The confined helium atom: An information–theoretic approach

In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to obtain the energies and wave functions of the confined helium atom as a function of the cavity radius r0$$ {r}_0 $$. As trial wave functions we...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of quantum chemistry Vol. 124; no. 4
Main Authors Estañón, C. R., Montgomery, H. E., Angulo, J. C., Aquino, N.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.02.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to obtain the energies and wave functions of the confined helium atom as a function of the cavity radius r0$$ {r}_0 $$. As trial wave functions we use one uncorrelated function and five explicitly correlated basis sets in Hylleraas coordinates with different degrees of electronic correlation. We computed the Shannon entropy, Fisher information, Kullback–Leibler entropy, Tsallis entropy, disequilibrium and Fisher–Shannon complexity, as a function of r0$$ {r}_0 $$. We found that these entropic measures are sensitive to electronic correlation and can be used to measure it. As expected these entropic measures are less sensitive to electron correlation in the strong confinement regime (r0<1$$ {r}_0<1 $$ a.u.). Tsallis entropy for the helium atom confined in a spherical impenetrable cavity with electronic correlation.
AbstractList In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to obtain the energies and wave functions of the confined helium atom as a function of the cavity radius r0$$ {r}_0 $$. As trial wave functions we use one uncorrelated function and five explicitly correlated basis sets in Hylleraas coordinates with different degrees of electronic correlation. We computed the Shannon entropy, Fisher information, Kullback–Leibler entropy, Tsallis entropy, disequilibrium and Fisher–Shannon complexity, as a function of r0$$ {r}_0 $$. We found that these entropic measures are sensitive to electronic correlation and can be used to measure it. As expected these entropic measures are less sensitive to electron correlation in the strong confinement regime (r0<1$$ {r}_0<1 $$ a.u.).
In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to obtain the energies and wave functions of the confined helium atom as a function of the cavity radius r0$$ {r}_0 $$. As trial wave functions we use one uncorrelated function and five explicitly correlated basis sets in Hylleraas coordinates with different degrees of electronic correlation. We computed the Shannon entropy, Fisher information, Kullback–Leibler entropy, Tsallis entropy, disequilibrium and Fisher–Shannon complexity, as a function of r0$$ {r}_0 $$. We found that these entropic measures are sensitive to electronic correlation and can be used to measure it. As expected these entropic measures are less sensitive to electron correlation in the strong confinement regime (r0<1$$ {r}_0<1 $$ a.u.). Tsallis entropy for the helium atom confined in a spherical impenetrable cavity with electronic correlation.
Abstract In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to obtain the energies and wave functions of the confined helium atom as a function of the cavity radius . As trial wave functions we use one uncorrelated function and five explicitly correlated basis sets in Hylleraas coordinates with different degrees of electronic correlation. We computed the Shannon entropy, Fisher information, Kullback–Leibler entropy, Tsallis entropy, disequilibrium and Fisher–Shannon complexity, as a function of . We found that these entropic measures are sensitive to electronic correlation and can be used to measure it. As expected these entropic measures are less sensitive to electron correlation in the strong confinement regime ( a.u.).
Author Angulo, J. C.
Aquino, N.
Estañón, C. R.
Montgomery, H. E.
Author_xml – sequence: 1
  givenname: C. R.
  surname: Estañón
  fullname: Estañón, C. R.
  organization: Universidad Autónoma Metropolitana‐Iztapalapa
– sequence: 2
  givenname: H. E.
  surname: Montgomery
  fullname: Montgomery, H. E.
  organization: Centre College
– sequence: 3
  givenname: J. C.
  surname: Angulo
  fullname: Angulo, J. C.
  organization: Universidad de Granada
– sequence: 4
  givenname: N.
  orcidid: 0000-0002-3795-0304
  surname: Aquino
  fullname: Aquino, N.
  email: naa@xanum.uam.mx
  organization: Universidad Autónoma Metropolitana‐Iztapalapa
BookMark eNp1kM9Kw0AQhxepYFs9-AYBTx7SzmaT3UTwUEr9AwURWvC2bDYTktLstpsE6c138A19Elfj1dMwzPebH3wTMjLWICHXFGYUIJofezWLBEvSMzKmkIkw5vRtRMb-BqHgkF6QSdvuAIAzLsbkflNhoK0pa4NFUOG-7ptAdba5CxYmqE1pXaO62pqvj8-uQuuwq3WgDgdnla4uyXmp9i1e_c0p2T6sNsuncP3y-LxcrEPNWJSGBeUME5EALbROlULQsd90TnNknOskzQUUZaGzPNNRzJIcygypSkXBM2DIpuRm-Otrjz22ndzZ3hlfKaMs4jGlLAVP3Q6UdrZtHZby4OpGuZOkIH_sSG9H_trx7Hxg3-s9nv4H5et2MSS-AeayaMs
CitedBy_id crossref_primary_10_1140_epjd_s10053_024_00861_3
crossref_primary_10_1016_j_chemphys_2024_112345
crossref_primary_10_1016_j_physo_2024_100220
Cites_doi 10.1103/PhysRevA.57.4512
10.1016/S0375-9601(03)00570-X
10.1002/j.1538-7305.1948.tb01338.x
10.1063/1.438556
10.1016/j.physleta.2013.08.043
10.1016/j.physleta.2012.04.056
10.1007/s10910-022-01363-6
10.1002/qua.25234
10.1103/PhysRevE.103.043202
10.1007/s00214-014-1598-y
10.1002/qua.26192
10.1007/978-3-319-09982-8
10.1016/S0378-4371(03)00566-1
10.1088/0953-4075/25/9/003
10.1063/1.2008212
10.1016/0370-1573(95)00070-4
10.1016/S0065-3276(09)00606-6
10.1515/zna-1993-1-218
10.1007/BF01016429
10.1016/j.physleta.2020.127136
10.1088/1751-8113/42/26/265004
10.1140/epjd/e2005-00005-1
10.1088/0953-4075/27/21/009
10.1002/9781118923337
10.1088/0031-8949/87/06/065305
10.1088/0022-3700/4/11/004
10.1088/0253-6102/35/2/195
10.1002/qua.26549
10.1103/PhysRevE.73.026102
10.1063/1.476316
10.3390/quantum2010012
10.1016/j.physleta.2015.10.047
10.1016/j.physa.2009.10.023
10.1063/1.3298911
10.1063/1.438077
10.1063/1.436710
10.1016/j.physleta.2010.08.071
10.1214/aoms/1177729694
10.1103/PhysRevA.103.062808
10.1063/1.1701767
10.1088/0953-4075/44/10/105003
10.1021/ct900544m
10.1039/C5CP00110B
10.1016/j.physleta.2015.11.021
10.1063/1.2148948
10.1109/ITW.2008.4578673
10.1117/1.2177638
10.1140/epjd/e2004-00182-3
10.1016/j.comptc.2011.01.044
10.1016/j.cam.2008.07.030
10.1016/j.physleta.2009.12.062
10.1103/PhysRevA.50.3065
10.1088/1742-6596/135/1/012085
10.1016/j.physleta.2006.12.044
10.1017/S0305004100009580
10.1139/cjp-2019-0391
10.1002/qua.22973
10.1088/0953-4075/25/21/006
10.1016/S0065-3276(09)00608-X
10.1016/j.physleta.2008.08.027
10.1088/0953-4075/33/2/310
10.1002/qua.26424
10.1140/epjd/s10053-021-00143-2
10.1021/ct200284q
10.1103/PhysRevA.107.042417
10.1002/qua.26630
10.1016/S0019-9958(59)90348-1
10.1103/PhysRevE.58.3949
10.1007/s11128-023-03872-y
10.1016/S0031-8914(52)80223-X
10.1139/cjp-2015-0434
10.1002/qua.560560422
10.1016/S0375-9601(02)01767-X
10.1016/S0031-8914(37)80196-2
10.1021/j100193a069
10.1063/1.1697374
10.1016/j.physleta.2013.05.048
10.1140/epjd/s10053-021-00177-6
10.1063/1.527441
10.1140/epjd/s10053-020-00003-5
10.1021/jp003852u
10.1016/j.physa.2010.11.005
10.1007/s00214-017-2168-x
10.1016/j.physleta.2007.07.077
10.1007/978-90-481-3890-6
10.1017/CBO9780511622670
10.1103/PhysRevA.32.2602
10.1016/j.physleta.2010.02.074
10.1186/2251-7235-6-28
10.1103/PhysRevA.30.620
10.31349/RevMexFis.64.326
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
DOI 10.1002/qua.27358
DatabaseName Wiley Online Library Open Access
Wiley Online Library Free Content
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-461X
EndPage n/a
ExternalDocumentID 10_1002_qua_27358
QUA27358
Genre researchArticle
GrantInformation_xml – fundername: Universidad de Granada
– fundername: Junta de Andalucía
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
ESX
F00
F01
F04
F5P
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWK
RX1
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3328-d163e57501dcc8aae0c4750cb1be366c58b70dfdc9b9c2435b0f9e1a87d6903e3
IEDL.DBID DR2
ISSN 0020-7608
IngestDate Fri Sep 13 00:38:10 EDT 2024
Fri Aug 23 01:53:14 EDT 2024
Sat Aug 24 00:56:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3328-d163e57501dcc8aae0c4750cb1be366c58b70dfdc9b9c2435b0f9e1a87d6903e3
ORCID 0000-0002-3795-0304
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.27358
PQID 2926411380
PQPubID 1026346
PageCount 17
ParticipantIDs proquest_journals_2926411380
crossref_primary_10_1002_qua_27358
wiley_primary_10_1002_qua_27358_QUA27358
PublicationCentury 2000
PublicationDate February 15, 2024
PublicationDateYYYYMMDD 2024-02-15
PublicationDate_xml – month: 02
  year: 2024
  text: February 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle International journal of quantum chemistry
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 120
1925; 22
2009; 42
2006; 73
2020; 120
2010; 389
1951; 22
2011; 390
1994; 27
2021; 121
2023; 107
2020; 98
2016; 380
2003; 312
1959; 2
1993; 2
1979; 71
2022; 137
2011; 111
2001; 105
1992; 96
2009; 57
1985; 18
2003; 329
2021; 75
2012; 376
2020; 2
2009; 10
2011; 965
2023; 22
2015; 134
1982; 4
2005; 32
2021; 392
2016; 116
1978; 69
1937; 4
2010; 6
1998; 58
1971; 4
2006; 124
1948; 27
1998; 57
1993; 48
2015; 2
2015; 17
2013; 87
2011
2021; 103
1995; 56
2007; 364
2006; 15
2009
1998
2008
2006
2016; 94
2005
1967; 47
1988; 52
1952; 18
2018; 64
2017; 136
2011; 7
1984; 30
2003; 307
2022; 60
2005; 123
2000; 33
2010; 374
1998; 108
2010; 132
1996; 271
2011; 44
2013; 377
2016
1992; 25
2014
2012; 6
2001; 35
1994; 50
1985; 32
1987; 28
2008; 372
2014; 1579
2009; 227
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Gadre S. R. (e_1_2_6_83_1) 1985; 18
e_1_2_6_19_1
e_1_2_6_34_1
Sabin J. R. (e_1_2_6_7_1) 2009
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
López‐Ruiz R. (e_1_2_6_86_1) 2011
e_1_2_6_99_1
e_1_2_6_87_1
e_1_2_6_106_1
Salazar S. J. (e_1_2_6_70_1) 2022; 137
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_102_1
Fernández F. M. (e_1_2_6_2_1) 1982; 4
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
Nalewajski R. F. (e_1_2_6_56_1) 2006
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_74_1
e_1_2_6_97_1
Nilsen M. A. (e_1_2_6_51_1) 2005
e_1_2_6_32_1
e_1_2_6_93_1
Koch S. W. (e_1_2_6_11_1) 1993
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_78_1
Panos C. P. (e_1_2_6_55_1) 2011
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_100_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_14_1
e_1_2_6_18_1
e_1_2_6_37_1
Martins A. F. (e_1_2_6_67_1) 2009; 10
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
Bertero M. (e_1_2_6_64_1) 2006
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_82_1
Aquino N. (e_1_2_6_33_1) 2014
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
Stoica R. (e_1_2_6_61_1) 1998
e_1_2_6_29_1
e_1_2_6_44_1
López Ruiz R. (e_1_2_6_95_1) 2015; 2
References_xml – year: 2011
– volume: 227
  start-page: 51
  year: 2009
  publication-title: J. Comput. Appl. Math.
– volume: 111
  start-page: 4139
  year: 2011
  publication-title: Int. J. Quantum Chem.
– volume: 374
  start-page: 1246
  year: 2010
  publication-title: Phys. Lett. A
– volume: 42
  start-page: 265004
  year: 2009
  publication-title: J. Phys. A Theor. Mat.h. Phys.
– volume: 27
  start-page: 5149
  year: 1994
  publication-title: J Phys B: Atomic, Molecul. Optic. Phys.
– year: 2005
– volume: 134
  start-page: 1
  year: 2015
  publication-title: Theor. Chem. Acc.
– volume: 71
  start-page: 351
  year: 1979
  publication-title: J. Chem. Phys.
– volume: 71
  start-page: 2235
  year: 1979
  publication-title: J. Chem. Phys.
– volume: 124
  year: 2006
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 700
  year: 1925
  publication-title: Proc. Camb. Phil. Soc.
– start-page: 65
  year: 2011
– volume: 32
  start-page: 2602
  year: 1985
  publication-title: Phys. Rev. A
– volume: 271
  start-page: 1
  year: 1996
  publication-title: Phys. Rep.
– year: 2014
– year: 1998
– volume: 10
  start-page: 935
  year: 2009
  publication-title: J. Mach. Learn. Res.
– volume: 120
  start-page: e26192
  year: 2020
  publication-title: Int. J. Quantum Chem.
– volume: 32
  start-page: 39
  year: 2005
  publication-title: Eur. Phys. J D‐Atomic, Molecular, Optic. Plasma Phys.
– volume: 392
  start-page: 127136
  year: 2021
  publication-title: Phys. Lett. A
– volume: 35
  start-page: 195
  year: 2001
  publication-title: Commun. Theor. Phys.
– volume: 98
  start-page: 784
  year: 2020
  publication-title: Can. J. Phys.
– volume: 377
  start-page: 2880
  year: 2013
  publication-title: Phys. Lett. A
– volume: 69
  start-page: 1770
  year: 1978
  publication-title: J. Chem. Phys.
– volume: 22
  start-page: 127
  year: 2023
  publication-title: Quantum Inf. Process
– start-page: 298
  year: 2008
– year: 2008
  publication-title: J. Phys. Conf. Ser. J. Phys
– volume: 58
  start-page: 3949
  year: 1998
  publication-title: Phys. Rev. E
– volume: 105
  start-page: 5839
  year: 2001
  publication-title: J. Phys. Chem. B
– volume: 4
  start-page: 193
  year: 1982
  publication-title: Kinam
– volume: 52
  start-page: 479
  year: 1988
  publication-title: J. Stat. Phys.
– volume: 6
  start-page: 145
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 57
  start-page: 123
  year: 2009
  publication-title: Adv. Quantum Chem.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. E
– volume: 75
  start-page: 127
  year: 2021
  publication-title: Eur. Phys. J. D
– year: 2016
– volume: 380
  start-page: 712
  year: 2016
  publication-title: Phys. Lett. A
– volume: 390
  start-page: 769
  year: 2011
  publication-title: Phys. A
– volume: 44
  start-page: 105003
  year: 2011
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 123
  year: 2005
  publication-title: J. Chem. Phys.
– volume: 329
  start-page: 81
  year: 2003
  publication-title: Phys. A
– volume: 307
  start-page: 326
  year: 2003
  publication-title: Phys. Lett. A
– volume: 57
  start-page: 25
  year: 2009
  publication-title: Adv. Quantum Chem.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. E
– volume: 4
  start-page: 1403
  year: 1971
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 25
  start-page: 1965
  year: 1992
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 2
  start-page: 189
  year: 2020
  publication-title: Quantum Rep.
– volume: 364
  start-page: 286
  year: 2007
  publication-title: Phys. Lett. A
– volume: 374
  start-page: 4415
  year: 2010
  publication-title: Phys. Lett. A
– volume: 121
  start-page: e26630
  year: 2021
  publication-title: Int. J. Quantum Chem.
– volume: 96
  start-page: 6021
  year: 1992
  publication-title: J. Phys. Chem.
– volume: 380
  start-page: 377
  year: 2016
  publication-title: Phys. Lett. A
– volume: 7
  start-page: 2786
  year: 2011
  publication-title: J. Chem. Theory Comput.
– volume: 312
  start-page: 27
  year: 2003
  publication-title: Phys. Lett. A
– year: 2009
– volume: 75
  start-page: 1
  year: 2021
  publication-title: Eur. Phys. J. D
– volume: 28
  start-page: 1813
  year: 1987
  publication-title: J. Math. Phys.
– volume: 48
  start-page: 68
  year: 1993
  publication-title: Z Naturforschung A
– volume: 377
  start-page: 2062
  year: 2013
  publication-title: Phys. Lett. A
– volume: 2
  year: 2015
  publication-title: J. Comput. Sci.
– volume: 56
  start-page: 363
  year: 1995
  publication-title: Int. J. Quantum Chem.
– volume: 107
  year: 2023
  publication-title: Phys. Rev. A
– volume: 60
  start-page: 1422
  year: 2022
  publication-title: J. Math. Chem.
– volume: 64
  start-page: 326
  year: 2018
  publication-title: Rev. Méx. Fis.
– volume: 30
  start-page: 620
  year: 1984
  publication-title: Phys. Rev. A
– volume: 2
  year: 1993
– volume: 116
  start-page: 1802
  year: 2016
  publication-title: Int. J. Quantum Chem.
– volume: 15
  year: 2006
  publication-title: J. Electron. Image.
– volume: 120
  start-page: 8906
  year: 2004
  publication-title: J. Chem. Phys.
– volume: 87
  year: 2013
  publication-title: Phys. Scr.
– volume: 121
  start-page: e26424
  year: 2021
  publication-title: Int. J. Quantum Chem.
– volume: 372
  start-page: 670
  year: 2008
  publication-title: Phys. Lett. A
– volume: 33
  start-page: 251
  year: 2000
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 18
  start-page: 138
  year: 1985
  publication-title: J. Phys. B: At Mol. Phys.
– volume: 374
  start-page: 2044
  year: 2010
  publication-title: Phys. Lett. A
– volume: 75
  start-page: 171
  year: 2021
  publication-title: Eur. Phys. J. D
– volume: 47
  start-page: 5110
  year: 1967
  publication-title: J. Chem. Phys.
– volume: 108
  start-page: 5469
  year: 1998
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 891
  year: 1952
  publication-title: Physica
– start-page: 794
  year: 1998
– volume: 965
  start-page: 202
  year: 2011
  publication-title: J. Theor. Comput. Chem.
– volume: 136
  start-page: 1
  year: 2017
  publication-title: Theor. Chem. Acc.
– volume: 376
  start-page: 1992
  year: 2012
  publication-title: Phys. Lett. A
– volume: 389
  start-page: 899
  year: 2010
  publication-title: Phys. A
– volume: 372
  start-page: 6175
  year: 2008
  publication-title: Phys. Lett. A
– volume: 6
  start-page: 1
  year: 2012
  publication-title: J. Theor. Appl. Phys.
– volume: 27
  start-page: 379
  year: 1948
  publication-title: Bell Syst. Tech. J.
– volume: 94
  start-page: 894
  year: 2016
  publication-title: Can. J. Phys.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 22
  start-page: 79
  year: 1951
  publication-title: Ann. Math. Stat.
– volume: 50
  start-page: 3065
  year: 1994
  publication-title: Phys. Rev. A
– volume: 57
  start-page: 4512
  year: 1998
  publication-title: Phys. Rev. A
– volume: 1579
  start-page: 136
  year: 2014
– volume: 17
  start-page: 31417
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 101
  year: 1959
  publication-title: Inf. Control.
– volume: 121
  start-page: e26549
  year: 2021
  publication-title: Int. J. Quantum Chem.
– year: 2006
– volume: 4
  start-page: 981
  year: 1937
  publication-title: Physica
– volume: 25
  start-page: 4365
  year: 1992
  publication-title: J. Phys. B: At., Mol. Opt. Phys.
– volume: 137
  start-page: 1
  year: 2022
  publication-title: EPJ. Plus
– volume: 32
  start-page: 413
  year: 2005
  publication-title: Eur. Phys. J D‐Atomic, Molecular, Optic. Plasma Phys.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_6_80_1
  doi: 10.1103/PhysRevA.57.4512
– ident: e_1_2_6_85_1
  doi: 10.1016/S0375-9601(03)00570-X
– ident: e_1_2_6_49_1
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: e_1_2_6_24_1
  doi: 10.1063/1.438556
– ident: e_1_2_6_44_1
  doi: 10.1016/j.physleta.2013.08.043
– volume: 137
  start-page: 1
  year: 2022
  ident: e_1_2_6_70_1
  publication-title: EPJ. Plus
  contributor:
    fullname: Salazar S. J.
– ident: e_1_2_6_17_1
  doi: 10.1016/j.physleta.2012.04.056
– ident: e_1_2_6_69_1
  doi: 10.1007/s10910-022-01363-6
– volume: 2
  year: 2015
  ident: e_1_2_6_95_1
  publication-title: J. Comput. Sci.
  contributor:
    fullname: López Ruiz R.
– ident: e_1_2_6_46_1
  doi: 10.1002/qua.25234
– ident: e_1_2_6_101_1
  doi: 10.1103/PhysRevE.103.043202
– ident: e_1_2_6_45_1
  doi: 10.1007/s00214-014-1598-y
– ident: e_1_2_6_94_1
  doi: 10.1002/qua.26192
– ident: e_1_2_6_9_1
  doi: 10.1007/978-3-319-09982-8
– ident: e_1_2_6_91_1
  doi: 10.1016/S0378-4371(03)00566-1
– ident: e_1_2_6_26_1
  doi: 10.1088/0953-4075/25/9/003
– ident: e_1_2_6_106_1
  doi: 10.1063/1.2008212
– ident: e_1_2_6_4_1
  doi: 10.1016/0370-1573(95)00070-4
– ident: e_1_2_6_8_1
  doi: 10.1016/S0065-3276(09)00606-6
– ident: e_1_2_6_58_1
  doi: 10.1515/zna-1993-1-218
– ident: e_1_2_6_97_1
  doi: 10.1007/BF01016429
– ident: e_1_2_6_76_1
  doi: 10.1016/j.physleta.2020.127136
– ident: e_1_2_6_30_1
  doi: 10.1088/1751-8113/42/26/265004
– ident: e_1_2_6_93_1
  doi: 10.1140/epjd/e2005-00005-1
– ident: e_1_2_6_105_1
  doi: 10.1088/0953-4075/27/21/009
– volume: 4
  start-page: 193
  year: 1982
  ident: e_1_2_6_2_1
  publication-title: Kinam
  contributor:
    fullname: Fernández F. M.
– ident: e_1_2_6_12_1
  doi: 10.1002/9781118923337
– ident: e_1_2_6_35_1
  doi: 10.1088/0031-8949/87/06/065305
– volume-title: Statistical complexity, Application in electronic structure, Chapter 3
  year: 2011
  ident: e_1_2_6_55_1
  contributor:
    fullname: Panos C. P.
– ident: e_1_2_6_88_1
  doi: 10.1088/0022-3700/4/11/004
– ident: e_1_2_6_38_1
  doi: 10.1088/0253-6102/35/2/195
– ident: e_1_2_6_77_1
  doi: 10.1002/qua.26549
– ident: e_1_2_6_63_1
  doi: 10.1103/PhysRevE.73.026102
– ident: e_1_2_6_79_1
  doi: 10.1063/1.476316
– ident: e_1_2_6_42_1
  doi: 10.3390/quantum2010012
– ident: e_1_2_6_104_1
  doi: 10.1016/j.physleta.2015.10.047
– volume-title: Semiconductor Quantum Dots
  year: 1993
  ident: e_1_2_6_11_1
  contributor:
    fullname: Koch S. W.
– ident: e_1_2_6_90_1
  doi: 10.1016/j.physa.2009.10.023
– ident: e_1_2_6_98_1
  doi: 10.1063/1.3298911
– ident: e_1_2_6_14_1
  doi: 10.1063/1.438077
– ident: e_1_2_6_22_1
  doi: 10.1063/1.436710
– ident: e_1_2_6_32_1
  doi: 10.1016/j.physleta.2010.08.071
– ident: e_1_2_6_92_1
  doi: 10.1214/aoms/1177729694
– ident: e_1_2_6_59_1
  doi: 10.1103/PhysRevA.103.062808
– ident: e_1_2_6_21_1
  doi: 10.1063/1.1701767
– ident: e_1_2_6_34_1
  doi: 10.1088/0953-4075/44/10/105003
– ident: e_1_2_6_52_1
  doi: 10.1021/ct900544m
– ident: e_1_2_6_37_1
  doi: 10.1039/C5CP00110B
– ident: e_1_2_6_23_1
  doi: 10.1016/j.physleta.2015.11.021
– ident: e_1_2_6_25_1
  doi: 10.1063/1.2148948
– ident: e_1_2_6_66_1
  doi: 10.1109/ITW.2008.4578673
– ident: e_1_2_6_65_1
  doi: 10.1117/1.2177638
– ident: e_1_2_6_53_1
  doi: 10.1140/epjd/e2004-00182-3
– volume: 18
  start-page: 138
  year: 1985
  ident: e_1_2_6_83_1
  publication-title: J. Phys. B: At Mol. Phys.
  contributor:
    fullname: Gadre S. R.
– ident: e_1_2_6_87_1
  doi: 10.1016/j.comptc.2011.01.044
– ident: e_1_2_6_100_1
  doi: 10.1016/j.cam.2008.07.030
– ident: e_1_2_6_29_1
  doi: 10.1016/j.physleta.2009.12.062
– ident: e_1_2_6_73_1
  doi: 10.1103/PhysRevA.50.3065
– ident: e_1_2_6_62_1
  doi: 10.1088/1742-6596/135/1/012085
– ident: e_1_2_6_74_1
  doi: 10.1016/j.physleta.2006.12.044
– volume-title: Quantum Computation and Quantum Information
  year: 2005
  ident: e_1_2_6_51_1
  contributor:
    fullname: Nilsen M. A.
– volume-title: Theory of Confined Quantum Systems
  year: 2009
  ident: e_1_2_6_7_1
  contributor:
    fullname: Sabin J. R.
– volume: 10
  start-page: 935
  year: 2009
  ident: e_1_2_6_67_1
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Martins A. F.
– ident: e_1_2_6_50_1
  doi: 10.1017/S0305004100009580
– ident: e_1_2_6_89_1
  doi: 10.1139/cjp-2019-0391
– ident: e_1_2_6_47_1
  doi: 10.1002/qua.22973
– ident: e_1_2_6_15_1
  doi: 10.1088/0953-4075/25/21/006
– ident: e_1_2_6_16_1
  doi: 10.1016/S0065-3276(09)00608-X
– ident: e_1_2_6_28_1
  doi: 10.1016/j.physleta.2008.08.027
– ident: e_1_2_6_6_1
  doi: 10.1088/0953-4075/33/2/310
– ident: e_1_2_6_102_1
  doi: 10.1002/qua.26424
– ident: e_1_2_6_68_1
  doi: 10.1140/epjd/s10053-021-00143-2
– ident: e_1_2_6_40_1
  doi: 10.1021/ct200284q
– ident: e_1_2_6_71_1
  doi: 10.1103/PhysRevA.107.042417
– ident: e_1_2_6_43_1
  doi: 10.1002/qua.26630
– ident: e_1_2_6_103_1
  doi: 10.1016/S0019-9958(59)90348-1
– ident: e_1_2_6_41_1
  doi: 10.1103/PhysRevE.58.3949
– ident: e_1_2_6_96_1
  doi: 10.1007/s11128-023-03872-y
– start-page: 65
  volume-title: Statistical complexity and Fisher‐Shannon information: Applications
  year: 2011
  ident: e_1_2_6_86_1
  contributor:
    fullname: López‐Ruiz R.
– ident: e_1_2_6_20_1
  doi: 10.1016/S0031-8914(52)80223-X
– ident: e_1_2_6_19_1
  doi: 10.1139/cjp-2015-0434
– ident: e_1_2_6_57_1
  doi: 10.1002/qua.560560422
– ident: e_1_2_6_27_1
  doi: 10.1016/S0375-9601(02)01767-X
– ident: e_1_2_6_13_1
  doi: 10.1016/S0031-8914(37)80196-2
– ident: e_1_2_6_18_1
  doi: 10.1021/j100193a069
– ident: e_1_2_6_84_1
  doi: 10.1063/1.1697374
– ident: e_1_2_6_75_1
  doi: 10.1016/j.physleta.2013.05.048
– ident: e_1_2_6_36_1
  doi: 10.1140/epjd/s10053-021-00177-6
– ident: e_1_2_6_3_1
  doi: 10.1063/1.527441
– ident: e_1_2_6_72_1
  doi: 10.1140/epjd/s10053-020-00003-5
– ident: e_1_2_6_5_1
  doi: 10.1021/jp003852u
– ident: e_1_2_6_99_1
  doi: 10.1016/j.physa.2010.11.005
– ident: e_1_2_6_48_1
  doi: 10.1007/s00214-017-2168-x
– start-page: 136
  volume-title: AIP Conference Proceedings
  year: 2014
  ident: e_1_2_6_33_1
  contributor:
    fullname: Aquino N.
– ident: e_1_2_6_54_1
  doi: 10.1016/j.physleta.2007.07.077
– ident: e_1_2_6_78_1
  doi: 10.1007/978-90-481-3890-6
– ident: e_1_2_6_60_1
  doi: 10.1017/CBO9780511622670
– volume-title: inverse problem in biomedical Imaging: Modeling and Methods of Solution
  year: 2006
  ident: e_1_2_6_64_1
  contributor:
    fullname: Bertero M.
– ident: e_1_2_6_82_1
  doi: 10.1103/PhysRevA.32.2602
– volume-title: Information Theory of Molecular Systems
  year: 2006
  ident: e_1_2_6_56_1
  contributor:
    fullname: Nalewajski R. F.
– ident: e_1_2_6_31_1
  doi: 10.1016/j.physleta.2010.02.074
– ident: e_1_2_6_39_1
  doi: 10.1186/2251-7235-6-28
– ident: e_1_2_6_81_1
  doi: 10.1103/PhysRevA.30.620
– ident: e_1_2_6_10_1
  doi: 10.31349/RevMexFis.64.326
– start-page: 794
  volume-title: Proc.IEEE Intl. Conf. Image Process
  year: 1998
  ident: e_1_2_6_61_1
  contributor:
    fullname: Stoica R.
SSID ssj0006367
Score 2.4506564
Snippet In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational method to...
Abstract In this article, we study the helium atom confined in a spherical impenetrable cavity by using informational measures. We use the Ritz variational...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms confined helium atom
Correlation
disequilibrium
Entropy (Information theory)
Fisher information
Fisher–Shannon complexity
Helium atoms
Hylleraas coordinates
Kullback–Leibler entropy
Shannon entropy
Tsallis entropy
Wave functions
Title The confined helium atom: An information–theoretic approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.27358
https://www.proquest.com/docview/2926411380/abstract/
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LSwMxEMdD7UUvvsVqLUE8eNk2m-xmEz2VYhFBEbHQg7Ak2SyCdH20e_Hkd_Ab-kmc7KNVQRBvu7DPmczmN0vmPwgdpdKoVEAAgnN9V5KTeCqSAHJaUhgOJmTcFQpfXvHzUXAxDscNdFrXwpT6EPMfbi4yiu-1C3Clp72FaOhzrrow94au0NcJ6TkgullIR3HGq3atxIs4EbWqEKG9-Znf56IFYH7F1GKeGa6hu_oJy-UlD918prvm9Yd44z9fYR2tVvyJ--WA2UANm22i5UHd9m2r6DuPIUlO4eoJvoc75BMMmfnkBPczXOmsOm9-vL3PqyBxLU2-jUbDs9vBuVf1WPAMY1R4CfCYBWQjfmKMUMoSE8Ce0b62jHMTCh2RJE2M1NJQYCtNUml9JaIE8mpm2Q5qZo-Z3UVYWq0k4JavAhOElgoulCAsJUSrlAZhCx3W1o6fSimNuBRNpjFYIi4s0ULt2g9xFU3TmErANh-cTFrouDDo7xeIIRMoNvb-fug-WqHAKm4xth-2UXP2ktsDYI2Z7qAlGlx3iqH1CV_o0JY
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPdSLb7FaNYgHL2k3u0m6K15KsVRte5AWepGwu9kgSOuruXjyP_gP_SVOXq0KgnhLILvJziPzzbLzDcBJJLSMODogKtdJSnJCWzYFAjklKJqD9pifFAr3B3535F6NvXEJzotamIwfYr7hlnhG-r9OHDzZkG4sWEOfYlnH4OvxJVhGd_fShOpmQR7lMz9v2Erspk94wStEaGM-9Hs0WkDMr0A1jTSdNbgtvjE7YHJfj2eqrl9_0Df-dxHrsJpDUKuV2cwGlMx0EyrtovPbVtp63sI8OcLpQ-sOXxFPLEzOJ2dWa2rlVKuJQj_e3ueFkFbBTr4No87FsN218zYLtmaMcjtESGYQtREn1JpLaYh28U4rRxnm-9rjqknCKNRCCU0RXikSCeNI3gwxtWaG7UB5-jA1u2AJo6RAxOVIV7ueodznkhMWEaJkRF2vCseFuIPHjE0jyHiTaYCSCFJJVKFWKCLIHeoloAKRm-MwTqpwmkr09wkCTAbSi72_P3oEle6w3wt6l4PrfVihCF2Ss9mOV4Py7Dk2Bwg9ZuowtbBPlcrT4Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50BfXiW1xdtYgHL91NkzZN9CTq4hsRhT0IJUlTBLG-thdP_gf_ob_E6WtXBUG8NdCm7Twy34TMNwCbiTQqEeiAqFwvL8mJXRVKBHJaUjQHEzCeFwqfnfPDa_-4F_RGYKeuhSn5IQYbbrlnFOt17uCPcdIZkoY-ZaqNsTcQozDmc0Zzk96_HHJHccarfq3EDTkRNa0QoZ3Bo9-D0RBhfsWpRaDpTsNN_Ynl-ZK7dtbXbfP6g73xn_8wA1MVAHV2S4uZhRGbzsHEXt33bb5oPO9glpzg7LFzi2_I7h1Mze-3nd3UqYhWc3V-vL0PyiCdmpt8Aa67B1d7h27VZME1jFHhxgjILGI24sXGCKUsMT6OjPa0ZZybQOiQxElspJaGIrjSJJHWUyKMMbFmli1CI31I7RI40molEW95yjd-YKngQgnCEkK0SqgfNGGjlnb0WHJpRCVrMo1QElEhiSa0aj1ElTu9RFQibvM8JkgTtgqB_j5BhKlAcbH891vXYfxivxudHp2frMAkRdySH8z2ghY0-s-ZXUXc0ddrhX19AkY20pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+confined+helium+atom%3A+An+information%E2%80%93theoretic+approach&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Esta%C3%B1%C3%B3n%2C+C.+R.&rft.au=Montgomery%2C+H.+E.&rft.au=Angulo%2C+J.+C.&rft.au=Aquino%2C+N.&rft.date=2024-02-15&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=124&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqua.27358&rft.externalDBID=10.1002%252Fqua.27358&rft.externalDocID=QUA27358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon