eng Fract Mech
– volume: 85
  start-page: 528
  issue: 4
  year: 1963
  end-page: 533
  article-title: A critical analysis of crack propagation laws
  publication-title: J Basic Eng‐T ASME
– year: 2015
– volume: 40
  start-page: 43
  year: 2012
  end-page: 50
  article-title: Fatigue crack growth in a diverse range of materials
  publication-title: Int J Fatigue
– volume: 120
  start-page: 39
  year: 2015
  end-page: 48
  article-title: Scaling parameter for fatigue delamination growth in composites under varying load ratios
  publication-title: Compos Sci Technol
– ident: e_1_2_11_24_1
  doi: 10.1016/j.engfracmech.2014.10.027
– ident: e_1_2_11_41_1
– ident: e_1_2_11_37_1
  doi: 10.1007/s10704-019-00388-4
– ident: e_1_2_11_47_1
– ident: e_1_2_11_30_1
  doi: 10.1016/j.compositesa.2015.08.005
– volume: 13
  start-page: 9
  year: 1961
  ident: e_1_2_11_12_1
  article-title: A rational analytic theory of fatigue
  publication-title: Trends Engin
– ident: e_1_2_11_40_1
– volume-title: Fiber Reinforced Plastic Composites—Determination of Mode I Interlaminar Fracture Toughness, GIc, for Unidirectional Reinforced Materials
  year: 2023
  ident: e_1_2_11_7_1
– ident: e_1_2_11_15_1
  doi: 10.1016/j.compscitech.2015.10.011
– ident: e_1_2_11_29_1
  doi: 10.1016/j.engfracmech.2013.12.002
– volume-title: Solid Mechanics in Engineering
  year: 2001
  ident: e_1_2_11_42_1
– ident: e_1_2_11_31_1
  doi: 10.1016/S0013-7944(00)00099-0
– ident: e_1_2_11_14_1
  doi: 10.1134/S1029959919020036
– volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials
  year: 2019
  ident: e_1_2_11_8_1
– ident: e_1_2_11_17_1
  doi: 10.1111/ffe.12241
– ident: e_1_2_11_36_1
  doi: 10.1016/0013-7944(70)90003-2
– ident: e_1_2_11_32_1
  doi: 10.1016/0266-3538(87)90076-5
– ident: e_1_2_11_25_1
  doi: 10.1016/j.compositesa.2011.10.018
– volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials
  year: 2022
  ident: e_1_2_11_6_1
– volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials
  year: 2019
  ident: e_1_2_11_43_1
– ident: e_1_2_11_11_1
  doi: 10.1115/1.3656900
– ident: e_1_2_11_52_1
– ident: e_1_2_11_39_1
  doi: 10.1007/s10704-013-9868-6
– ident: e_1_2_11_22_1
  doi: 10.1016/j.compstruct.2015.01.016
– ident: e_1_2_11_21_1
– ident: e_1_2_11_5_1
  doi: 10.1115/1.1504848
– ident: e_1_2_11_20_1
  doi: 10.1016/j.compstruct.2013.12.009
– ident: e_1_2_11_19_1
  doi: 10.1016/j.compstruct.2011.11.030
– volume-title: Metals–Mechanical Testing; Elevated and Low‐Temperature Tests; Metallography
  year: 2023
  ident: e_1_2_11_46_1
– ident: e_1_2_11_33_1
  doi: 10.1016/j.ijfatigue.2012.01.004
– ident: e_1_2_11_2_1
  doi: 10.1016/1359-8368(95)00035-6
– ident: e_1_2_11_18_1
  doi: 10.1016/j.ijfatigue.2016.03.008
– ident: e_1_2_11_51_1
– ident: e_1_2_11_28_1
  doi: 10.1016/j.ijfatigue.2016.12.005
– ident: e_1_2_11_3_1
  doi: 10.1533/9781845694821.1.3
– ident: e_1_2_11_9_1
  doi: 10.1016/j.prostr.2020.10.064
– ident: e_1_2_11_16_1
  doi: 10.1016/j.compositesb.2014.05.013
– ident: e_1_2_11_26_1
  doi: 10.1016/j.ijfatigue.2015.11.019
– ident: e_1_2_11_48_1
– volume-title: Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach
  year: 2012
  ident: e_1_2_11_38_1
– ident: e_1_2_11_45_1
  doi: 10.1016/S1566-1369(01)80040-6
– ident: e_1_2_11_34_1
  doi: 10.3390/met11050807
– ident: e_1_2_11_10_1
  doi: 10.1016/j.engfracmech.2022.108340
– ident: e_1_2_11_50_1
– ident: e_1_2_11_23_1
  doi: 10.1016/j.ijfatigue.2006.02.006
– ident: e_1_2_11_35_1
  doi: 10.1016/j.ijfatigue.2013.10.003
– ident: e_1_2_11_53_1
– ident: e_1_2_11_27_1
  doi: 10.1016/j.ijfatigue.2005.04.006
– ident: e_1_2_11_13_1
  doi: 10.1016/j.engfracmech.2009.07.014
– volume-title: Fibre‐Reinforced Plastic Composites—Determination of the Mode II Fracture Resistance for Unidirectionally Reinforced Materials Using the Calibrated End‐Loaded Split (C‐Els) Test and an Effective Crack Length Approach
  year: 2014
  ident: e_1_2_11_44_1
– ident: e_1_2_11_49_1
  doi: 10.1038/nmeth.2089
– ident: e_1_2_11_4_1
  doi: 10.1016/0010-4361(89)90211-5
SSID ssj0016433
Score 2.3955097
Snippet In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms carbon fiber‐reinforced polymer
Composite materials
constant amplitude
DCB
Delamination
Energy release rate
Fatigue
fatigue delamination propagation
Fatigue tests
human factor
Laminates
Propagation
R‐ratio
Title Fatigue delamination propagation: Various effects on results
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14179
https://www.proquest.com/docview/2912068875
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvejBt1itJYgHL5Fk89hEvbTaUARFxEoPQpjNZj1YWjHNxV_vbB61ioJ4W8gk2ezszH6zO_kG4NhRyvHQT81QMW66SrgmCts2MbUCCnEFLdn6RPfm1h8M3euRN2rAef0vTMkPMd9w05ZR-Gtt4CiyBSNXKiUzp_lE_lfnamlAdD-njqIooCgjT3DcNwkTjypWIZ3FM7_z61r0CTAXYWqxzkTr8FT3sEwveTnNZ-I0ef9G3vjPT9iAtQp_Gt1ywmxCI51sweoCK-E2XESkrec8NTSBpM6U0bozqEPke4r2mfFIEfY0z4wqG8Sg6xS25-NZtgPDqP9wOTCrIgtm4jgsNEOuEvRcicKRQYABOsyRnseZhdyTPJFWos9KQ99Wdmqh4IEvSbeK-VzaQkpnF5qT6STdA0NyFZI0khdAF20RIrMFl5yhQETPasFJPdxxUjGQ60IY47iORKjTcTEgLTiai76WtBs_CbVrncWV5WUxC22mC-lwj15XDP7vD4ijqF809v8uegArjHBNmbjdhubsLU8PCZfMRAeWmHvXgeVu76oXdYrp-AFIYuDY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb0ShQIQYWIIS5-EEdUHQqLw6oBZ1QdE5jhmoWkSbhV_POY9SEEiIzVIuiXPns7-zL98BnDhKOR76qRkqxk1XCddEYdsmplZAIa6gJVuf6N53_U7fvRl4gxq0qn9hCn6I2Yab9ox8vtYOrjek57xcqZT8nAbUAizqit6aOf_qYUYeRXFAXkieALlvEioelLxCOo9nduvX1egTYs4D1XylidbgqepjkWDycpZNxVny_o2-8b8fsQ6rJQQ1LooxswG1dLQJK3PEhFvQishgz1lqaA5JnSyjzWdQj2j6ydvnxiMF2eNsYpQJIQZdp8g9G04n29CP2r3LjlnWWTATx2GhGXKVoOdKFI4MAgzQYY70PM4s5J7kibQSfVwa-rayUwsFD3xJ5lXM59IWUjo7UB-NR-kuGJKrkKSRJgJ00RYhMltwyRkKRPSsBpxW-o6TkoRc18IYxlUwQp2Oc4U04Hgm-lowb_wk1KyMFpfON4lZaDNdS4d79Lpc-78_II6idt7Y-7voESx1evd38d1193YflhnBnCKPuwn16VuWHhBMmYrDfDR-APz44qs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GkBAcEE8xGFAhDlwitUnTtMAFwarxmnYAtFvlNAmXaUxs-_84fTEkkLhFqptWX-P4c-zahJxza7mAyNDEMklDq0IKKggoGD9GF1ehyXYR3edB1H8NH0Zi1CJX9b8wZX2I5sDNaUaxXzsFn2q7pOTWGlRzXE8rZNUF-1w-FwuHTQgBTS0vD_ciiqR4VJUVcmk8za0_jdE3w1zmqYWhSbfIZsUQvZvyk26TlpnskI2luoG75DpFPN8XxnMlHl0ui0PXw4lxdyjGl94b-sDo1HtVvoaH19GxXoznsz3ymvZebvu0aoNAc85ZQhNpcxChBsV1HEMMnHEthGQ-SKFlrv3cRTOTKLCB8UHJONKIvmWR1IHSmu-T9uRjYg6Ip6VNUBpQTyGEQCXAAiW1ZKAAQPgdclHjkeVVjXDXqmKc1b4CvnRWQNchZ43otCyM8ZtQtwY1q3RjlrEkYK7VjRT4uALovyfI0rRXDA7_L3pK1oZ3afZ0P3g8IusMSUiZZd0l7fnnwhwjiZirk2KxfAGQ48Ex
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+delamination+propagation%3A+Various+effects+on+results&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Singh%2C+Anuwedita&rft.au=Aizen%2C+Snir&rft.au=Mega%2C+Mor&rft.au=Rifkind%2C+Shira&rft.date=2024-02-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=47&rft.issue=2&rft.spage=275&rft.epage=297&rft_id=info:doi/10.1111%2Fffe.14179&rft.externalDBID=10.1111%252Fffe.14179&rft.externalDocID=FFE14179
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon