Membership function comparative investigation on productivity forecasting of solar still using adaptive neuro‐fuzzy inference system approach
Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SS...
Saved in:
Published in | Environmental progress & sustainable energy Vol. 37; no. 1; pp. 249 - 259 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m2/h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018 |
---|---|
AbstractList | Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m
2
/h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018 Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m2/h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018 |
Author | Alazba, A. A. Mashaly, Ahmed F. |
Author_xml | – sequence: 1 givenname: Ahmed F. orcidid: 0000-0003-4105-0920 surname: Mashaly fullname: Mashaly, Ahmed F. email: mashaly.ahmed@gmail.com organization: Alamoudi Chair for Water Researches, King Saud University – sequence: 2 givenname: A. A. surname: Alazba fullname: Alazba, A. A. organization: King Saud University |
BookMark | eNp1kN9KwzAUxoNMcJuCj5BLbzqTNG3XSxnzD0z0Qq9Lmp5skTYJSTvprnwDfUafxG4T74QD58_344PzTdDIWAMIXVIyo4Swa3AzytKUn6AxzTmPMp6Q0d_M2RmahPBGSBrzPB-jz0doSvBhox1WnZGttgZL2zjhRau3gLXZQmj1WhyUoZy3VTdwW932WFkPUgy6WWOrcLC18HhY6xp3YX8UlXAHHwOdt98fX6rb7frBVYEHIwGHPrTQYOEGXyE35-hUiTrAxW-fotfb5cviPlo93T0sblaRjGPGI5ZxRVMCJKapUnOucrH_MJEkUYKpDBjNKhpLqeZlVTEhMkIzlgAlqkxUmcZTdHX0ld6G4EEVzutG-L6gpNgHWYArDkEOaHRE33UN_b9csXw-8j9Zrnvw |
CitedBy_id | crossref_primary_10_1016_j_eswa_2021_116138 crossref_primary_10_1016_j_seta_2020_100670 crossref_primary_10_2166_aqua_2019_058 crossref_primary_10_1007_s13762_024_05571_2 crossref_primary_10_3389_fenrg_2021_742615 crossref_primary_10_1002_ep_13227 crossref_primary_10_1155_2023_9335814 |
Cites_doi | 10.1016/j.desal.2012.10.029 10.1016/j.jterra.2014.08.002 10.1016/j.renene.2015.04.072 10.1016/j.renene.2015.08.028 10.1016/S0360-1323(03)00135-5 10.2166/wrd.2015.009 10.1016/j.compag.2016.01.030 10.1016/j.desal.2007.01.062 10.1016/j.rser.2015.09.028 10.1142/9789814417747_0152 10.1016/j.desal.2015.01.004 10.1016/j.desal.2011.12.016 10.1016/j.solener.2015.05.013 10.1016/j.eswa.2008.11.019 10.1080/19443994.2015.1048738 10.1016/j.desal.2005.07.010 10.1109/21.256541 10.1016/j.solener.2005.04.011 10.1016/j.agwat.2015.02.009 10.1080/19443994.2016.1193770 10.1016/j.renene.2010.06.028 10.1016/j.desal.2007.01.012 10.1016/j.desal.2006.02.024 10.1016/j.rser.2014.02.014 10.1016/j.rser.2015.04.136 10.1080/15435075.2016.1206000 10.1016/j.renene.2011.09.018 10.1016/j.solener.2005.08.002 10.2166/aqua.2017.046 10.1016/j.eswa.2013.05.029 10.1109/5.364486 10.1016/j.buildenv.2005.11.029 10.1016/j.desal.2004.06.203 10.1016/j.jhazmat.2016.12.010 |
ContentType | Journal Article |
Copyright | 2017 American Institute of Chemical Engineers Environ Prog |
Copyright_xml | – notice: 2017 American Institute of Chemical Engineers Environ Prog |
DBID | AAYXX CITATION |
DOI | 10.1002/ep.12664 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-7450 |
EndPage | 259 |
ExternalDocumentID | 10_1002_ep_12664 EP12664 |
Genre | article |
GroupedDBID | ..I .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOD ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BCU BDRZF BEC BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA GUQSH H.T H.X HF~ HGLYW HVGLF HZ~ ITG ITH IX1 J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PATMY PQQKQ PROAC PTHSS PYCSY Q.N Q11 QB0 QRW R.K ROL RWI RX1 S0X SJFOW SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX CITATION |
ID | FETCH-LOGICAL-c3324-274f160e0316ff84f9a19445c05fa2f7e217d13ccf8bdd2aa701725e10fb5fb63 |
IEDL.DBID | DR2 |
ISSN | 1944-7442 |
IngestDate | Fri Aug 23 02:44:32 EDT 2024 Sat Aug 24 01:15:30 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3324-274f160e0316ff84f9a19445c05fa2f7e217d13ccf8bdd2aa701725e10fb5fb63 |
ORCID | 0000-0003-4105-0920 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1002_ep_12664 wiley_primary_10_1002_ep_12664_EP12664 |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Environmental progress & sustainable energy |
PublicationYear | 2018 |
References | 2015; 360 2007; 203 1993; 23 2005; 172 2013; 3 2015; 5 2012; 288 2012 2017; 66 2013; 40 2016; 53 2016; 122 2003; 38 2011; 36 2008; 220 2016; 57 2016; 13 2009; 36 2006; 80 1995; 83 2007; 217 2015; 49 2001 2015; 83 2015; 154 2016; 86 2003; 4 2013; 311 2015; 118 2007; 42 2006; 189 2014; 56 2014; 33 2017; 325 2005; 79 2012; 40 e_1_2_7_6_1 Abad H.K.S. (e_1_2_7_11_1) 2013; 311 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Ahmed F. (e_1_2_7_2_1) 2015; 154 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 Mashaly A.F. (e_1_2_7_29_1) 2015; 5 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Mashaly A.F. (e_1_2_7_5_1) 2016; 57 Patel S.G. (e_1_2_7_9_1) 2006; 189 Yaïci W. (e_1_2_7_15_1) 2016; 86 Mashaly A.F. (e_1_2_7_31_1) 2017; 66 Shanmugan S. (e_1_2_7_25_1) 2013; 3 e_1_2_7_30_1 Monika A.K. (e_1_2_7_16_1) 2013; 3 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 Murugavel K.K. (e_1_2_7_3_1) 2008; 220 e_1_2_7_20_1 e_1_2_7_36_1 Taghavifar H. (e_1_2_7_38_1) 2014; 56 e_1_2_7_37_1 Mamlook R. (e_1_2_7_24_1) 2007; 203 e_1_2_7_39_1 Shanmugan S. (e_1_2_7_23_1) 2003; 4 Inan G. (e_1_2_7_34_1) 2007; 42 Ghafari G. (e_1_2_7_17_1) 2012 |
References_xml | – volume: 13 start-page: 1016 year: 2016 end-page: 1025 article-title: Comparison of ANN, MVR, and SWR models for computing thermal efficiency of a solar still publication-title: International Journal of Green Energy – volume: 80 start-page: 956 year: 2006 end-page: 967 article-title: Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction publication-title: Solar Energy – volume: 83 start-page: 378 year: 1995 end-page: 405 article-title: Neuro‐fuzzy modeling and control publication-title: Proceedings of IEEE – volume: 57 start-page: 12019 year: 2016 end-page: 12036 article-title: Assessing the performance of solar desalination system to approach near‐ZLD under hyper arid environment publication-title: Desalination and Water Treatment – volume: 172 start-page: 227 year: 2005 end-page: 234 article-title: A solar still augmented with a flat‐plate collector publication-title: Desalination – volume: 122 start-page: 146 year: 2016 end-page: 155 article-title: MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper‐arid environment publication-title: Computers and Electronics in Agriculture – volume: 83 start-page: 597 year: 2015 end-page: 607 article-title: ANN and ANFIS models to predict the performance of solar chimney power plants publication-title: Renewable Energy – volume: 36 start-page: 7809 year: 2009 end-page: 7817 article-title: An expert system of price forecasting for used cars using adaptive neuro‐fuzzy inference publication-title: Expert Systems with Applications – volume: 53 start-page: 1570 year: 2016 end-page: 1579 article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro‐fuzzy methodology; case study: City of Kerman, Iran publication-title: Renewable and Sustainable Energy Reviews – volume: 118 start-page: 41 year: 2015 end-page: 58 article-title: Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment publication-title: Solar Energy – start-page: 951 year: 2012 end-page: 956 article-title: Rainfall‐runoff Modeling Using Artificial Neural Networks and Adaptive Neuro‐Fuzzy Inference System Models publication-title: In uncertainty Modeling in Knowledge Engineering and Decision Making – year: 2001 – volume: 36 start-page: 250 year: 2011 end-page: 258 article-title: ANFIS‐based modelling for photovoltaic power supply system: A case study publication-title: Renewable Energy – volume: 220 start-page: 677 year: 2008 end-page: 686 article-title: Progresses in improving the effectiveness of the single basin passive solar still publication-title: Desalination – volume: 57 start-page: 28646 year: 2016 end-page: 28660 article-title: Neural network approach for predicting solar still production using agricultural drainage as a feedwater source publication-title: Desalination and Water Treatment – volume: 311 start-page: 206 year: 2013 end-page: 210 article-title: A novel integrated solar desalination system with a pulsating heat pipe publication-title: Desalination – volume: 5 start-page: 480 year: 2015 end-page: 493 article-title: Comparative investigation of artificial neural network learning algorithms for modeling solar still production publication-title: Journal of Water Reuse and Desalination – volume: 42 start-page: 1264 year: 2007 end-page: 1269 article-title: Prediction of sulfate expansion of PC motor using adaptive neuro‐fuzzy methodology publication-title: Building and Environment – volume: 49 start-page: 585 year: 2015 end-page: 609 article-title: Parameters influencing the productivity of solar stills—A review publication-title: Renewable and Sustainable Energy Reviews – volume: 40 start-page: 71 year: 2012 end-page: 79 article-title: Modeling solar still production using local weather data and artificial neural networks publication-title: Renewable Energy – volume: 33 start-page: 602 year: 2014 end-page: 612 article-title: Modeling of solar PV module and maximum power point tracking using ANFIS publication-title: Renewable and Sustainable Energy Reviews – volume: 38 start-page: 1303 year: 2003 end-page: 1308 article-title: Using Fuzzy neural network approach to estimate contractors' markup publication-title: Building and Environment – volume: 154 start-page: 1 year: 2015 end-page: 10 article-title: Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water publication-title: Agricultural Water Management – volume: 4 start-page: 579 year: 2003 end-page: 582 article-title: Fuzzy logic modeling of floating cum tilted‐wick solar still publication-title: International Journal of Recent Scientific Research – volume: 217 start-page: 52 year: 2007 end-page: 64 article-title: Experimental and theoretical study of a solar desalination system located in Cairo, Egypt publication-title: Desalination – volume: 360 start-page: 45 year: 2015 end-page: 51 article-title: Performance study on single basin single slope solar still with different water nanofluids publication-title: Desalination – volume: 40 start-page: 6055 year: 2013 end-page: 6063 article-title: An adaptive network‐based fuzzy inference system (ANFIS) for the forecasting: The case of close price indices publication-title: Expert Systems With Applications – volume: 3 start-page: 125 year: 2013 end-page: 134 article-title: Fuzzy logic modeling of single slope single basin solar still publication-title: International Journal of Fuzzy Mathematics and Systems – volume: 56 start-page: 37 year: 2014 end-page: 47 article-title: On the modeling of energy efficiency indices of agricultural tractor driving wheels applying adaptive neuro‐fuzzy inference system publication-title: Journal of Terramechanics – volume: 189 start-page: 287 year: 2006 end-page: 291 article-title: Use of photocatalysts in solar desalination publication-title: Desalination – volume: 203 start-page: 394 year: 2007 end-page: 402 article-title: Fuzzy sets implementation for the evaluation of factors affecting solar still production publication-title: Desalination – volume: 86 start-page: 302 year: 2016 end-page: 315 article-title: Adaptive neuro‐fuzzy inference system modelling for performance prediction of solar thermal energy system publication-title: Renewable Energy – volume: 79 start-page: 618 year: 2005 end-page: 623 article-title: Durability of polymeric glazing materials for solar applications publication-title: Solar Energy – volume: 3 start-page: 219 year: 2013 end-page: 222 article-title: Comparison of fuzzy logic and NEURO fuzzy algorithms for load sensor publication-title: International Journal of Soft Computing and Engineering – volume: 23 start-page: 665 year: 1993 end-page: 685 article-title: Anfis: Adaptive‐network‐based fuzzy inference system publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 66 start-page: 166 year: 2017 end-page: 177 article-title: Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate publication-title: Journal of Water Supply: Research and Technology‐Aqua – volume: 325 start-page: 301 year: 2017 end-page: 309 article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system publication-title: Journal of Hazardous Materials – volume: 288 start-page: 80 year: 2012 end-page: 92 article-title: Performance analysis of an evacuated multi‐stage solar water desalination system publication-title: Desalination – volume: 311 start-page: 206 year: 2013 ident: e_1_2_7_11_1 article-title: A novel integrated solar desalination system with a pulsating heat pipe publication-title: Desalination doi: 10.1016/j.desal.2012.10.029 contributor: fullname: Abad H.K.S. – volume: 56 start-page: 37 year: 2014 ident: e_1_2_7_38_1 article-title: On the modeling of energy efficiency indices of agricultural tractor driving wheels applying adaptive neuro‐fuzzy inference system publication-title: Journal of Terramechanics doi: 10.1016/j.jterra.2014.08.002 contributor: fullname: Taghavifar H. – ident: e_1_2_7_20_1 doi: 10.1016/j.renene.2015.04.072 – volume: 86 start-page: 302 year: 2016 ident: e_1_2_7_15_1 article-title: Adaptive neuro‐fuzzy inference system modelling for performance prediction of solar thermal energy system publication-title: Renewable Energy doi: 10.1016/j.renene.2015.08.028 contributor: fullname: Yaïci W. – ident: e_1_2_7_36_1 doi: 10.1016/S0360-1323(03)00135-5 – volume: 5 start-page: 480 year: 2015 ident: e_1_2_7_29_1 article-title: Comparative investigation of artificial neural network learning algorithms for modeling solar still production publication-title: Journal of Water Reuse and Desalination doi: 10.2166/wrd.2015.009 contributor: fullname: Mashaly A.F. – ident: e_1_2_7_30_1 doi: 10.1016/j.compag.2016.01.030 – volume: 220 start-page: 677 year: 2008 ident: e_1_2_7_3_1 article-title: Progresses in improving the effectiveness of the single basin passive solar still publication-title: Desalination doi: 10.1016/j.desal.2007.01.062 contributor: fullname: Murugavel K.K. – ident: e_1_2_7_21_1 doi: 10.1016/j.rser.2015.09.028 – start-page: 951 year: 2012 ident: e_1_2_7_17_1 article-title: Rainfall‐runoff Modeling Using Artificial Neural Networks and Adaptive Neuro‐Fuzzy Inference System Models publication-title: In uncertainty Modeling in Knowledge Engineering and Decision Making doi: 10.1142/9789814417747_0152 contributor: fullname: Ghafari G. – ident: e_1_2_7_6_1 doi: 10.1016/j.desal.2015.01.004 – ident: e_1_2_7_13_1 doi: 10.1016/j.desal.2011.12.016 – volume: 3 start-page: 125 year: 2013 ident: e_1_2_7_25_1 article-title: Fuzzy logic modeling of single slope single basin solar still publication-title: International Journal of Fuzzy Mathematics and Systems contributor: fullname: Shanmugan S. – ident: e_1_2_7_26_1 doi: 10.1016/j.solener.2015.05.013 – volume: 3 start-page: 219 year: 2013 ident: e_1_2_7_16_1 article-title: Comparison of fuzzy logic and NEURO fuzzy algorithms for load sensor publication-title: International Journal of Soft Computing and Engineering contributor: fullname: Monika A.K. – ident: e_1_2_7_35_1 doi: 10.1016/j.eswa.2008.11.019 – volume: 57 start-page: 12019 year: 2016 ident: e_1_2_7_5_1 article-title: Assessing the performance of solar desalination system to approach near‐ZLD under hyper arid environment publication-title: Desalination and Water Treatment doi: 10.1080/19443994.2015.1048738 contributor: fullname: Mashaly A.F. – volume: 4 start-page: 579 year: 2003 ident: e_1_2_7_23_1 article-title: Fuzzy logic modeling of floating cum tilted‐wick solar still publication-title: International Journal of Recent Scientific Research contributor: fullname: Shanmugan S. – volume: 189 start-page: 287 year: 2006 ident: e_1_2_7_9_1 article-title: Use of photocatalysts in solar desalination publication-title: Desalination doi: 10.1016/j.desal.2005.07.010 contributor: fullname: Patel S.G. – ident: e_1_2_7_32_1 doi: 10.1109/21.256541 – ident: e_1_2_7_7_1 doi: 10.1016/j.solener.2005.04.011 – volume: 154 start-page: 1 year: 2015 ident: e_1_2_7_2_1 article-title: Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2015.02.009 contributor: fullname: Ahmed F. – ident: e_1_2_7_27_1 doi: 10.1080/19443994.2016.1193770 – ident: e_1_2_7_22_1 doi: 10.1016/j.renene.2010.06.028 – ident: e_1_2_7_12_1 doi: 10.1016/j.desal.2007.01.012 – volume: 203 start-page: 394 year: 2007 ident: e_1_2_7_24_1 article-title: Fuzzy sets implementation for the evaluation of factors affecting solar still production publication-title: Desalination doi: 10.1016/j.desal.2006.02.024 contributor: fullname: Mamlook R. – ident: e_1_2_7_19_1 doi: 10.1016/j.rser.2014.02.014 – ident: e_1_2_7_4_1 doi: 10.1016/j.rser.2015.04.136 – ident: e_1_2_7_28_1 doi: 10.1080/15435075.2016.1206000 – ident: e_1_2_7_18_1 – ident: e_1_2_7_14_1 doi: 10.1016/j.renene.2011.09.018 – ident: e_1_2_7_8_1 doi: 10.1016/j.solener.2005.08.002 – volume: 66 start-page: 166 year: 2017 ident: e_1_2_7_31_1 article-title: Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate publication-title: Journal of Water Supply: Research and Technology‐Aqua doi: 10.2166/aqua.2017.046 contributor: fullname: Mashaly A.F. – ident: e_1_2_7_33_1 doi: 10.1016/j.eswa.2013.05.029 – ident: e_1_2_7_37_1 doi: 10.1109/5.364486 – volume: 42 start-page: 1264 year: 2007 ident: e_1_2_7_34_1 article-title: Prediction of sulfate expansion of PC motor using adaptive neuro‐fuzzy methodology publication-title: Building and Environment doi: 10.1016/j.buildenv.2005.11.029 contributor: fullname: Inan G. – ident: e_1_2_7_10_1 doi: 10.1016/j.desal.2004.06.203 – ident: e_1_2_7_39_1 doi: 10.1016/j.jhazmat.2016.12.010 |
SSID | ssj0063499 |
Score | 2.2266634 |
Snippet | Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 249 |
SubjectTerms | adaptive neuro‐fuzzy inference system membership function modeling solar desalination solar still |
Title | Membership function comparative investigation on productivity forecasting of solar still using adaptive neuro‐fuzzy inference system approach |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12664 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD-KQP3sU7EcS3bm2aNu2j6MYQJiIOBj6UNE1kKFtx24N78hvoZ_STeE6yblMQRCiU0rSE3M7_hHN-IeRMmjTWvsZsHF94XGvupVykXhFHIahdJmObIde-iVsdft2NutOoSsyFcXyI2YYbzgy7XuMEl_mwPoeG6rIWgHVBFGgQCozmurqbkaPikNujI8FF557gnFXcWZ_Vqw-_WaJFZWpNS3OdPFSVchElT7XxKK-pyQ9e4_9qvUHWpoqTXrghskmWdH-LrC5wCLfJe1vjuSAYuEXR0GFnUTXngtPenMYBb-AqHSjWnjxBQfdqJYcYQE0Hhg7RW6bw-PxMMaz-kcpClvY_lp75-fZhxpPJK-1VyYbU8aRpBTjfIZ1m4_6y5U1PavBUCIrMA9fWBLGvYYWIjUm4SSW2fKT8yEhmhAbHpwhCpUySFwWTUqDrGenAN3lk8jjcJcv9QV_vEcqkkYlIjeIgdAoJRXPUNAmH6awiwfbJadVrWemAHJlDL7NMl5lt3H1ybvvg1wJZ49beD_5a8JCsgFJK3N7LEVkevYz1MaiRUX5ix90XRPvf7w |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32J9riDeUtNk88KTaEvVtoi00IMQNptdKZY22PZgT_4D_Y3-Emc3TVsFQYRACNmEZWdn55th5huAUyYDV5hCVeOYnkGFoEZAvcCIXcdGtGsxV1fI1RtutUVv2047BxdZLUzKDzENuCnN0Oe1UnAVkD6fsYaKpFhC80IXYBG13VbtC64fptxRrk1180h00qnhUWplzLOmdZ59-c0WzWNTbVwqa_CYTSvNKXkujoZRkY9_MDb-c97rsDoBneQy3SUbkBO9TViZoyLcgve6UK1BVO4WUbZOyYvwGTU46cwIOfANXknKFaubTxCEvoKzgcqhJn1JBsphJvjY7RKVWf9EWMwS_R9NoPn59iFH4_Er6WT1hiSllCYZx_k2tCrl5lXVmDRrMLiNoMxA71aWXFPgIeFK6VMZMLX0DjcdySzpCfR94pLNufSjOLYY85T36YiSKSNHRq69A_levyd2gVhMMt8LJKeIdWKGQyMFa3yKGs0dzyrASSa2MEk5OcKUfdkKRRLqxS3AmRbCrwPC8r2-7_114DEsVZv1Wli7adztwzICJz8NxRxAfvgyEocITobRkd6EXzPg5Ak |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C7OawTxrbNN07R9FLcxLxtDHAx8KGmayHBsxW0P7slvoJ_RT-JJum5TEEQolNK0hNzO_4RzfkHojKuQSVvqbBzbt6iU1AqpH1oJ81xQu4QzkyFXb7Bai960vfYkqlLnwmR8iOmGm54ZZr3WEzxN1MUMGirTkgPWhS6iJcpcW4dzle-n6CjmUnN2JPjo1PIpJTl41iYX-ZffTNG8NDW2pbqOHvNaZSElz6XRMC6J8Q9g4_-qvYHWJpITX2ZjZBMtyN4WWp0DEW6j97rUB4PoyC2sLZ3uLSxmYHDcmeE44A1caUaKNUdPYBC-UvCBjqDGfYUH2l3G8NjtYh1X_4R5wlPzH4PP_Hz7UKPx-BV38mxDnAGlcU4430GtauXhqmZNjmqwhAuSzALfVjnMlrBEMKUCqkKuW94Ttqc4Ub4EzydxXCFUECcJ4dzXvqcnHVvFnoqZu4sKvX5P7iFMuOKBHypBQekkHIrGWtQEFOaz8HxSRKd5r0VpRuSIMvYyiWQamcYtonPTB78WiCpNc9__a8ETtNwsV6O768btAVoB1RRk-zCHqDB8GckjUCbD-NgMwS-yN-K4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membership+function+comparative+investigation+on+productivity+forecasting+of+solar+still+using+adaptive+neuro%E2%80%90fuzzy+inference+system+approach&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Mashaly%2C+Ahmed+F.&rft.au=Alazba%2C+A.+A.&rft.date=2018-01-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=37&rft.issue=1&rft.spage=249&rft.epage=259&rft_id=info:doi/10.1002%2Fep.12664&rft.externalDBID=10.1002%252Fep.12664&rft.externalDocID=EP12664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon |