Fatigue delamination propagation: Various effects on results
In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a b...
Saved in:
Published in | Fatigue & fracture of engineering materials & structures Vol. 47; no. 2; pp. 275 - 297 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length
a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length
a, as well as on delamination propagation rate
da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the
R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower
R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized.
Highlights
Impact of human factor on fatigue delamination tests in laminate composites.
Limited influence of the human factor on delamination length and propagation rate.
The lower the
R‐ratio, the higher the delamination propagation rate.
The crack driving force for laminates should be taken as
GImax. |
---|---|
AbstractList | In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length
by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length
, as well as on delamination propagation rate
, is observed in this study. Secondly, the paper proceeds to discuss the influence of the
ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower
ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized.
Impact of human factor on fatigue delamination tests in laminate composites.
Limited influence of the human factor on delamination length and propagation rate.
The lower the
ratio, the higher the delamination propagation rate.
The crack driving force for laminates should be taken as
. In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length a, as well as on delamination propagation rate da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized. Highlights Impact of human factor on fatigue delamination tests in laminate composites. Limited influence of the human factor on delamination length and propagation rate. The lower the R‐ratio, the higher the delamination propagation rate. The crack driving force for laminates should be taken as GImax. In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination propagation tests on laminate composites, the delamination length must be measured. The human effect on measurement of the delamination length a by different investigators is discussed. A limited influence of the human factor on the measurement of the delamination length a, as well as on delamination propagation rate da/dN, is observed in this study. Secondly, the paper proceeds to discuss the influence of the R‐ratio on the fatigue delamination growth rate. It is found that a higher rate of crack/delamination propagation is associated with lower R‐ratios which appears to contradict conventional wisdom. This behavior is confirmed in tests. Thirdly, a comparison between the fatigue propagation rates of two material systems is considered. It is concluded that the energy release rate used to assess these materials should not be normalized. |
Author | Banks‐Sills, Leslie Aizen, Snir Singh, Anuwedita Mega, Mor Rifkind, Shira |
Author_xml | – sequence: 1 givenname: Anuwedita surname: Singh fullname: Singh, Anuwedita email: anuweditavishen@gmail.com organization: Tel Aviv University – sequence: 2 givenname: Snir surname: Aizen fullname: Aizen, Snir organization: Tel Aviv University – sequence: 3 givenname: Mor surname: Mega fullname: Mega, Mor organization: Ariel University – sequence: 4 givenname: Shira surname: Rifkind fullname: Rifkind, Shira organization: Ariel University – sequence: 5 givenname: Leslie orcidid: 0000-0002-0123-9414 surname: Banks‐Sills fullname: Banks‐Sills, Leslie organization: Tel Aviv University |
BookMark | eNp9UE1LAzEQDVLBVj34DxY8edg2H5sv8SKlq0LBi4q3kOajpGx3a7KL9N8bW0-CzmVmmDdv5r0JGLVd6wC4QnCKcsy8d1NUIS5PwBhVDJaYSToCY8EpKzkV72dgktIGQsQqQsbgrtZ9WA-usK7R29DmrmuLXex2en2ob4s3HUM3pMJlbtOnIs-jS0PTpwtw6nWT3OVPPgev9eJl_lgunx-e5vfL0hCCZSm5N5pWVq-IFUILTTCxlHIMNaeWGwsNlIRKhjxyUK-4YFYz5zHjFq2sJefg-sib__oYXOrVphtim08qLBGGTGR5GXVzRJnYpRSdV7sYtjruFYLq2xyVBaiDORk7-4U1oT_o7aMOzX8bn6Fx-7-pVV0vjhtfFnd3yA |
CitedBy_id | crossref_primary_10_1111_ffe_14199 crossref_primary_10_1111_ffe_14362 |
Cites_doi | 10.1016/j.engfracmech.2014.10.027 10.1007/s10704-019-00388-4 10.1016/j.compositesa.2015.08.005 10.1016/j.compscitech.2015.10.011 10.1016/j.engfracmech.2013.12.002 10.1016/S0013-7944(00)00099-0 10.1134/S1029959919020036 10.1111/ffe.12241 10.1016/0013-7944(70)90003-2 10.1016/0266-3538(87)90076-5 10.1016/j.compositesa.2011.10.018 10.1115/1.3656900 10.1007/s10704-013-9868-6 10.1016/j.compstruct.2015.01.016 10.1115/1.1504848 10.1016/j.compstruct.2013.12.009 10.1016/j.compstruct.2011.11.030 10.1016/j.ijfatigue.2012.01.004 10.1016/1359-8368(95)00035-6 10.1016/j.ijfatigue.2016.03.008 10.1016/j.ijfatigue.2016.12.005 10.1533/9781845694821.1.3 10.1016/j.prostr.2020.10.064 10.1016/j.compositesb.2014.05.013 10.1016/j.ijfatigue.2015.11.019 10.1016/S1566-1369(01)80040-6 10.3390/met11050807 10.1016/j.engfracmech.2022.108340 10.1016/j.ijfatigue.2006.02.006 10.1016/j.ijfatigue.2013.10.003 10.1016/j.ijfatigue.2005.04.006 10.1016/j.engfracmech.2009.07.014 10.1038/nmeth.2089 10.1016/0010-4361(89)90211-5 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1111/ffe.14179 |
DatabaseName | Wiley Online Library Open Access CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1460-2695 |
EndPage | 297 |
ExternalDocumentID | 10_1111_ffe_14179 FFE14179 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Top‐Ariel Scholarship – fundername: Israel Academy of Sciences and Humanities & Council for Higher Education Excellence Fellowship Program for International Postdoctoral Researchers |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDEX ABEFU ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SR 7TB 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c3329-97fca54dab3d88a8a323d55720a75d7cd0c0935961f1e0ab786da6ef267d1bdd3 |
IEDL.DBID | DR2 |
ISSN | 8756-758X |
IngestDate | Fri Jul 25 19:20:03 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Tue Jul 01 04:04:46 EDT 2025 Wed Jan 22 16:17:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3329-97fca54dab3d88a8a323d55720a75d7cd0c0935961f1e0ab786da6ef267d1bdd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0123-9414 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14179 |
PQID | 2912068875 |
PQPubID | 45644 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2912068875 crossref_primary_10_1111_ffe_14179 crossref_citationtrail_10_1111_ffe_14179 wiley_primary_10_1111_ffe_14179_FFE14179 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2024 2024-02-00 20240201 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Fatigue & fracture of engineering materials & structures |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 78 2014; 116 2015; 38 1989; 20 2012 2015; 124 1963; 85 2015; 120 2009 2008 2007 2014; 110 1970; 1 1961; 13 2001; 68 2013; 182 2014; 66 2014; 65 2003; 56 2012; 94 2022; 264 2017; 96 2009; 76 2021; 11 2023 2001 2022 2019; 22 2020 2015; 133 2006; 28 2020; 28 2019 2016; 84 2017 2016 2019; 219 2015 2014 1996; 27 2012; 43 1987; 29 2016; 88 2012; 40 2012; 9 e_1_2_11_32_1 e_1_2_11_30_1 e_1_2_11_36_1 ISO 15114 (e_1_2_11_44_1) 2014 e_1_2_11_51_1 e_1_2_11_13_1 Aboudi J (e_1_2_11_38_1) 2012 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 ISO 15024‐23 (e_1_2_11_7_1) 2023 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_22_1 e_1_2_11_17_1 Paris PC (e_1_2_11_12_1) 1961; 13 e_1_2_11_15_1 e_1_2_11_19_1 ASTM D5528/D5528M‐21 (e_1_2_11_6_1) 2022 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_33_1 ASTM E647‐15e1 (e_1_2_11_46_1) 2023 e_1_2_11_28_1 e_1_2_11_5_1 ASTM D6115‐97(2019) (e_1_2_11_8_1) 2019 e_1_2_11_26_1 e_1_2_11_3_1 Parnes R (e_1_2_11_42_1) 2001 e_1_2_11_49_1 e_1_2_11_21_1 e_1_2_11_25_1 e_1_2_11_40_1 ASTM D7905/D7905M‐19e1 (e_1_2_11_43_1) 2019 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
References_xml | – volume: 13 start-page: 9 year: 1961 end-page: 14 article-title: A rational analytic theory of fatigue publication-title: Trends Engin – volume: 43 start-page: 1689 issue: 10 year: 2012 end-page: 1697 article-title: Experimental investigation of R‐ratio effects on fatigue crack growth of adhesively‐bonded pultruded GFRP DCB joints under CA loading publication-title: Compos Part A: Appl S – volume: 78 start-page: 135 year: 2015 end-page: 142 article-title: Interpreting the stress ratio effect on delamination growth in composite laminates using the concept of fatigue fracture toughness publication-title: Compos Part A‐Appl S – volume: 27 start-page: 129 issue: 2 year: 1996 end-page: 145 article-title: Delaminations in composite structures: its origin, buckling, growth and stability publication-title: Compos Part B: Eng. – volume: 133 start-page: 1 year: 2015 end-page: 13 article-title: On the relationship between disbond growth and the release of strain energy publication-title: Eng Fract Mech – volume: 9 start-page: 671 year: 2012 end-page: 675 article-title: NIH Image to Image J: 25 years of image analysis publication-title: Nat Methods – volume: 28 start-page: 33 issue: 1 year: 2006 end-page: 42 article-title: A total fatigue life model for mode I delaminated composite laminates publication-title: Int J Fatigue – volume: 68 start-page: 129 issue: 2 year: 2001 end-page: 147 article-title: Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V publication-title: Eng Fract Mech – volume: 76 start-page: 2678 issue: 18 year: 2009 end-page: 2689 article-title: Development of a standardized procedure for the characterization of interlaminar delamination propagation in advanced composites under fatigue mode I loading conditions publication-title: Eng Fract Mech – year: 2001 – volume: 11 start-page: 807 issue: 5 year: 2021 article-title: Fatigue and crack growth under constant‐ and variable‐amplitude loading in 9310 steel using “rainflow‐on‐the‐fly” methodology publication-title: Metals – volume: 124 start-page: 214 year: 2015 end-page: 227 article-title: Effect of stress ratio or mean stress on fatigue delamination growth in composites: critical review publication-title: Compos Struct – start-page: 335 year: 2001 end-page: 342 – volume: 20 start-page: 423 issue: 5 year: 1989 end-page: 435 article-title: Interlaminar fracture toughness and toughening of laminated composite materials: a review publication-title: Composites – volume: 110 start-page: 317 year: 2014 end-page: 324 article-title: Mode I, II and mixed mode I/II delamination growth in composites publication-title: Compos Struct – volume: 56 start-page: 1 issue: 1 year: 2003 end-page: 32 article-title: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001 publication-title: Appl Mech Rev – year: 2016 – volume: 264 year: 2022 article-title: Fracture mechanics testing of fiber‐reinforced polymer composites: the effects of the “human factor” on repeatability and reproducibility of test data publication-title: Eng Fract Mech – year: 2014 – volume: 219 start-page: 175 issue: 2 year: 2019 end-page: 185 article-title: Multi‐directional composite laminates: fatigue delamination propagation in mode I‐a comparison publication-title: Int J Fract – start-page: 1 year: 2009 end-page: 11 – year: 2012 – volume: 182 start-page: 187 issue: 2 year: 2013 end-page: 207 article-title: Interface fracture toughness of a multi‐directional woven composite publication-title: Int J Fract – start-page: 3 year: 2008 end-page: 27 – volume: 65 start-page: 33 year: 2014 end-page: 43 article-title: Fatigue life estimation of pitted 12% Cr steam turbine blade steel in different environments and at different stress ratios publication-title: Int J Fatigue – volume: 88 start-page: 10 year: 2016 end-page: 18 article-title: Cyclic‐fatigue crack growth in composite and adhesively‐bonded structures: the FAA slow crack growth approach to certification and the problem of similitude publication-title: Int J Fatigue – volume: 66 start-page: 180 year: 2014 end-page: 189 article-title: Delamination propagation in a multi‐directional woven composite DCB specimen subjected to fatigue loading publication-title: Compos Part B–Eng – volume: 38 start-page: 379 issue: 4 year: 2015 end-page: 391 article-title: A convenient way to represent fatigue crack growth in structural adhesives publication-title: Fatigue Fract Eng M – year: 2022 – volume: 1 start-page: 615 year: 1970 end-page: 631 article-title: The effects of environment and load frequency on the crack propagation law for macro fatigue crack growth in aluminium alloys publication-title: Eng Fract Mech – year: 2020 – year: 2023 – volume: 84 start-page: 97 year: 2016 end-page: 103 article-title: A brief discussion on (pure mode I) fatigue crack growth rate data in 5HS weave fabric composites: evaluation of empirical relations publication-title: Int J Fatigue – start-page: 206 year: 2007 end-page: 228 – volume: 28 start-page: 546 year: 2020 end-page: 554 article-title: Fracture mechanics test standards for fiber‐reinforced polymer composites: suggestions for adapting them to Industry 4.0 and the digital age publication-title: Procedia Struct Integr – volume: 28 start-page: 1177 issue: 10 year: 2006 end-page: 1186 article-title: Mode II fatigue crack growth from delamination in unidirectional tape and satin‐woven fabric laminates of high strength GFRP publication-title: Int J Fatigue – volume: 96 start-page: 237 year: 2017 end-page: 251 article-title: Mode I delamination propagation and R‐ratio effects in woven composite DCB specimens for a multi‐directional layup publication-title: Int J Fatigue – volume: 29 start-page: 273 issue: 4 year: 1987 end-page: 292 article-title: Effect of stress ratio on near‐threshold propagation of delamination fatigue cracks in unidirectional CFRP publication-title: Compos Sci Technol – year: 2017 – volume: 22 start-page: 107 year: 2019 end-page: 140 article-title: Nearly mode I fracture toughness and fatigue delamination propagation in a multidirectional laminate fabricated by a wet‐layup publication-title: Phys Mesomech – year: 2019 – volume: 94 start-page: 1343 issue: 4 year: 2012 end-page: 1351 article-title: Application of the Hartman–Schijve equation to represent mode I and mode II fatigue delamination growth in composites publication-title: Compos Struct – volume: 116 start-page: 92 year: 2014 end-page: 107 article-title: Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites: results from ESIS TC4 round‐robins publication-title: Eng Fract Mech – volume: 85 start-page: 528 issue: 4 year: 1963 end-page: 533 article-title: A critical analysis of crack propagation laws publication-title: J Basic Eng‐T ASME – year: 2015 – volume: 40 start-page: 43 year: 2012 end-page: 50 article-title: Fatigue crack growth in a diverse range of materials publication-title: Int J Fatigue – volume: 120 start-page: 39 year: 2015 end-page: 48 article-title: Scaling parameter for fatigue delamination growth in composites under varying load ratios publication-title: Compos Sci Technol – ident: e_1_2_11_24_1 doi: 10.1016/j.engfracmech.2014.10.027 – ident: e_1_2_11_41_1 – ident: e_1_2_11_37_1 doi: 10.1007/s10704-019-00388-4 – ident: e_1_2_11_47_1 – ident: e_1_2_11_30_1 doi: 10.1016/j.compositesa.2015.08.005 – volume: 13 start-page: 9 year: 1961 ident: e_1_2_11_12_1 article-title: A rational analytic theory of fatigue publication-title: Trends Engin – ident: e_1_2_11_40_1 – volume-title: Fiber Reinforced Plastic Composites—Determination of Mode I Interlaminar Fracture Toughness, GIc, for Unidirectional Reinforced Materials year: 2023 ident: e_1_2_11_7_1 – ident: e_1_2_11_15_1 doi: 10.1016/j.compscitech.2015.10.011 – ident: e_1_2_11_29_1 doi: 10.1016/j.engfracmech.2013.12.002 – volume-title: Solid Mechanics in Engineering year: 2001 ident: e_1_2_11_42_1 – ident: e_1_2_11_31_1 doi: 10.1016/S0013-7944(00)00099-0 – ident: e_1_2_11_14_1 doi: 10.1134/S1029959919020036 – volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials year: 2019 ident: e_1_2_11_8_1 – ident: e_1_2_11_17_1 doi: 10.1111/ffe.12241 – ident: e_1_2_11_36_1 doi: 10.1016/0013-7944(70)90003-2 – ident: e_1_2_11_32_1 doi: 10.1016/0266-3538(87)90076-5 – ident: e_1_2_11_25_1 doi: 10.1016/j.compositesa.2011.10.018 – volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials year: 2022 ident: e_1_2_11_6_1 – volume-title: Space Simulation; Aerospace and Aircraft; Composite Materials year: 2019 ident: e_1_2_11_43_1 – ident: e_1_2_11_11_1 doi: 10.1115/1.3656900 – ident: e_1_2_11_52_1 – ident: e_1_2_11_39_1 doi: 10.1007/s10704-013-9868-6 – ident: e_1_2_11_22_1 doi: 10.1016/j.compstruct.2015.01.016 – ident: e_1_2_11_21_1 – ident: e_1_2_11_5_1 doi: 10.1115/1.1504848 – ident: e_1_2_11_20_1 doi: 10.1016/j.compstruct.2013.12.009 – ident: e_1_2_11_19_1 doi: 10.1016/j.compstruct.2011.11.030 – volume-title: Metals–Mechanical Testing; Elevated and Low‐Temperature Tests; Metallography year: 2023 ident: e_1_2_11_46_1 – ident: e_1_2_11_33_1 doi: 10.1016/j.ijfatigue.2012.01.004 – ident: e_1_2_11_2_1 doi: 10.1016/1359-8368(95)00035-6 – ident: e_1_2_11_18_1 doi: 10.1016/j.ijfatigue.2016.03.008 – ident: e_1_2_11_51_1 – ident: e_1_2_11_28_1 doi: 10.1016/j.ijfatigue.2016.12.005 – ident: e_1_2_11_3_1 doi: 10.1533/9781845694821.1.3 – ident: e_1_2_11_9_1 doi: 10.1016/j.prostr.2020.10.064 – ident: e_1_2_11_16_1 doi: 10.1016/j.compositesb.2014.05.013 – ident: e_1_2_11_26_1 doi: 10.1016/j.ijfatigue.2015.11.019 – ident: e_1_2_11_48_1 – volume-title: Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach year: 2012 ident: e_1_2_11_38_1 – ident: e_1_2_11_45_1 doi: 10.1016/S1566-1369(01)80040-6 – ident: e_1_2_11_34_1 doi: 10.3390/met11050807 – ident: e_1_2_11_10_1 doi: 10.1016/j.engfracmech.2022.108340 – ident: e_1_2_11_50_1 – ident: e_1_2_11_23_1 doi: 10.1016/j.ijfatigue.2006.02.006 – ident: e_1_2_11_35_1 doi: 10.1016/j.ijfatigue.2013.10.003 – ident: e_1_2_11_53_1 – ident: e_1_2_11_27_1 doi: 10.1016/j.ijfatigue.2005.04.006 – ident: e_1_2_11_13_1 doi: 10.1016/j.engfracmech.2009.07.014 – volume-title: Fibre‐Reinforced Plastic Composites—Determination of the Mode II Fracture Resistance for Unidirectionally Reinforced Materials Using the Calibrated End‐Loaded Split (C‐Els) Test and an Effective Crack Length Approach year: 2014 ident: e_1_2_11_44_1 – ident: e_1_2_11_49_1 doi: 10.1038/nmeth.2089 – ident: e_1_2_11_4_1 doi: 10.1016/0010-4361(89)90211-5 |
SSID | ssj0016433 |
Score | 2.3955097 |
Snippet | In this investigation, three subjects are considered. First, the effect of the human factor is examined. In carrying out analyses of fatigue delamination... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 275 |
SubjectTerms | carbon fiber‐reinforced polymer Composite materials constant amplitude DCB Delamination Energy release rate Fatigue fatigue delamination propagation Fatigue tests human factor Laminates Propagation R‐ratio |
Title | Fatigue delamination propagation: Various effects on results |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fffe.14179 https://www.proquest.com/docview/2912068875 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvejBt1itJYgHL5Fk89hEvbTaUARFxEoPQpjNZj1YWjHNxV_vbB61ioJ4W8gk2ezszH6zO_kG4NhRyvHQT81QMW66SrgmCts2MbUCCnEFLdn6RPfm1h8M3euRN2rAef0vTMkPMd9w05ZR-Gtt4CiyBSNXKiUzp_lE_lfnamlAdD-njqIooCgjT3DcNwkTjypWIZ3FM7_z61r0CTAXYWqxzkTr8FT3sEwveTnNZ-I0ef9G3vjPT9iAtQp_Gt1ywmxCI51sweoCK-E2XESkrec8NTSBpM6U0bozqEPke4r2mfFIEfY0z4wqG8Sg6xS25-NZtgPDqP9wOTCrIgtm4jgsNEOuEvRcicKRQYABOsyRnseZhdyTPJFWos9KQ99Wdmqh4IEvSbeK-VzaQkpnF5qT6STdA0NyFZI0khdAF20RIrMFl5yhQETPasFJPdxxUjGQ60IY47iORKjTcTEgLTiai76WtBs_CbVrncWV5WUxC22mC-lwj15XDP7vD4ijqF809v8uegArjHBNmbjdhubsLU8PCZfMRAeWmHvXgeVu76oXdYrp-AFIYuDY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgADb0ShQIQYWIIS5-EEdUHQqLw6oBZ1QdE5jhmoWkSbhV_POY9SEEiIzVIuiXPns7-zL98BnDhKOR76qRkqxk1XCddEYdsmplZAIa6gJVuf6N53_U7fvRl4gxq0qn9hCn6I2Yab9ox8vtYOrjek57xcqZT8nAbUAizqit6aOf_qYUYeRXFAXkieALlvEioelLxCOo9nduvX1egTYs4D1XylidbgqepjkWDycpZNxVny_o2-8b8fsQ6rJQQ1LooxswG1dLQJK3PEhFvQishgz1lqaA5JnSyjzWdQj2j6ydvnxiMF2eNsYpQJIQZdp8g9G04n29CP2r3LjlnWWTATx2GhGXKVoOdKFI4MAgzQYY70PM4s5J7kibQSfVwa-rayUwsFD3xJ5lXM59IWUjo7UB-NR-kuGJKrkKSRJgJ00RYhMltwyRkKRPSsBpxW-o6TkoRc18IYxlUwQp2Oc4U04Hgm-lowb_wk1KyMFpfON4lZaDNdS4d79Lpc-78_II6idt7Y-7voESx1evd38d1193YflhnBnCKPuwn16VuWHhBMmYrDfDR-APz44qs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GkBAcEE8xGFAhDlwitUnTtMAFwarxmnYAtFvlNAmXaUxs-_84fTEkkLhFqptWX-P4c-zahJxza7mAyNDEMklDq0IKKggoGD9GF1ehyXYR3edB1H8NH0Zi1CJX9b8wZX2I5sDNaUaxXzsFn2q7pOTWGlRzXE8rZNUF-1w-FwuHTQgBTS0vD_ciiqR4VJUVcmk8za0_jdE3w1zmqYWhSbfIZsUQvZvyk26TlpnskI2luoG75DpFPN8XxnMlHl0ui0PXw4lxdyjGl94b-sDo1HtVvoaH19GxXoznsz3ymvZebvu0aoNAc85ZQhNpcxChBsV1HEMMnHEthGQ-SKFlrv3cRTOTKLCB8UHJONKIvmWR1IHSmu-T9uRjYg6Ip6VNUBpQTyGEQCXAAiW1ZKAAQPgdclHjkeVVjXDXqmKc1b4CvnRWQNchZ43otCyM8ZtQtwY1q3RjlrEkYK7VjRT4uALovyfI0rRXDA7_L3pK1oZ3afZ0P3g8IusMSUiZZd0l7fnnwhwjiZirk2KxfAGQ48Ex |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+delamination+propagation%3A+Various+effects+on+results&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=Singh%2C+Anuwedita&rft.au=Aizen%2C+Snir&rft.au=Mega%2C+Mor&rft.au=Rifkind%2C+Shira&rft.date=2024-02-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=47&rft.issue=2&rft.spage=275&rft.epage=297&rft_id=info:doi/10.1111%2Fffe.14179&rft.externalDBID=10.1111%252Fffe.14179&rft.externalDocID=FFE14179 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |