Bias in data‐driven artificial intelligence systems—An introductory survey
Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to mo...
Saved in:
Published in | Wiley interdisciplinary reviews. Data mining and knowledge discovery Vol. 10; no. 3 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well‐grounded in a legal frame. In this survey, we focus on data‐driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.
This article is categorized under:
Commercial, Legal, and Ethical Issues > Fairness in Data Mining
Commercial, Legal, and Ethical Issues > Ethical Considerations
Commercial, Legal, and Ethical Issues > Legal Issues
Overview of topics related to bias in data‐driven AI systems discussed in this survey. |
---|---|
AbstractList | Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their decisions might affect everyone, everywhere, and anytime, entailing concerns about potential human rights issues. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in their design, training, and deployment to ensure social good while still benefiting from the huge potential of the AI technology. The goal of this survey is to provide a broad multidisciplinary overview of the area of bias in AI systems, focusing on technical challenges and solutions as well as to suggest new research directions towards approaches well‐grounded in a legal frame. In this survey, we focus on data‐driven AI, as a large part of AI is powered nowadays by (big) data and powerful machine learning algorithms. If otherwise not specified, we use the general term bias to describe problems related to the gathering or processing of data that might result in prejudiced decisions on the bases of demographic features such as race, sex, and so forth.
This article is categorized under:
Commercial, Legal, and Ethical Issues > Fairness in Data Mining
Commercial, Legal, and Ethical Issues > Ethical Considerations
Commercial, Legal, and Ethical Issues > Legal Issues
Overview of topics related to bias in data‐driven AI systems discussed in this survey. |
Author | Fernandez, Miriam Staab, Steffen Kinder‐Kurlanda, Katharina Gadiraju, Ujwal Ntoutsi, Eirini Broelemann, Klaus Ruggieri, Salvatore Alani, Harith Kruegel, Tina Krasanakis, Emmanouil Kompatsiaris, Ioannis Nejdl, Wolfgang Tiropanis, Thanassis Wagner, Claudia Kasneci, Gjergji Karimi, Fariba Berendt, Bettina Papadopoulos, Symeon Heinze, Christian Iosifidis, Vasileios Fafalios, Pavlos Vidal, Maria‐Esther Turini, Franco |
Author_xml | – sequence: 1 givenname: Eirini orcidid: 0000-0001-5729-1003 surname: Ntoutsi fullname: Ntoutsi, Eirini email: ntoutsi@l3s.de organization: L3S Research Center & Faculty of Electrical Engineering and Computer Science, Leibniz University Hannover – sequence: 2 givenname: Pavlos orcidid: 0000-0003-2788-526X surname: Fafalios fullname: Fafalios, Pavlos organization: Institute of Computer Science, Foundation for Research and Technology‐Hellas (FORTH‐ICS) – sequence: 3 givenname: Ujwal surname: Gadiraju fullname: Gadiraju, Ujwal organization: L3S Research Center & Faculty of Electrical Engineering and Computer Science, Leibniz University Hannover – sequence: 4 givenname: Vasileios surname: Iosifidis fullname: Iosifidis, Vasileios organization: L3S Research Center & Faculty of Electrical Engineering and Computer Science, Leibniz University Hannover – sequence: 5 givenname: Wolfgang surname: Nejdl fullname: Nejdl, Wolfgang organization: L3S Research Center & Faculty of Electrical Engineering and Computer Science, Leibniz University Hannover – sequence: 6 givenname: Maria‐Esther surname: Vidal fullname: Vidal, Maria‐Esther organization: TIB Leibniz Information Centre For Science and Tecnhnology – sequence: 7 givenname: Salvatore orcidid: 0000-0002-1917-6087 surname: Ruggieri fullname: Ruggieri, Salvatore organization: Università di Pisa – sequence: 8 givenname: Franco orcidid: 0000-0001-6789-5476 surname: Turini fullname: Turini, Franco organization: Università di Pisa – sequence: 9 givenname: Symeon orcidid: 0000-0002-5441-7341 surname: Papadopoulos fullname: Papadopoulos, Symeon organization: Information Technologies Institute, The Centre for Research & Technology, Hellas (CERTH) – sequence: 10 givenname: Emmanouil orcidid: 0000-0002-3947-222X surname: Krasanakis fullname: Krasanakis, Emmanouil organization: Information Technologies Institute, The Centre for Research & Technology, Hellas (CERTH) – sequence: 11 givenname: Ioannis orcidid: 0000-0001-6447-9020 surname: Kompatsiaris fullname: Kompatsiaris, Ioannis organization: Information Technologies Institute, The Centre for Research & Technology, Hellas (CERTH) – sequence: 12 givenname: Katharina orcidid: 0000-0002-7749-645X surname: Kinder‐Kurlanda fullname: Kinder‐Kurlanda, Katharina organization: GESIS Leibniz Institute for the Social Sciences – sequence: 13 givenname: Claudia surname: Wagner fullname: Wagner, Claudia organization: GESIS Leibniz Institute for the Social Sciences – sequence: 14 givenname: Fariba surname: Karimi fullname: Karimi, Fariba organization: GESIS Leibniz Institute for the Social Sciences – sequence: 15 givenname: Miriam orcidid: 0000-0001-5939-4321 surname: Fernandez fullname: Fernandez, Miriam organization: The Open University – sequence: 16 givenname: Harith surname: Alani fullname: Alani, Harith organization: The Open University – sequence: 17 givenname: Bettina orcidid: 0000-0002-8003-3413 surname: Berendt fullname: Berendt, Bettina organization: KU Leuven – sequence: 18 givenname: Tina surname: Kruegel fullname: Kruegel, Tina organization: Leibniz University of Hanover – sequence: 19 givenname: Christian surname: Heinze fullname: Heinze, Christian organization: Leibniz University of Hanover – sequence: 20 givenname: Klaus surname: Broelemann fullname: Broelemann, Klaus organization: Innovation Lab, SCHUFA Holding AG – sequence: 21 givenname: Gjergji surname: Kasneci fullname: Kasneci, Gjergji organization: Innovation Lab, SCHUFA Holding AG – sequence: 22 givenname: Thanassis surname: Tiropanis fullname: Tiropanis, Thanassis organization: University of Southampton – sequence: 23 givenname: Steffen surname: Staab fullname: Staab, Steffen organization: Institute for Parallel and Distributed Systems, University of Stuttgart |
BookMark | eNo9kE1OwzAUhC1UJErpghvkAmn9l9pelgKlUoENiKVlxzYyShxkp62y6xFYcMKehEQg3mLeaEaaxXcJRqEJFoBrBGcIQjw_eFPPECkWZ2CMBMU5ZaIY_XvOLsA0pQ_YH8GcczwGTzdepcyHzKhWnY5fJvq9DZmKrXe-9Krqu9ZWlX-3obRZ6lJr63Q6fi_D0MTG7Mq2iV2WdnFvuytw7lSV7PTvT8Dr_d3L6iHfPq83q-U2LwnBi7ywjlNFudWaIUw0F45Czg3shTuLINIaF5oypxXSkAlutBGOCcIc7BMyAfPf3YOvbCc_o69V7CSCcgAhBxByACHfNrePgyE_qgFYLA |
CitedBy_id | crossref_primary_10_3389_frvir_2024_1340250 crossref_primary_10_1007_s43681_022_00147_7 crossref_primary_10_1016_j_artint_2023_103952 crossref_primary_10_3390_app12136395 crossref_primary_10_1142_S0218213024600030 crossref_primary_10_1007_s10639_025_13388_w crossref_primary_10_1016_j_chbah_2025_100145 crossref_primary_10_3390_soc14120259 crossref_primary_10_1109_TPAMI_2024_3487254 crossref_primary_10_1108_GKMC_12_2021_0203 crossref_primary_10_1145_3654939 crossref_primary_10_1002_widm_1498 crossref_primary_10_1080_20476965_2022_2075796 crossref_primary_10_1007_s00146_024_02003_0 crossref_primary_10_1007_s10618_023_00928_6 crossref_primary_10_3390_app13127082 crossref_primary_10_3390_app131810258 crossref_primary_10_54049_taad_1418236 crossref_primary_10_1007_s11257_023_09364_z crossref_primary_10_1108_JTF_11_2022_0288 crossref_primary_10_1007_s11042_023_16029_x crossref_primary_10_52080_rvgluz_26_e6_2 crossref_primary_10_3389_frma_2020_596624 crossref_primary_10_1177_23998083251321981 crossref_primary_10_1371_journal_pone_0314806 crossref_primary_10_1108_IJILT_06_2024_0103 crossref_primary_10_1109_TEM_2021_3116187 crossref_primary_10_1007_s12525_023_00680_1 crossref_primary_10_56294_dm2024430 crossref_primary_10_1145_3604558 crossref_primary_10_3233_JIFS_211467 crossref_primary_10_1007_s13384_022_00530_7 crossref_primary_10_3233_IP_200299 crossref_primary_10_1287_mnsc_2023_4782 crossref_primary_10_1145_3708529 crossref_primary_10_1177_00027642241261265 crossref_primary_10_1080_10447318_2025_2450411 crossref_primary_10_1088_1361_6668_ac80d8 crossref_primary_10_1007_s43681_024_00507_5 crossref_primary_10_1007_s11948_025_00529_0 crossref_primary_10_1145_3632121 crossref_primary_10_1007_s11440_024_02384_y crossref_primary_10_1007_s10506_024_09430_w crossref_primary_10_1016_j_cviu_2022_103552 crossref_primary_10_3389_fpos_2025_1504520 crossref_primary_10_1049_ipr2_13287 crossref_primary_10_3390_cancers14122897 crossref_primary_10_1086_734271 crossref_primary_10_1007_s41649_021_00182_2 crossref_primary_10_1016_j_giq_2021_101619 crossref_primary_10_1080_14703297_2024_2354740 crossref_primary_10_1057_s41254_024_00324_x crossref_primary_10_3390_make3010014 crossref_primary_10_3389_frma_2024_1486600 crossref_primary_10_1145_3588433 crossref_primary_10_3390_rs14061449 crossref_primary_10_3390_earth2040057 crossref_primary_10_1016_j_chb_2022_107179 crossref_primary_10_1007_s43681_024_00556_w crossref_primary_10_3389_fpsyt_2021_574440 crossref_primary_10_47745_AUSLEG_2019_8_2_06 crossref_primary_10_1109_MS_2023_3300574 crossref_primary_10_2478_jdis_2022_0018 crossref_primary_10_1002_tesj_779 crossref_primary_10_1371_journal_pbio_3001544 crossref_primary_10_1515_labmed_2023_0037 crossref_primary_10_3390_make5010006 crossref_primary_10_3390_su151612451 crossref_primary_10_1007_s10462_022_10204_6 crossref_primary_10_12797_RM_02_2023_14_07 crossref_primary_10_1177_14614448221099217 crossref_primary_10_1109_TPAMI_2024_3361979 crossref_primary_10_1080_14790726_2024_2377549 crossref_primary_10_3917_rcsg_022_0031 crossref_primary_10_1080_15700763_2024_2358303 crossref_primary_10_1007_s10032_024_00483_w crossref_primary_10_69725_aei_v1i1_82 crossref_primary_10_3390_bioengineering10101134 crossref_primary_10_3389_fdata_2024_1467222 crossref_primary_10_1029_2023EF003971 crossref_primary_10_1007_s00607_021_01016_7 crossref_primary_10_3390_a15090303 crossref_primary_10_1109_ACCESS_2022_3153787 crossref_primary_10_1109_TNNLS_2022_3229161 crossref_primary_10_1007_s13748_024_00345_w crossref_primary_10_26634_jse_18_2_20376 crossref_primary_10_7717_peerj_cs_1630 crossref_primary_10_1186_s13000_023_01355_3 crossref_primary_10_3390_systems12050145 crossref_primary_10_1590_s0103_4014_2021_35101_009 crossref_primary_10_4236_ojbm_2024_126189 crossref_primary_10_3390_digital4010001 crossref_primary_10_1108_OIR_08_2021_0452 crossref_primary_10_1145_3722214 crossref_primary_10_1145_3614426 crossref_primary_10_1007_s10676_022_09659_6 crossref_primary_10_1080_15228053_2023_2233814 crossref_primary_10_3233_IA_220139 crossref_primary_10_3390_electronics12143066 crossref_primary_10_58348_denetisim_1541327 crossref_primary_10_1145_3617377 crossref_primary_10_1007_s11528_023_00895_1 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_1016_j_procs_2023_01_082 crossref_primary_10_1002_aaai_12105 crossref_primary_10_1155_2021_5511866 crossref_primary_10_1016_j_techsoc_2024_102705 crossref_primary_10_1145_3468507_3468515 crossref_primary_10_3389_fpsyg_2023_1061778 crossref_primary_10_1016_j_paerosci_2023_100960 crossref_primary_10_1371_journal_pdig_0000660 crossref_primary_10_1038_s41598_022_24317_z crossref_primary_10_1177_14648849241303718 crossref_primary_10_1186_s40561_024_00350_5 crossref_primary_10_1016_j_procs_2024_01_135 crossref_primary_10_1177_27523543241240285 crossref_primary_10_1371_journal_pone_0315270 crossref_primary_10_1088_2632_072X_ab8a61 crossref_primary_10_1109_ACCESS_2024_3484409 crossref_primary_10_1109_ACCESS_2023_3279732 crossref_primary_10_1109_ACCESS_2024_3425910 crossref_primary_10_15290_bsp_2021_26_03_02 crossref_primary_10_1080_02635143_2023_2232995 crossref_primary_10_1177_20555636241269270 crossref_primary_10_3390_su152115208 crossref_primary_10_3390_ijerph20010470 crossref_primary_10_7592_EJHR2021_9_2_443 crossref_primary_10_1007_s00481_023_00761_x crossref_primary_10_1055_a_2418_5238 crossref_primary_10_3390_app122412506 crossref_primary_10_48168_innosoft_s8_a48 crossref_primary_10_1007_s10618_022_00878_5 crossref_primary_10_1145_3511605 crossref_primary_10_1021_acs_jchemed_3c00794 crossref_primary_10_1109_TITS_2023_3275741 crossref_primary_10_3389_feart_2024_1340437 crossref_primary_10_1080_21541264_2023_2293523 crossref_primary_10_1177_14614456241235075 crossref_primary_10_3390_safety10020042 crossref_primary_10_1007_s10270_024_01184_y crossref_primary_10_1007_s10462_021_10039_7 crossref_primary_10_1681_ASN_2022010069 crossref_primary_10_3934_mbe_2022290 crossref_primary_10_1111_jcal_13011 crossref_primary_10_1111_jiec_13509 crossref_primary_10_1145_3567724 crossref_primary_10_1007_s42001_023_00242_7 crossref_primary_10_1515_tw_2024_0008 crossref_primary_10_1527_tjsai_40_2_D_O96 crossref_primary_10_32604_cmc_2022_021033 crossref_primary_10_3390_life14060652 crossref_primary_10_1016_j_compenvurbsys_2024_102122 crossref_primary_10_1080_02642069_2024_2336208 crossref_primary_10_1016_j_xcrp_2022_101069 crossref_primary_10_12688_openreseurope_14524_1 crossref_primary_10_2139_ssrn_3980908 crossref_primary_10_1016_j_drudis_2024_104111 crossref_primary_10_2196_57986 crossref_primary_10_1007_s43681_023_00391_5 crossref_primary_10_3390_bdcc8090105 crossref_primary_10_1016_j_cose_2023_103617 crossref_primary_10_1016_j_landurbplan_2023_104768 crossref_primary_10_3233_EFI_240045 crossref_primary_10_3389_fdata_2022_923397 crossref_primary_10_1145_3564284 crossref_primary_10_1371_journal_pdig_0000237 crossref_primary_10_3389_frai_2022_1010219 crossref_primary_10_2337_dci23_0032 crossref_primary_10_1016_j_artmed_2024_102861 crossref_primary_10_3390_jcdd10120485 crossref_primary_10_29039_2409_5087_2020_8_5_42_48 crossref_primary_10_1007_s44163_023_00092_2 crossref_primary_10_1186_s12913_023_09324_8 crossref_primary_10_1016_j_giq_2023_101908 crossref_primary_10_36535_0203_6460_2021_03_2 crossref_primary_10_1016_j_technovation_2024_103118 crossref_primary_10_1017_aer_2025_2 crossref_primary_10_1590_2177_6709_27_5_e22spe5 crossref_primary_10_1007_s11528_023_00911_4 crossref_primary_10_1002_pra2_441 crossref_primary_10_4018_IJSWIS_350095 crossref_primary_10_1080_15236803_2024_2370455 crossref_primary_10_1016_j_net_2024_01_005 crossref_primary_10_1155_2023_4459198 crossref_primary_10_1007_s43681_024_00609_0 crossref_primary_10_3390_su14137804 crossref_primary_10_1109_MVT_2021_3114655 crossref_primary_10_3390_ai1020008 crossref_primary_10_1002_mco2_726 crossref_primary_10_1007_s00146_024_01945_9 crossref_primary_10_1038_s41598_022_13153_w crossref_primary_10_1016_j_eswa_2023_122066 crossref_primary_10_35516_jjps_v17i3_2410 crossref_primary_10_1365_s40702_024_01069_0 crossref_primary_10_1007_s10618_023_00972_2 crossref_primary_10_1080_02691728_2025_2466164 crossref_primary_10_1007_s10729_024_09691_6 crossref_primary_10_1080_12460125_2024_2410042 crossref_primary_10_1016_j_compind_2024_104128 crossref_primary_10_1007_s11036_024_02404_x crossref_primary_10_3390_electronics13244983 crossref_primary_10_3389_fpsyg_2023_1056569 crossref_primary_10_1145_3644073 crossref_primary_10_1145_3643540 crossref_primary_10_1109_ACCESS_2024_3509353 crossref_primary_10_1007_s11023_024_09658_0 crossref_primary_10_1057_s41599_024_03941_2 crossref_primary_10_1002_int_22354 crossref_primary_10_1007_s43681_023_00378_2 crossref_primary_10_1088_1748_9326_ad95a2 crossref_primary_10_3390_mti8090075 crossref_primary_10_51137_ijarbm_2024_5_1_10 crossref_primary_10_4018_IJIIT_309582 crossref_primary_10_1145_3631455 crossref_primary_10_1108_FS_04_2023_0059 crossref_primary_10_1007_s10506_021_09281_9 crossref_primary_10_1080_19439342_2024_2361008 crossref_primary_10_38124_ijsrmt_v3i9_45 crossref_primary_10_3390_sym13010102 crossref_primary_10_1109_JPROC_2024_3525147 crossref_primary_10_12688_openreseurope_16333_1 crossref_primary_10_3390_diagnostics14151594 crossref_primary_10_3390_s25020531 crossref_primary_10_2196_53505 crossref_primary_10_3390_app14083483 crossref_primary_10_1002_widm_1452 crossref_primary_10_3389_fdata_2020_590296 crossref_primary_10_1080_00098655_2024_2393153 crossref_primary_10_1007_s12525_022_00592_6 crossref_primary_10_1186_s43093_025_00436_7 crossref_primary_10_1007_s13369_024_09183_3 crossref_primary_10_1109_TSE_2025_3526730 crossref_primary_10_1007_s10115_022_01723_3 crossref_primary_10_1590_0102_672020230002e1727 crossref_primary_10_1007_s42438_021_00271_3 crossref_primary_10_4018_IJKM_290022 crossref_primary_10_25229_beta_1487924 crossref_primary_10_1371_journal_pone_0313365 crossref_primary_10_46661_ijeri_11038 crossref_primary_10_38124_ijisrt_IJISRT24MAY2203 crossref_primary_10_3390_su132212640 crossref_primary_10_1038_s41467_022_33128_9 crossref_primary_10_2139_ssrn_3773458 crossref_primary_10_3390_su16031079 crossref_primary_10_3389_frai_2023_1093712 crossref_primary_10_3390_info16020151 crossref_primary_10_1007_s40573_025_00177_8 crossref_primary_10_3390_en14206692 crossref_primary_10_1093_jamia_ocab065 crossref_primary_10_3233_SW_223041 crossref_primary_10_22610_imbr_v16i3S_I_a_3861 crossref_primary_10_1007_s10796_021_10186_w crossref_primary_10_3389_frai_2024_1398960 crossref_primary_10_1007_s44217_024_00197_5 crossref_primary_10_1123_kr_2021_0044 crossref_primary_10_3354_esep00195 crossref_primary_10_1007_s11948_024_00526_9 crossref_primary_10_1002_pra2_528 crossref_primary_10_1016_j_sciaf_2024_e02281 crossref_primary_10_1109_ACCESS_2024_3521945 crossref_primary_10_3390_bioengineering11100984 crossref_primary_10_1016_S2589_7500_22_00229_1 crossref_primary_10_1021_acs_jproteome_1c00966 crossref_primary_10_3389_fnhum_2022_949224 crossref_primary_10_1007_s10916_021_01790_z crossref_primary_10_1007_s43681_022_00216_x crossref_primary_10_1109_MITS_2023_3294590 crossref_primary_10_3917_inno_pr2_0153 crossref_primary_10_61186_payesh_23_5_793 crossref_primary_10_1080_13600869_2022_2060469 crossref_primary_10_1080_23311916_2024_2322814 crossref_primary_10_1109_ACCESS_2024_3501675 crossref_primary_10_53941_ijndi0101005 crossref_primary_10_3390_electronics13122317 crossref_primary_10_1145_3592616 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2020 The Authors. published by Wiley Periodicals, Inc. |
DBID | 24P |
DOI | 10.1002/widm.1356 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1942-4795 |
EndPage | n/a |
ExternalDocumentID | WIDM1356 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: European Commission funderid: 860630 |
GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BHBCM BMNLL BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W PQQKQ ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR WYJ ZZTAW |
ID | FETCH-LOGICAL-c3326-5ef84a48ebb7123b89f4088d00888fe101bb25b47fba1b0798dbd9f7937f0a1b3 |
IEDL.DBID | 24P |
ISSN | 1942-4787 |
IngestDate | Wed Jan 22 16:33:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3326-5ef84a48ebb7123b89f4088d00888fe101bb25b47fba1b0798dbd9f7937f0a1b3 |
Notes | Funding information European Commission, Grant/Award Number: 860630 |
ORCID | 0000-0002-5441-7341 0000-0002-1917-6087 0000-0001-5729-1003 0000-0001-6447-9020 0000-0002-8003-3413 0000-0003-2788-526X 0000-0002-7749-645X 0000-0002-3947-222X 0000-0001-5939-4321 0000-0001-6789-5476 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1356 |
PageCount | 14 |
ParticipantIDs | wiley_primary_10_1002_widm_1356_WIDM1356 |
PublicationCentury | 2000 |
PublicationDate | May/June 2020 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May/June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
PublicationYear | 2020 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 2013; 3 2019; 51 1996; 1079 1995; 77 2017; 46 2018; 81 2002; 359 2016; 102 2018; 80 2016; 104 2004; 2 2012; 15 2014; 28 2018; 6 2010; 21 2017; 31 2018; 8 2017; 70 2019; 11468 2017; 32 2018; 376 2019; 28 2018; 73 2004; 41 2015; 3 2012 2018; 425 2011 2010 2012; 7524 2009 2016; 10 1997 2016; 287 2009; 172 2018; 61 2017; 375 2016; 13 2015; 26 2019; 11560 2003; 2893 2015; 2015 2019 2018 2017; 10249 2017 2016 2015 2014 2014; 8367 2013 2018; 55 2016; 24 2017; 106 |
References_xml | – year: 2011 – volume: 1079 start-page: 613 year: 1996 end-page: 622 – volume: 41 start-page: 1469 issue: 5 year: 2004 article-title: Causation in antidiscrimination law: Beyond intent versus impact publication-title: Houston Law Review – volume: 21 start-page: 277 issue: 2 year: 2010 end-page: 292 article-title: Three naive bayes approaches for discrimination‐free classification publication-title: Data Mining and Knowledge Discovery – volume: 376 issue: 2133 year: 2018 article-title: Algorithms that remember: Model inversion attacks and data protection law publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 73 start-page: 1 year: 2018 end-page: 15 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Processing – volume: 3 start-page: 43 year: 2013 end-page: 57 – start-page: 555 year: 2014 end-page: 556 – start-page: 570 year: 2018 end-page: 575 – start-page: 623 year: 2013 end-page: 631 – volume: 31 start-page: 1060 issue: 4 year: 2017 end-page: 1089 article-title: Measuring discrimination in algorithmic decision making publication-title: Data Mining and Knowledge Discovery – year: 2019 end-page: 48(18), 4656‐4674 article-title: Biases in bias elicitation publication-title: Communications in Statistics – Theory and Methods – volume: 13 start-page: 14 issue: 5 year: 2016 end-page: 19 article-title: To predict and serve? publication-title: Significance – volume: 81 start-page: 77 year: 2018 end-page: 91 – volume: 3 start-page: 398 issue: 3 year: 2015 end-page: 415 article-title: Algorithmic accountability: Journalistic investigation of computational power structures publication-title: Digital Journalism – year: 2018 – volume: 287 start-page: 219 year: 2016 end-page: 230 – volume: 11468 start-page: 231 year: 2019 end-page: 246 – year: 2014 – start-page: 5527 year: 2018 end-page: 5533 – start-page: 329 year: 2015 end-page: 338 – volume: 425 start-page: 18 year: 2018 end-page: 33 article-title: Exploiting reject option in classification for social discrimination control publication-title: Information Sciences – start-page: 285 year: 2017 end-page: 294 – volume: 359 start-page: 248 year: 2002 end-page: 252 article-title: Bias and causal associations in observational research publication-title: Lancet – volume: 26 start-page: 1252 issue: 8 year: 2015 end-page: 1260 article-title: Fair is not fair everywhere publication-title: Psychological Science – start-page: 4349 year: 2016 end-page: 4357 – volume: 28 issue: 1 year: 2019 article-title: Lung cancer in spanish women: The WORLD07 project publication-title: European Journal of Cancer Care – start-page: 1 year: 2009 end-page: 6 – volume: 375 year: 2017 article-title: Clustering: How much bias do we need? publication-title: Philosophical Transactions of the Royal Society A – volume: 51 start-page: 93:1 issue: 5 year: 2019 end-page: 93:42 article-title: A survey of methods for explaining black box models publication-title: ACM Computing Surveys – volume: 15 start-page: 662 issue: 5 year: 2012 end-page: 679 article-title: Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon publication-title: Information, Communications Society – volume: 55 start-page: 1143 issue: 4 year: 2018 end-page: 1185 article-title: Teaching fairness to artificial intelligence: Existing and novel strategies against algorithmic discrimination under eu law publication-title: Common Market Law Review – volume: 104 start-page: 671 year: 2016 article-title: Big data's disparate impact publication-title: California Law Review – start-page: 10999 year: 2018 end-page: 11010 – year: 1997 – volume: 7524 start-page: 35 year: 2012 end-page: 50 – volume: 172 start-page: 21 issue: 1 year: 2009 end-page: 47 article-title: Bias modelling in evidence synthesis publication-title: Journal of of the Royal Statistical Society A – start-page: 1675 year: 2016 end-page: 1684 – volume: 77 start-page: 321 issue: 2 year: 1995 end-page: 358 article-title: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n‐person games publication-title: Artificial Intelligence – start-page: 8827 year: 2018 end-page: 8836 – start-page: 2030 year: 2019 end-page: 2037 – start-page: 13 year: 2009 end-page: 18 – start-page: 4066 year: 2017 end-page: 4076 – start-page: 407 year: 2019 – year: 2019 – start-page: 1135 year: 2016 end-page: 1144 – volume: 106 start-page: 1039 issue: 7 year: 2017 end-page: 1082 article-title: Optimal classification trees publication-title: Machine Learning – volume: 6 start-page: 52138 year: 2018 end-page: 52160 article-title: Peeking inside the black‐box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 70 start-page: 1617 year: 2017 end-page: 1626 – volume: 8367 start-page: 79 year: 2014 end-page: 96 – volume: 2015 start-page: 92 issue: 1 year: 2015 end-page: 112 article-title: Automated experiments on ad privacy settings publication-title: Privacy Enhancing Technologies – start-page: 1171 year: 2017 end-page: 1180 – start-page: 3315 year: 2016 end-page: 3323 – start-page: 853 year: 2018 end-page: 862 – volume: 46 start-page: 16 issue: 4 year: 2017 end-page: 21 article-title: On measuring bias in online information publication-title: SIGMOD Record – volume: 10 start-page: 1 issue: 2 year: 2016 end-page: 189 article-title: Statistical relational artificial intelligence: Logic, probability, and computation publication-title: Synthesis Lectures on Artificial Intelligence and Machine Learning – start-page: 371 year: 2017 end-page: 379 – volume: 10249 start-page: 638 year: 2017 end-page: 654 – start-page: 476 year: 2018 end-page: 481 – volume: 32 start-page: 68 issue: 3 year: 2017 end-page: 73 article-title: Explaining explanation, part 1: Theoretical foundations publication-title: IEEE Intelligent Systems – start-page: 605 year: 2016 end-page: 608 – start-page: 3504 year: 2016 end-page: 3512 – volume: 11560 start-page: 441 year: 2019 end-page: 474 – year: 2016 – volume: 24 start-page: 183 issue: 2 year: 2016 end-page: 201 article-title: Using sensitive personal data may be necessary for avoiding discrimination in data‐driven decision models publication-title: Artifical Intelligence and Law – start-page: 2630 year: 2018 end-page: 2639 – start-page: 5309 year: 2018 end-page: 5313 – start-page: 49 year: 2019 end-page: 58 – start-page: 92 year: 2015 end-page: 101 – start-page: 9780 year: 2019 end-page: 9784 – start-page: 502 year: 2011 end-page: 510 – start-page: 5029 year: 2017 end-page: 5037 – start-page: 3992 year: 2017 end-page: 4001 – volume: 8 year: 2018 article-title: Homophily influences ranking of minorities in social networks publication-title: Scientific Reports – start-page: 581 year: 2009 end-page: 592 – volume: 28 start-page: 1503 issue: 5–6 year: 2014 end-page: 1529 article-title: A peek into the black box: Exploring classifiers by randomization publication-title: Data Mining and Knowledge Discovery – start-page: 869 year: 2010 end-page: 874 – start-page: 214 year: 2012 end-page: 226 – volume: 2893 start-page: 236 year: 2003 end-page: 247 – start-page: 1953 year: 2011 end-page: 1961 – volume: 2 start-page: 177 issue: 2/3 year: 2004 end-page: 198 article-title: Picturing algorithmic surveillance: The politics of facial recognition systems publication-title: Surveillance & Society – start-page: 97 year: 2017 end-page: 114 – volume: 102 start-page: 349 issue: 3 year: 2016 end-page: 391 article-title: Supersparse linear integer models for optimized medical scoring systems publication-title: Machine Learning – volume: 61 start-page: 54 issue: 6 year: 2018 end-page: 61 article-title: Bias on the web publication-title: Communications of the ACM – start-page: 309 year: 2019 end-page: 318 – start-page: 1384 year: 2018 end-page: 1397 – start-page: 279 year: 2019 end-page: 288 – start-page: 45 year: 2016 end-page: 54 – start-page: 1 year: 2018 end-page: 7 – volume: 80 start-page: 60 year: 2018 end-page: 69 article-title: A reductions approach to fair classification publication-title: ICML |
SSID | ssj0000328882 |
Score | 2.6477332 |
Snippet | Artificial Intelligence (AI)‐based systems are widely employed nowadays to make decisions that have far‐reaching impact on individuals and society. Their... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | fairness fairness‐aware AI fairness‐aware machine learning interpretability responsible AI |
Title | Bias in data‐driven artificial intelligence systems—An introductory survey |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwidm.1356 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEICtUhYW3oi3PDCwWHUTp3bEVB5VQaJioKJb5KttKQMpSlpQt_4EBn5hfwm-pC2wsVl-LHe6h63zd4RcWBNDKGTEhBoCE4JbpiznzCcbxjgtmk1dVlv0Wt2-eBhEgxq5Wv6FqfgQqwc3tIzSX6OBaygaP9DQj9S8YteG1hpZx6-1WM8XiKfVAwuC4lTZLMrf0wOGEJolWYgHjdXpv0lpGVU622RzkQ7SdqW_HVKz2S7ZWrZaoAvL2yO961QXNM0oVnTOZ58mRy9FUe8VAoKmv9iatOIzF_PZVzvDlQrrOsqntJjk73a6T_qdu-ebLlu0QmDD0CdYLLJOCS2UBZA-1oCKnfD-wfgIrpSz3q4AggiEdKCbwGWsDJjYIfzOcT8THpB6NsrsIaFcGmmFBcn9fg1CBbFCSJnUoYhiro_IZSmQ5K3CXSQV2DhIUGQJiix5ub99xMHx_7eekI0Ab6plqeApqY_ziT3z4XwM56XavgHAjZ6I |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ07T8MwEICtUgZYeCPeeACJxarrOLUzMBRK1dKHGFrRLcS1I2UgRX1QdetPYOBn8Kv6S_AlbYGNpVvkWJF1vjufT5fvELoy2lMOFy7hsqsI59QQaSglNtjQOgx4Ph8k1RbNQqXNHztuJ4O-Fv_CpHyIZcINLCPx12DgkJDO_VBDx5F-hbYNhXlJZc1MxvbCNritluzuXjNWfmjdV8i8pwDpOjZSIa4JJQ-4NEoJ67SV9EJuDU3bo1DK0FgFVYq5iotQBXlFhSe10l4IFLmQ2hHHfncNrfMCE9AvgfGnZUYHyHQy6U6V9zgjQL1ZoIwoyy1X-zcKTo6x8g7amsefuJgqzC7KmHgPbS96O-C5qe-j5l0UDHAUYyghnU0_dB_cIgZFS5kTOPoF88QpEHowm34WY3iTcmR7_QkejPrvZnKA2iuR0yHKxr3YHCFMhRaGGyWonR8oLpkngYomAoe7Hg2O0U0iEP8t5Wv4KUmZ-SAyH0TmP1dLDXg4-f_US7RRaTXqfr3arJ2iTQbX5KRO8Qxlh_2RObexxFBdJFuI0cuqdeYbXy7bug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ29TsMwEICtUiTEwj_iHw8gsVh1HadxBoZCqVoKVQcquoUYO1IG0ippqbr1ERh4C96qT4IvSQtsLN2ixLKi8935bJ-_Q-hCK1da3LEJF6-ScE41EZpSYoINpQKfl8t-mm3RrjS6_L5n9wroa34XJuNDLDbcwDJSfw0GPlBB6QcaOg7VG1RtqOQZlS09GZv1WnLdrJnBvWSsfvd02yB5SQHyaplAhdg6ENznQkvpGJ8thRtwY2fKzIRCBNrop5TMltwJpF-W1HGFksoNACIXUPPGMv2uoFU4XIT8McY7iw0dANOJtDhV2eWMAPRmTjKirLT4279BcDqL1bfQRh5-4mqmL9uooKMdtDkv7YBzS99F7ZvQT3AYYcggnU0_VAxeEYOeZcgJHP5ieeKMB53Mpp_VCL5kGNl-PMHJKH7Xkz3UXYqc9lEx6kf6AGHqKEdzLR1q2vuSC-YKgKI5vsVtl_qH6CoViDfI8BpeBlJmHojMA5F5z83aIzwc_b_pOVrr1OreQ7PdOkbrDBbJaZbiCSoO45E-NZHEUJ6lI4jRy7JV5hsdcNrs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+in+data%E2%80%90driven+artificial+intelligence+systems%E2%80%94An+introductory+survey&rft.jtitle=Wiley+interdisciplinary+reviews.+Data+mining+and+knowledge+discovery&rft.au=Ntoutsi%2C+Eirini&rft.au=Fafalios%2C+Pavlos&rft.au=Gadiraju%2C+Ujwal&rft.au=Iosifidis%2C+Vasileios&rft.date=2020-05-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1942-4787&rft.eissn=1942-4795&rft.volume=10&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwidm.1356&rft.externalDBID=10.1002%252Fwidm.1356&rft.externalDocID=WIDM1356 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-4787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-4787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-4787&client=summon |