A multirobot system for autonomous deployment and recovery of a blade crawler for operations and maintenance of offshore wind turbine blades
Offshore wind farms will play a vital role in the global ambition of net zero energy generation. Future offshore wind farms will be larger and further from the coast, meaning that traditional human‐based operations and maintenance approaches will become infeasible due to safety, cost, and skills sho...
Saved in:
Published in | Journal of field robotics Vol. 40; no. 1; pp. 73 - 93 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1556-4959 1556-4967 |
DOI | 10.1002/rob.22117 |
Cover
Loading…
Abstract | Offshore wind farms will play a vital role in the global ambition of net zero energy generation. Future offshore wind farms will be larger and further from the coast, meaning that traditional human‐based operations and maintenance approaches will become infeasible due to safety, cost, and skills shortages. The use of remotely operated or autonomous robotic assistants to undertake these activities provides an attractive alternative solution. This paper presents an autonomous multirobot system which is able to transport, deploy and retrieve a wind turbine blade inspection robot using an unmanned aerial vehicle (UAV). The proposed solution is a fully autonomous system including a robot deployment interface for deployment, a mechatronic link‐hook module (LHM) for retrieval, both installed on the underside of a UAV, a mechatronic on‐load attaching module installed on the robotic payload and an intelligent global mission planner. The LHM is integrated with a 2‐DOF hinge that can operate either passively or actively to reduce the swing motion of a slung load by approximately 30%. The mechatronic modules can be coupled and decoupled by special maneuvers of the UAV, and the intelligent global mission planner coordinates the operations of the UAV and the mechatronic modules for synchronous and seamless actions. For navigation in the vicinity of wind turbine blades, a visual‐based localization merged with the location knowledge from Global Navigation Satellite System has been developed. A proof‐of‐concept system was field tested on a full‐size decommissioned wind‐turbine blade. The results show that the experimental system is able to deploy and retrieve a robotic payload onto and from a wind turbine blade safely and robustly without the need for human intervention. The vicinity localization and navigation system have shown an accuracy of 0.65 and 0.44 m in the horizontal and vertical directions, respectively. Furthermore, this study shows the feasibility of systems toward autonomous inspection and maintenance of offshore windfarms. |
---|---|
AbstractList | Offshore wind farms will play a vital role in the global ambition of net zero energy generation. Future offshore wind farms will be larger and further from the coast, meaning that traditional human‐based operations and maintenance approaches will become infeasible due to safety, cost, and skills shortages. The use of remotely operated or autonomous robotic assistants to undertake these activities provides an attractive alternative solution. This paper presents an autonomous multirobot system which is able to transport, deploy and retrieve a wind turbine blade inspection robot using an unmanned aerial vehicle (UAV). The proposed solution is a fully autonomous system including a robot deployment interface for deployment, a mechatronic link‐hook module (LHM) for retrieval, both installed on the underside of a UAV, a mechatronic on‐load attaching module installed on the robotic payload and an intelligent global mission planner. The LHM is integrated with a 2‐DOF hinge that can operate either passively or actively to reduce the swing motion of a slung load by approximately 30%. The mechatronic modules can be coupled and decoupled by special maneuvers of the UAV, and the intelligent global mission planner coordinates the operations of the UAV and the mechatronic modules for synchronous and seamless actions. For navigation in the vicinity of wind turbine blades, a visual‐based localization merged with the location knowledge from Global Navigation Satellite System has been developed. A proof‐of‐concept system was field tested on a full‐size decommissioned wind‐turbine blade. The results show that the experimental system is able to deploy and retrieve a robotic payload onto and from a wind turbine blade safely and robustly without the need for human intervention. The vicinity localization and navigation system have shown an accuracy of 0.65 and 0.44 m in the horizontal and vertical directions, respectively. Furthermore, this study shows the feasibility of systems toward autonomous inspection and maintenance of offshore windfarms. |
Author | Jovan, Ferdian Hine, Duncan Bernardini, Sara Watson, Simon Weightman, Andrew Moradi, Peiman Richardson, Tom Jiang, Zhengyi |
Author_xml | – sequence: 1 givenname: Zhengyi orcidid: 0000-0001-6528-4209 surname: Jiang fullname: Jiang, Zhengyi email: zhengyi.jiang-2@manchester.ac.uk organization: The University of Manchester – sequence: 2 givenname: Ferdian surname: Jovan fullname: Jovan, Ferdian organization: University of Bristol – sequence: 3 givenname: Peiman surname: Moradi fullname: Moradi, Peiman organization: University of Bristol – sequence: 4 givenname: Tom surname: Richardson fullname: Richardson, Tom organization: University of Bristol – sequence: 5 givenname: Sara surname: Bernardini fullname: Bernardini, Sara organization: Royal Holloway University of London – sequence: 6 givenname: Simon orcidid: 0000-0001-9783-0147 surname: Watson fullname: Watson, Simon organization: The University of Manchester – sequence: 7 givenname: Andrew surname: Weightman fullname: Weightman, Andrew organization: The University of Manchester – sequence: 8 givenname: Duncan surname: Hine fullname: Hine, Duncan organization: University of Bristol |
BookMark | eNp9kE1LAzEQhoNU0FYP_oOAJw9tk3R3kz2q-AWFguh5yWZnMWU3U5OsZf-DP9ptKx4EPc3APM878I7JyKEDQi44m3HGxNxjOROCc3lETnmaZtMkz-ToZ0_zEzIOYc1YslB5eko-r2nbNdEOHkYa-hChpTV6qruIDlvsAq1g02DfgotUu4p6MPgBvqdYU03LRldAjdfbBvzexA14HS26sMdbbV0Ep52BnYF1Hd7QA93a4Rg7X1oHh5RwRo5r3QQ4_54T8np_93L7OF2uHp5ur5dTs1gIOa1kXeUsl8oIpZSWhlc6AVGWSmTZcMm0SXNRGpFIo1TFJZcyVUwoIRMutFhMyOUhd-PxvYMQizV23g0viwFJ04QlPBuoqwNlPIbgoS423rba9wVnxa7sYiit2Jc9sPNfrLFxX0L02jb_GVvbQP93dPG8ujkYX5zslIc |
CitedBy_id | crossref_primary_10_1080_17445302_2023_2256594 crossref_primary_10_1109_OJCOMS_2023_3341251 crossref_primary_10_3390_drones9010004 crossref_primary_10_3390_pr12091982 crossref_primary_10_1002_rob_22309 crossref_primary_10_1080_10589759_2024_2395363 crossref_primary_10_1089_rorep_2023_0026 crossref_primary_10_3390_s24030911 crossref_primary_10_1049_csy2_12103 crossref_primary_10_1007_s10098_024_03033_4 crossref_primary_10_3390_machines13030180 crossref_primary_10_3390_drones8010010 crossref_primary_10_3390_en17153731 crossref_primary_10_1002_rob_22296 |
Cites_doi | 10.1109/AIKE.2019.00049 10.1109/AIM.2018.8452383 10.1016/j.ifacol.2018.09.449 10.1109/ICUAS.2013.6564735 10.1016/j.renene.2018.10.047 10.1115/DETC2013-13289 10.1609/aaai.v31i1.11185 10.1613/jair.1129 10.1109/ROBIO.2013.6739632 10.1609/icaps.v20i1.13403 10.3390/drones6060137 10.1609/icaps.v25i1.13699 10.1109/TEC.2006.889623 10.1016/j.ifacol.2017.08.1495 10.1109/MED.2016.7536055 10.1109/IROS47612.2022.9981668 10.1007/978-3-031-25555-7_25 10.1016/j.rineng.2021.100201 10.1109/OCEANS.2012.6404893 10.1109/EI247390.2019.9062226 10.1109/ICAECC.2018.8479446 10.1126/scirobotics.abj7562 10.2514/6.2018-2600 10.1007/s13272-016-0211-6 10.1007/s10846-018-0933-2 10.31256/UKRAS19.19 10.1088/1748-9326/9/3/034012 10.1016/j.rser.2021.110886 10.1613/jair.1.11635 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Wiley Periodicals LLC. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 L7M L~C L~D |
DOI | 10.1002/rob.22117 |
DatabaseName | Wiley Online Library Journals (Open Access) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1556-4967 |
EndPage | 93 |
ExternalDocumentID | 10_1002_rob_22117 ROB22117 |
Genre | article |
GrantInformation_xml | – fundername: Innovate UK funderid: 104821 – fundername: Engineering and Physical Sciences Research Council funderid: EP/R026084/1 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIYS ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ I-F IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 1OB 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3327-d7fd90978c2888a7c1da4e2bb8266d906ac592bc247c88d171775802827412a23 |
IEDL.DBID | DR2 |
ISSN | 1556-4959 |
IngestDate | Wed Aug 13 08:15:58 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Tue Jul 01 04:33:52 EDT 2025 Wed Jan 22 16:22:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3327-d7fd90978c2888a7c1da4e2bb8266d906ac592bc247c88d171775802827412a23 |
Notes | Zhengyi Jiang, Ferdian Jovan and Peiman Moradi contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6528-4209 0000-0001-9783-0147 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22117 |
PQID | 2745540416 |
PQPubID | 1006410 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2745540416 crossref_primary_10_1002_rob_22117 crossref_citationtrail_10_1002_rob_22117 wiley_primary_10_1002_rob_22117_ROB22117 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Journal of field robotics |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 6 2019; 95 2012 2010 2008 2007 2021; 144 2017; 50 2015; 25 2016; 7 2021; 31 2022 2021 2020 2022; 6 2019; 65 2019 2018 2017 2016 2018; 51 2013 2014; 9 2014; 73 2007; 22 2003; 20 2019; 133 e_1_2_10_23_1 e_1_2_10_24_1 Young L. A. (e_1_2_10_38_1) 2007 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_17_1 Carreno Y. (e_1_2_10_5_1) 2022 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 7 start-page: 587 year: 2016 end-page: 606 article-title: Handling qualities evaluation of an automatic slung load stabilization system for rescue hoist operations publication-title: CEAS Aeronautical Journal – volume: 22 start-page: 223 issue: 1 year: 2007 end-page: 229 article-title: Maintenance management of wind power systems using condition monitoring systems–life cycle cost analysis for two case studies publication-title: IEEE Transactions on Energy Conversion – volume: 31 issue: 1 year: 2021 article-title: Multi‐robot coordination in operations and maintenance of off shore wind farms with temporal planning – volume: 6 start-page: 137 issue: 6 year: 2022 article-title: Collaborative unmanned vehicles for inspection, maintenance, and repairs of offshore wind turbines publication-title: Drones – volume: 95 start-page: 645 issue: 2 year: 2019 end-page: 664 article-title: A vision‐based approach for unmanned aerial vehicle landing publication-title: Journal of Intelligent & Robotic Systems – year: 2010 article-title: Forward‐chaining partial‐order planning – year: 2007 – volume: 25 start-page: 333 year: 2015 end-page: 341 – year: 2021 – start-page: 708 year: 2019 end-page: 713 article-title: Wind turbine blade inspection based on unmanned aerial vehicle (uav) visual systems – start-page: 1228 year: 2013 end-page: 1233 – year: 2022 article-title: Flying hydraulically amplified electrostatic gripper system for aerial object manipulation – year: 2020 article-title: Towards net‐zero emissions in the eu energy system by 2050 – start-page: 243 year: 2019 end-page: 250 article-title: Multi‐agent strategy for marine applications via temporal planning – start-page: 244 year: 2016 end-page: 249 – start-page: 1 year: 2012 end-page: 9 – volume: 65 start-page: 519 year: 2019 end-page: 568 article-title: Autonomous target search with multiple coordinated uavs publication-title: Journal of Artificial Intelligence Research – start-page: 1 year: 2018 end-page: 6 – volume: 73 start-page: 401 issue: 1‐4 year: 2014 end-page: 412 article-title: Framework for autonomous on‐board navigation with the AR.Drone publication-title: Journal of Intelligent & Robotic Systems – volume: 144 year: 2021 article-title: Offshore wind turbine operations and maintenance: a state‐of‐the‐art review publication-title: Renewable and Sustainable Energy Reviews – volume: 50 start-page: 10299 issue: 1 year: 2017 end-page: 10304 article-title: Passive aerial grasping of ferrous objects publication-title: IFAC‐PapersOnLine – start-page: 2600 year: 2018 – volume: 133 start-page: 620 year: 2019 end-page: 635 article-title: Machine learning methods for wind turbine condition monitoring: a review publication-title: Renewable Energy – year: 2008 – year: 2022 – start-page: 1027 year: 2018 end-page: 1032 article-title: An intelligent gripper design for autonomous aerial transport with passive magnetic grasping and dual‐impulsive release – volume: 9 year: 2021 article-title: Estimating the impact of drone‐based inspection on the levelised cost of electricity for offshore wind farms – start-page: 1696 year: 2020 end-page: 1700 article-title: A multi‐robot platform for the autonomous operation and maintenance of offshore wind farms – start-page: 72 year: 2019 end-page: 74 – volume: 20 start-page: 61 year: 2003 article-title: PDDL2.1: an extension to PDDL for expressing temporal planning domains publication-title: Journal of Artificial Intelligence Research – volume: 9 issue: 3 year: 2014 article-title: Effects of offshore wind farms on marine wildlife—A generalized impact assessment publication-title: Environmental Research Letters – start-page: 4574 year: 2017 end-page: 4580 article-title: Mixed discrete‐continuous planning with convex optimization – volume: 6 issue: 61 year: 2021 article-title: Bird‐inspired dynamic grasping and perching in arboreal environments publication-title: Science Robotics – volume: 51 start-page: 431 issue: 29 year: 2018 end-page: 437 article-title: Compliant net for AUV retrieval using a UAV publication-title: IFAC‐PapersOnLine – start-page: 217 year: 2022 end-page: 225 – year: 2019 – year: 2013 – ident: e_1_2_10_6_1 doi: 10.1109/AIKE.2019.00049 – ident: e_1_2_10_10_1 doi: 10.1109/AIM.2018.8452383 – ident: e_1_2_10_39_1 – ident: e_1_2_10_15_1 doi: 10.1016/j.ifacol.2018.09.449 – ident: e_1_2_10_21_1 doi: 10.1109/ICUAS.2013.6564735 – ident: e_1_2_10_32_1 doi: 10.1016/j.renene.2018.10.047 – ident: e_1_2_10_33_1 doi: 10.1115/DETC2013-13289 – ident: e_1_2_10_9_1 doi: 10.1609/aaai.v31i1.11185 – ident: e_1_2_10_35_1 – ident: e_1_2_10_12_1 doi: 10.1613/jair.1129 – start-page: 217 volume-title: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems year: 2022 ident: e_1_2_10_5_1 – ident: e_1_2_10_22_1 doi: 10.1109/ROBIO.2013.6739632 – ident: e_1_2_10_8_1 doi: 10.1609/icaps.v20i1.13403 – ident: e_1_2_10_25_1 doi: 10.3390/drones6060137 – ident: e_1_2_10_16_1 – ident: e_1_2_10_19_1 – ident: e_1_2_10_7_1 doi: 10.1609/icaps.v25i1.13699 – ident: e_1_2_10_20_1 – ident: e_1_2_10_23_1 doi: 10.1109/TEC.2006.889623 – ident: e_1_2_10_11_1 doi: 10.1016/j.ifacol.2017.08.1495 – ident: e_1_2_10_31_1 doi: 10.1109/MED.2016.7536055 – ident: e_1_2_10_2_1 doi: 10.1109/IROS47612.2022.9981668 – ident: e_1_2_10_34_1 doi: 10.1007/978-3-031-25555-7_25 – ident: e_1_2_10_17_1 doi: 10.1016/j.rineng.2021.100201 – ident: e_1_2_10_36_1 doi: 10.1109/OCEANS.2012.6404893 – ident: e_1_2_10_28_1 doi: 10.1109/EI247390.2019.9062226 – ident: e_1_2_10_4_1 – ident: e_1_2_10_14_1 – ident: e_1_2_10_18_1 doi: 10.1109/ICAECC.2018.8479446 – ident: e_1_2_10_30_1 doi: 10.1126/scirobotics.abj7562 – ident: e_1_2_10_13_1 doi: 10.2514/6.2018-2600 – ident: e_1_2_10_24_1 doi: 10.1007/s13272-016-0211-6 – ident: e_1_2_10_26_1 doi: 10.1007/s10846-018-0933-2 – ident: e_1_2_10_37_1 doi: 10.31256/UKRAS19.19 – volume-title: 63rd Annual Forum of the AHS International year: 2007 ident: e_1_2_10_38_1 – ident: e_1_2_10_3_1 doi: 10.1088/1748-9326/9/3/034012 – ident: e_1_2_10_29_1 doi: 10.1016/j.rser.2021.110886 – ident: e_1_2_10_27_1 doi: 10.1613/jair.1.11635 |
SSID | ssj0043895 |
Score | 2.4478693 |
Snippet | Offshore wind farms will play a vital role in the global ambition of net zero energy generation. Future offshore wind farms will be larger and further from the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 73 |
SubjectTerms | Feasibility studies field robotics Global navigation satellite system Inspection Localization Maintenance Modules Multiple robots multirobot cooperation Navigation systems Offshore Offshore energy sources Robotics systems design Turbine blades Turbines UAVs Unmanned aerial vehicles Wind farms Wind power Wind turbines |
Title | A multirobot system for autonomous deployment and recovery of a blade crawler for operations and maintenance of offshore wind turbine blades |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frob.22117 https://www.proquest.com/docview/2745540416 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcoEDb8TCdmWhHnrJsuu8xWlbilBVSsVD4oAU-RWBut2gJCsEv4Ef3Rl7s9CqSIhbJM84jj2Ov8-yvwH4qCM_1nG_78U65EhQgsQTaZJ7WnIeq0SZQNpTvj-i48vg21V4NQcHzV0Ypw8x23CjmWH_1zTBhaz2n0VDy0L2ONIXuklOZ7UIEJ3NpKMoqXdotVLDyEMSkDaqQn2-P_P8ey16BpgvYapdZ45W4LppoTte8qs3qWVPPf4j3vjOT1iF5Sn-ZEMXMGswZ8brsPRClXADnobMHjNEv6JmTuqZIbZlYlLTFYhiUjFtKFEw7SwyMdaMaDXOiQdW5EwwORLaMFWK-5EprWdxZ1ykVdb8tyCVCpL6MORR5Hl1U5SG3d9iIa6ByNaNq6XahMujrxdfjr1p0gZP-T6PPR3nOqXLIYojuRaxGmgRGC4l8pgISyKhwpRLxQMMhUQPkE4iZSHmh9iGC-5vQWtcjM02MJ6nvjJKajQM8nggNU-UjHQiUilCHbbhUzN8mZoqmlNijVHmtJh5hh2V2Q5uw97M9M7JePzPqNPEQDadyVWGzULE1Ufciq-zg_l6BdnZ6Wf7sPN2011YpAz2blenA626nJgPiHNq2YV5HvzswsLw8OT7edeG9x-Kjf4j |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xOOxy4L2iUMBCHPaS0joPJxIXQKCyy0NCIHFBkV_RIkqDklQV_AZ-NGO7KQ-BtOIWyTOOY8_E843sbwC2VeQzxdptj6mQIkAJYo8nceYpQSmTsdSBsKd8z6LuVfDnOryegN36Lozjhxgn3Ixn2P-1cXCTkN55ZQ0tctGiiF_YJEybit4WUF2MyaNMWe_QsqWGkYcwIKl5hdp0Z6z6fjd6DTHfBqp2pzmag5t6jO6AyV1rUImWfPpA3_jdj5iH2VEISvaczSzAhO4vwswbYsIleN4j9qQh6uUVcWzPBMNbwgeVuQWRD0qitKkVbJKLhPcVMcga3eKR5BnhRPS40kQWfNjThdXMH7QzttKK33NDVGHYPrTRyLOs_JcXmgxvsRG3QQTs2vVSLsPV0eHlQdcb1W3wpO9T5imWqcTcD5EU8TVnsqN4oKkQCGUibIm4DBMqJA3QGmLVQUSJqMWAPwxvKKf-L5jq5329AoRmiS-1FAoFg4x1hKKxFJGKeSJ4qMIG_K7XL5UjUnNTW6OXOjpmmuJEpXaCG7A1Fn1wTB6fCTVrI0hHzlymOCwMutoYuuLr7Gp-3UF6cb5vH1b_X3QTfnQvT0_Sk-Ozv2vw0xS0d0meJkxVxUCvY9hTiQ1r3S9gAf_T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD5kHYz1YbeutGu6irGHvjhx5Its9pStC-1aslFayMPA6GZamsXBdijrb9iP3pFkuxc2GHsz6EiWpXOs7xPSdwDeqzhgivm-x1REkaCEicfTJPeUoJTJROpQ2FO-0_jwPPwyi2Y9-NDehXH6EN2Gm4kM-782Ab5U-fBWNLQsxIAifWGP4HEY-4lx6YPTTjvKZPWOrFhqFHvIAtJWVsinw67q_cXoFmHexal2oZk8h-9tF935kqvBqhYDefNAvfE_v-EFPGsAKBk7j3kJPb14Bet3ZAk34NeY2HOGWK-oidN6JghuCV_V5g5EsaqI0iZTsNlaJHyhiOHVGBQ_SZETTsScK01kya_nurQ1i6V2rlZZ8x_cyFQYrQ9tahR5Xl0UpSbXl1iIiyDSde1aqV7D-eTz2adDr8na4MkgoMxTLFepuR0iKbJrzuRI8VBTIZDIxFgScxmlVEgaoi8kaoR8EjmLoX4IbiinwSasLYqF3gJC8zSQWgqFhmHORkLRRIpYJTwVPFLRNuy305fJRtLcZNaYZ06MmWY4UJkd4G1415kunY7Hn4z6rQ9kTShXGXYLIZePwBVfZyfz7w1kp18_2oc3_266B0--HUyyk6Pp8Q48Ndns3Q5PH9bqcqV3EfPU4q317d-HNP6L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multirobot+system+for+autonomous+deployment+and+recovery+of+a+blade+crawler+for+operations+and+maintenance+of+offshore+wind+turbine+blades&rft.jtitle=Journal+of+field+robotics&rft.au=Jiang%2C+Zhengyi&rft.au=Ferdian+Jovan&rft.au=Moradi%2C+Peiman&rft.au=Richardson%2C+Tom&rft.date=2023-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1556-4959&rft.eissn=1556-4967&rft.volume=40&rft.issue=1&rft.spage=73&rft.epage=93&rft_id=info:doi/10.1002%2Frob.22117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-4959&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-4959&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-4959&client=summon |