Membership function comparative investigation on productivity forecasting of solar still using adaptive neuro‐fuzzy inference system approach

Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SS...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental progress & sustainable energy Vol. 37; no. 1; pp. 249 - 259
Main Authors Mashaly, Ahmed F., Alazba, A. A.
Format Journal Article
LanguageEnglish
Published 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m2/h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018
AbstractList Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m 2 /h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018
Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar still systems. This study applied an adaptive neuro‐fuzzy inference system (ANFIS) and different membership functions (MFs) to predict the SSP required by designers, operators, and beneficiaries of solar stills. The output of this research can be used as a reference for designing and managing solar stills that could lead to optimizing the performance. The modeling process was based on real‐field experimental data. The model considers the solar radiation, relative humidity, total dissolved solids of the feed, total dissolved solids of the brine, and feed flow rate as the input variables. The results show that ANFIS forecasting with generalized bell MF (GBELLMF) produced the highest correlation coefficient (CC) and the smallest root mean square error (RMSE) when compared with other MF types. Thus, the ANFIS model with GBELLMF (CC = 0.99; RMSE = 0.03 L/m2/h) provides the best SSP prediction accuracy, which is better than other models with MFs. In addition, the statistical indicators demonstrate that the ANFIS model is better for predicting the SSP than multiple linear regressions. These findings demonstrate that ANFIS can be applied to forecast the SSP using weather and operational data as inputs with the best membership function (which is GBELLMF). © 2017 American Institute of Chemical Engineers Environ Prog, 37: 249–259, 2018
Author Alazba, A. A.
Mashaly, Ahmed F.
Author_xml – sequence: 1
  givenname: Ahmed F.
  orcidid: 0000-0003-4105-0920
  surname: Mashaly
  fullname: Mashaly, Ahmed F.
  email: mashaly.ahmed@gmail.com
  organization: Alamoudi Chair for Water Researches, King Saud University
– sequence: 2
  givenname: A. A.
  surname: Alazba
  fullname: Alazba, A. A.
  organization: King Saud University
BookMark eNp1kN9KwzAUxoNMcJuCj5BLbzqTNG3XSxnzD0z0Qq9Lmp5skTYJSTvprnwDfUafxG4T74QD58_344PzTdDIWAMIXVIyo4Swa3AzytKUn6AxzTmPMp6Q0d_M2RmahPBGSBrzPB-jz0doSvBhox1WnZGttgZL2zjhRau3gLXZQmj1WhyUoZy3VTdwW932WFkPUgy6WWOrcLC18HhY6xp3YX8UlXAHHwOdt98fX6rb7frBVYEHIwGHPrTQYOEGXyE35-hUiTrAxW-fotfb5cviPlo93T0sblaRjGPGI5ZxRVMCJKapUnOucrH_MJEkUYKpDBjNKhpLqeZlVTEhMkIzlgAlqkxUmcZTdHX0ld6G4EEVzutG-L6gpNgHWYArDkEOaHRE33UN_b9csXw-8j9Zrnvw
CitedBy_id crossref_primary_10_1016_j_eswa_2021_116138
crossref_primary_10_1016_j_seta_2020_100670
crossref_primary_10_2166_aqua_2019_058
crossref_primary_10_1007_s13762_024_05571_2
crossref_primary_10_3389_fenrg_2021_742615
crossref_primary_10_1002_ep_13227
crossref_primary_10_1155_2023_9335814
Cites_doi 10.1016/j.desal.2012.10.029
10.1016/j.jterra.2014.08.002
10.1016/j.renene.2015.04.072
10.1016/j.renene.2015.08.028
10.1016/S0360-1323(03)00135-5
10.2166/wrd.2015.009
10.1016/j.compag.2016.01.030
10.1016/j.desal.2007.01.062
10.1016/j.rser.2015.09.028
10.1142/9789814417747_0152
10.1016/j.desal.2015.01.004
10.1016/j.desal.2011.12.016
10.1016/j.solener.2015.05.013
10.1016/j.eswa.2008.11.019
10.1080/19443994.2015.1048738
10.1016/j.desal.2005.07.010
10.1109/21.256541
10.1016/j.solener.2005.04.011
10.1016/j.agwat.2015.02.009
10.1080/19443994.2016.1193770
10.1016/j.renene.2010.06.028
10.1016/j.desal.2007.01.012
10.1016/j.desal.2006.02.024
10.1016/j.rser.2014.02.014
10.1016/j.rser.2015.04.136
10.1080/15435075.2016.1206000
10.1016/j.renene.2011.09.018
10.1016/j.solener.2005.08.002
10.2166/aqua.2017.046
10.1016/j.eswa.2013.05.029
10.1109/5.364486
10.1016/j.buildenv.2005.11.029
10.1016/j.desal.2004.06.203
10.1016/j.jhazmat.2016.12.010
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers Environ Prog
Copyright_xml – notice: 2017 American Institute of Chemical Engineers Environ Prog
DBID AAYXX
CITATION
DOI 10.1002/ep.12664
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-7450
EndPage 259
ExternalDocumentID 10_1002_ep_12664
EP12664
Genre article
GroupedDBID ..I
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BCU
BDRZF
BEC
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GUQSH
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
ITG
ITH
IX1
J0M
JPC
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PATMY
PQQKQ
PROAC
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
S0X
SJFOW
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
CITATION
ID FETCH-LOGICAL-c3324-274f160e0316ff84f9a19445c05fa2f7e217d13ccf8bdd2aa701725e10fb5fb63
IEDL.DBID DR2
ISSN 1944-7442
IngestDate Fri Aug 23 02:44:32 EDT 2024
Sat Aug 24 01:15:30 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3324-274f160e0316ff84f9a19445c05fa2f7e217d13ccf8bdd2aa701725e10fb5fb63
ORCID 0000-0003-4105-0920
PageCount 11
ParticipantIDs crossref_primary_10_1002_ep_12664
wiley_primary_10_1002_ep_12664_EP12664
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Environmental progress & sustainable energy
PublicationYear 2018
References 2015; 360
2007; 203
1993; 23
2005; 172
2013; 3
2015; 5
2012; 288
2012
2017; 66
2013; 40
2016; 53
2016; 122
2003; 38
2011; 36
2008; 220
2016; 57
2016; 13
2009; 36
2006; 80
1995; 83
2007; 217
2015; 49
2001
2015; 83
2015; 154
2016; 86
2003; 4
2013; 311
2015; 118
2007; 42
2006; 189
2014; 56
2014; 33
2017; 325
2005; 79
2012; 40
e_1_2_7_6_1
Abad H.K.S. (e_1_2_7_11_1) 2013; 311
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
Ahmed F. (e_1_2_7_2_1) 2015; 154
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
Mashaly A.F. (e_1_2_7_29_1) 2015; 5
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Mashaly A.F. (e_1_2_7_5_1) 2016; 57
Patel S.G. (e_1_2_7_9_1) 2006; 189
Yaïci W. (e_1_2_7_15_1) 2016; 86
Mashaly A.F. (e_1_2_7_31_1) 2017; 66
Shanmugan S. (e_1_2_7_25_1) 2013; 3
e_1_2_7_30_1
Monika A.K. (e_1_2_7_16_1) 2013; 3
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
Murugavel K.K. (e_1_2_7_3_1) 2008; 220
e_1_2_7_20_1
e_1_2_7_36_1
Taghavifar H. (e_1_2_7_38_1) 2014; 56
e_1_2_7_37_1
Mamlook R. (e_1_2_7_24_1) 2007; 203
e_1_2_7_39_1
Shanmugan S. (e_1_2_7_23_1) 2003; 4
Inan G. (e_1_2_7_34_1) 2007; 42
Ghafari G. (e_1_2_7_17_1) 2012
References_xml – volume: 13
  start-page: 1016
  year: 2016
  end-page: 1025
  article-title: Comparison of ANN, MVR, and SWR models for computing thermal efficiency of a solar still
  publication-title: International Journal of Green Energy
– volume: 80
  start-page: 956
  year: 2006
  end-page: 967
  article-title: Thermal modeling of passive and active solar stills for different depths of water by using the concept of solar fraction
  publication-title: Solar Energy
– volume: 83
  start-page: 378
  year: 1995
  end-page: 405
  article-title: Neuro‐fuzzy modeling and control
  publication-title: Proceedings of IEEE
– volume: 57
  start-page: 12019
  year: 2016
  end-page: 12036
  article-title: Assessing the performance of solar desalination system to approach near‐ZLD under hyper arid environment
  publication-title: Desalination and Water Treatment
– volume: 172
  start-page: 227
  year: 2005
  end-page: 234
  article-title: A solar still augmented with a flat‐plate collector
  publication-title: Desalination
– volume: 122
  start-page: 146
  year: 2016
  end-page: 155
  article-title: MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper‐arid environment
  publication-title: Computers and Electronics in Agriculture
– volume: 83
  start-page: 597
  year: 2015
  end-page: 607
  article-title: ANN and ANFIS models to predict the performance of solar chimney power plants
  publication-title: Renewable Energy
– volume: 36
  start-page: 7809
  year: 2009
  end-page: 7817
  article-title: An expert system of price forecasting for used cars using adaptive neuro‐fuzzy inference
  publication-title: Expert Systems with Applications
– volume: 53
  start-page: 1570
  year: 2016
  end-page: 1579
  article-title: Determining the most important variables for diffuse solar radiation prediction using adaptive neuro‐fuzzy methodology; case study: City of Kerman, Iran
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 118
  start-page: 41
  year: 2015
  end-page: 58
  article-title: Predictive model for assessing and optimizing solar still performance using artificial neural network under hyper arid environment
  publication-title: Solar Energy
– start-page: 951
  year: 2012
  end-page: 956
  article-title: Rainfall‐runoff Modeling Using Artificial Neural Networks and Adaptive Neuro‐Fuzzy Inference System Models
  publication-title: In uncertainty Modeling in Knowledge Engineering and Decision Making
– year: 2001
– volume: 36
  start-page: 250
  year: 2011
  end-page: 258
  article-title: ANFIS‐based modelling for photovoltaic power supply system: A case study
  publication-title: Renewable Energy
– volume: 220
  start-page: 677
  year: 2008
  end-page: 686
  article-title: Progresses in improving the effectiveness of the single basin passive solar still
  publication-title: Desalination
– volume: 57
  start-page: 28646
  year: 2016
  end-page: 28660
  article-title: Neural network approach for predicting solar still production using agricultural drainage as a feedwater source
  publication-title: Desalination and Water Treatment
– volume: 311
  start-page: 206
  year: 2013
  end-page: 210
  article-title: A novel integrated solar desalination system with a pulsating heat pipe
  publication-title: Desalination
– volume: 5
  start-page: 480
  year: 2015
  end-page: 493
  article-title: Comparative investigation of artificial neural network learning algorithms for modeling solar still production
  publication-title: Journal of Water Reuse and Desalination
– volume: 42
  start-page: 1264
  year: 2007
  end-page: 1269
  article-title: Prediction of sulfate expansion of PC motor using adaptive neuro‐fuzzy methodology
  publication-title: Building and Environment
– volume: 49
  start-page: 585
  year: 2015
  end-page: 609
  article-title: Parameters influencing the productivity of solar stills—A review
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 40
  start-page: 71
  year: 2012
  end-page: 79
  article-title: Modeling solar still production using local weather data and artificial neural networks
  publication-title: Renewable Energy
– volume: 33
  start-page: 602
  year: 2014
  end-page: 612
  article-title: Modeling of solar PV module and maximum power point tracking using ANFIS
  publication-title: Renewable and Sustainable Energy Reviews
– volume: 38
  start-page: 1303
  year: 2003
  end-page: 1308
  article-title: Using Fuzzy neural network approach to estimate contractors' markup
  publication-title: Building and Environment
– volume: 154
  start-page: 1
  year: 2015
  end-page: 10
  article-title: Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water
  publication-title: Agricultural Water Management
– volume: 4
  start-page: 579
  year: 2003
  end-page: 582
  article-title: Fuzzy logic modeling of floating cum tilted‐wick solar still
  publication-title: International Journal of Recent Scientific Research
– volume: 217
  start-page: 52
  year: 2007
  end-page: 64
  article-title: Experimental and theoretical study of a solar desalination system located in Cairo, Egypt
  publication-title: Desalination
– volume: 360
  start-page: 45
  year: 2015
  end-page: 51
  article-title: Performance study on single basin single slope solar still with different water nanofluids
  publication-title: Desalination
– volume: 40
  start-page: 6055
  year: 2013
  end-page: 6063
  article-title: An adaptive network‐based fuzzy inference system (ANFIS) for the forecasting: The case of close price indices
  publication-title: Expert Systems With Applications
– volume: 3
  start-page: 125
  year: 2013
  end-page: 134
  article-title: Fuzzy logic modeling of single slope single basin solar still
  publication-title: International Journal of Fuzzy Mathematics and Systems
– volume: 56
  start-page: 37
  year: 2014
  end-page: 47
  article-title: On the modeling of energy efficiency indices of agricultural tractor driving wheels applying adaptive neuro‐fuzzy inference system
  publication-title: Journal of Terramechanics
– volume: 189
  start-page: 287
  year: 2006
  end-page: 291
  article-title: Use of photocatalysts in solar desalination
  publication-title: Desalination
– volume: 203
  start-page: 394
  year: 2007
  end-page: 402
  article-title: Fuzzy sets implementation for the evaluation of factors affecting solar still production
  publication-title: Desalination
– volume: 86
  start-page: 302
  year: 2016
  end-page: 315
  article-title: Adaptive neuro‐fuzzy inference system modelling for performance prediction of solar thermal energy system
  publication-title: Renewable Energy
– volume: 79
  start-page: 618
  year: 2005
  end-page: 623
  article-title: Durability of polymeric glazing materials for solar applications
  publication-title: Solar Energy
– volume: 3
  start-page: 219
  year: 2013
  end-page: 222
  article-title: Comparison of fuzzy logic and NEURO fuzzy algorithms for load sensor
  publication-title: International Journal of Soft Computing and Engineering
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  article-title: Anfis: Adaptive‐network‐based fuzzy inference system
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 66
  start-page: 166
  year: 2017
  end-page: 177
  article-title: Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate
  publication-title: Journal of Water Supply: Research and Technology‐Aqua
– volume: 325
  start-page: 301
  year: 2017
  end-page: 309
  article-title: A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system
  publication-title: Journal of Hazardous Materials
– volume: 288
  start-page: 80
  year: 2012
  end-page: 92
  article-title: Performance analysis of an evacuated multi‐stage solar water desalination system
  publication-title: Desalination
– volume: 311
  start-page: 206
  year: 2013
  ident: e_1_2_7_11_1
  article-title: A novel integrated solar desalination system with a pulsating heat pipe
  publication-title: Desalination
  doi: 10.1016/j.desal.2012.10.029
  contributor:
    fullname: Abad H.K.S.
– volume: 56
  start-page: 37
  year: 2014
  ident: e_1_2_7_38_1
  article-title: On the modeling of energy efficiency indices of agricultural tractor driving wheels applying adaptive neuro‐fuzzy inference system
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2014.08.002
  contributor:
    fullname: Taghavifar H.
– ident: e_1_2_7_20_1
  doi: 10.1016/j.renene.2015.04.072
– volume: 86
  start-page: 302
  year: 2016
  ident: e_1_2_7_15_1
  article-title: Adaptive neuro‐fuzzy inference system modelling for performance prediction of solar thermal energy system
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2015.08.028
  contributor:
    fullname: Yaïci W.
– ident: e_1_2_7_36_1
  doi: 10.1016/S0360-1323(03)00135-5
– volume: 5
  start-page: 480
  year: 2015
  ident: e_1_2_7_29_1
  article-title: Comparative investigation of artificial neural network learning algorithms for modeling solar still production
  publication-title: Journal of Water Reuse and Desalination
  doi: 10.2166/wrd.2015.009
  contributor:
    fullname: Mashaly A.F.
– ident: e_1_2_7_30_1
  doi: 10.1016/j.compag.2016.01.030
– volume: 220
  start-page: 677
  year: 2008
  ident: e_1_2_7_3_1
  article-title: Progresses in improving the effectiveness of the single basin passive solar still
  publication-title: Desalination
  doi: 10.1016/j.desal.2007.01.062
  contributor:
    fullname: Murugavel K.K.
– ident: e_1_2_7_21_1
  doi: 10.1016/j.rser.2015.09.028
– start-page: 951
  year: 2012
  ident: e_1_2_7_17_1
  article-title: Rainfall‐runoff Modeling Using Artificial Neural Networks and Adaptive Neuro‐Fuzzy Inference System Models
  publication-title: In uncertainty Modeling in Knowledge Engineering and Decision Making
  doi: 10.1142/9789814417747_0152
  contributor:
    fullname: Ghafari G.
– ident: e_1_2_7_6_1
  doi: 10.1016/j.desal.2015.01.004
– ident: e_1_2_7_13_1
  doi: 10.1016/j.desal.2011.12.016
– volume: 3
  start-page: 125
  year: 2013
  ident: e_1_2_7_25_1
  article-title: Fuzzy logic modeling of single slope single basin solar still
  publication-title: International Journal of Fuzzy Mathematics and Systems
  contributor:
    fullname: Shanmugan S.
– ident: e_1_2_7_26_1
  doi: 10.1016/j.solener.2015.05.013
– volume: 3
  start-page: 219
  year: 2013
  ident: e_1_2_7_16_1
  article-title: Comparison of fuzzy logic and NEURO fuzzy algorithms for load sensor
  publication-title: International Journal of Soft Computing and Engineering
  contributor:
    fullname: Monika A.K.
– ident: e_1_2_7_35_1
  doi: 10.1016/j.eswa.2008.11.019
– volume: 57
  start-page: 12019
  year: 2016
  ident: e_1_2_7_5_1
  article-title: Assessing the performance of solar desalination system to approach near‐ZLD under hyper arid environment
  publication-title: Desalination and Water Treatment
  doi: 10.1080/19443994.2015.1048738
  contributor:
    fullname: Mashaly A.F.
– volume: 4
  start-page: 579
  year: 2003
  ident: e_1_2_7_23_1
  article-title: Fuzzy logic modeling of floating cum tilted‐wick solar still
  publication-title: International Journal of Recent Scientific Research
  contributor:
    fullname: Shanmugan S.
– volume: 189
  start-page: 287
  year: 2006
  ident: e_1_2_7_9_1
  article-title: Use of photocatalysts in solar desalination
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.07.010
  contributor:
    fullname: Patel S.G.
– ident: e_1_2_7_32_1
  doi: 10.1109/21.256541
– ident: e_1_2_7_7_1
  doi: 10.1016/j.solener.2005.04.011
– volume: 154
  start-page: 1
  year: 2015
  ident: e_1_2_7_2_1
  article-title: Area determination of solar desalination system for irrigating crops in greenhouses using different quality feed water
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2015.02.009
  contributor:
    fullname: Ahmed F.
– ident: e_1_2_7_27_1
  doi: 10.1080/19443994.2016.1193770
– ident: e_1_2_7_22_1
  doi: 10.1016/j.renene.2010.06.028
– ident: e_1_2_7_12_1
  doi: 10.1016/j.desal.2007.01.012
– volume: 203
  start-page: 394
  year: 2007
  ident: e_1_2_7_24_1
  article-title: Fuzzy sets implementation for the evaluation of factors affecting solar still production
  publication-title: Desalination
  doi: 10.1016/j.desal.2006.02.024
  contributor:
    fullname: Mamlook R.
– ident: e_1_2_7_19_1
  doi: 10.1016/j.rser.2014.02.014
– ident: e_1_2_7_4_1
  doi: 10.1016/j.rser.2015.04.136
– ident: e_1_2_7_28_1
  doi: 10.1080/15435075.2016.1206000
– ident: e_1_2_7_18_1
– ident: e_1_2_7_14_1
  doi: 10.1016/j.renene.2011.09.018
– ident: e_1_2_7_8_1
  doi: 10.1016/j.solener.2005.08.002
– volume: 66
  start-page: 166
  year: 2017
  ident: e_1_2_7_31_1
  article-title: Artificial intelligence for predicting solar still production and comparison with stepwise regression under arid climate
  publication-title: Journal of Water Supply: Research and Technology‐Aqua
  doi: 10.2166/aqua.2017.046
  contributor:
    fullname: Mashaly A.F.
– ident: e_1_2_7_33_1
  doi: 10.1016/j.eswa.2013.05.029
– ident: e_1_2_7_37_1
  doi: 10.1109/5.364486
– volume: 42
  start-page: 1264
  year: 2007
  ident: e_1_2_7_34_1
  article-title: Prediction of sulfate expansion of PC motor using adaptive neuro‐fuzzy methodology
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2005.11.029
  contributor:
    fullname: Inan G.
– ident: e_1_2_7_10_1
  doi: 10.1016/j.desal.2004.06.203
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jhazmat.2016.12.010
SSID ssj0063499
Score 2.2266634
Snippet Modeling solar still productivity (SSP) is one of the most studied topics in solar desalination due to it having essential applications in the design of solar...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 249
SubjectTerms adaptive neuro‐fuzzy inference system
membership function
modeling
solar desalination
solar still
Title Membership function comparative investigation on productivity forecasting of solar still using adaptive neuro‐fuzzy inference system approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fep.12664
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD-KQP3sU7EcS3bm2aNu2j6MYQJiIOBj6UNE1kKFtx24N78hvoZ_STeE6yblMQRCiU0rSE3M7_hHN-IeRMmjTWvsZsHF94XGvupVykXhFHIahdJmObIde-iVsdft2NutOoSsyFcXyI2YYbzgy7XuMEl_mwPoeG6rIWgHVBFGgQCozmurqbkaPikNujI8FF557gnFXcWZ_Vqw-_WaJFZWpNS3OdPFSVchElT7XxKK-pyQ9e4_9qvUHWpoqTXrghskmWdH-LrC5wCLfJe1vjuSAYuEXR0GFnUTXngtPenMYBb-AqHSjWnjxBQfdqJYcYQE0Hhg7RW6bw-PxMMaz-kcpClvY_lp75-fZhxpPJK-1VyYbU8aRpBTjfIZ1m4_6y5U1PavBUCIrMA9fWBLGvYYWIjUm4SSW2fKT8yEhmhAbHpwhCpUySFwWTUqDrGenAN3lk8jjcJcv9QV_vEcqkkYlIjeIgdAoJRXPUNAmH6awiwfbJadVrWemAHJlDL7NMl5lt3H1ybvvg1wJZ49beD_5a8JCsgFJK3N7LEVkevYz1MaiRUX5ix90XRPvf7w
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH32J9riDeUtNk88KTaEvVtoi00IMQNptdKZY22PZgT_4D_Y3-Emc3TVsFQYRACNmEZWdn55th5huAUyYDV5hCVeOYnkGFoEZAvcCIXcdGtGsxV1fI1RtutUVv2047BxdZLUzKDzENuCnN0Oe1UnAVkD6fsYaKpFhC80IXYBG13VbtC64fptxRrk1180h00qnhUWplzLOmdZ59-c0WzWNTbVwqa_CYTSvNKXkujoZRkY9_MDb-c97rsDoBneQy3SUbkBO9TViZoyLcgve6UK1BVO4WUbZOyYvwGTU46cwIOfANXknKFaubTxCEvoKzgcqhJn1JBsphJvjY7RKVWf9EWMwS_R9NoPn59iFH4_Er6WT1hiSllCYZx_k2tCrl5lXVmDRrMLiNoMxA71aWXFPgIeFK6VMZMLX0DjcdySzpCfR94pLNufSjOLYY85T36YiSKSNHRq69A_levyd2gVhMMt8LJKeIdWKGQyMFa3yKGs0dzyrASSa2MEk5OcKUfdkKRRLqxS3AmRbCrwPC8r2-7_114DEsVZv1Wli7adztwzICJz8NxRxAfvgyEocITobRkd6EXzPg5Ak
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeDThB98C7OawTxrbNN07R9FLcxLxtDHAx8KGmayHBsxW0P7slvoJ_RT-JJum5TEEQolNK0hNzO_4RzfkHojKuQSVvqbBzbt6iU1AqpH1oJ81xQu4QzkyFXb7Bai960vfYkqlLnwmR8iOmGm54ZZr3WEzxN1MUMGirTkgPWhS6iJcpcW4dzle-n6CjmUnN2JPjo1PIpJTl41iYX-ZffTNG8NDW2pbqOHvNaZSElz6XRMC6J8Q9g4_-qvYHWJpITX2ZjZBMtyN4WWp0DEW6j97rUB4PoyC2sLZ3uLSxmYHDcmeE44A1caUaKNUdPYBC-UvCBjqDGfYUH2l3G8NjtYh1X_4R5wlPzH4PP_Hz7UKPx-BV38mxDnAGlcU4430GtauXhqmZNjmqwhAuSzALfVjnMlrBEMKUCqkKuW94Ttqc4Ub4EzydxXCFUECcJ4dzXvqcnHVvFnoqZu4sKvX5P7iFMuOKBHypBQekkHIrGWtQEFOaz8HxSRKd5r0VpRuSIMvYyiWQamcYtonPTB78WiCpNc9__a8ETtNwsV6O768btAVoB1RRk-zCHqDB8GckjUCbD-NgMwS-yN-K4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Membership+function+comparative+investigation+on+productivity+forecasting+of+solar+still+using+adaptive+neuro%E2%80%90fuzzy+inference+system+approach&rft.jtitle=Environmental+progress+%26+sustainable+energy&rft.au=Mashaly%2C+Ahmed+F.&rft.au=Alazba%2C+A.+A.&rft.date=2018-01-01&rft.issn=1944-7442&rft.eissn=1944-7450&rft.volume=37&rft.issue=1&rft.spage=249&rft.epage=259&rft_id=info:doi/10.1002%2Fep.12664&rft.externalDBID=10.1002%252Fep.12664&rft.externalDocID=EP12664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-7442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-7442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-7442&client=summon