Concentration and regularization of random graphs
This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possib...
Saved in:
Published in | Random structures & algorithms Vol. 51; no. 3; pp. 538 - 561 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1042-9832 1098-2418 |
DOI | 10.1002/rsa.20713 |
Cover
Loading…
Abstract | This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o(logn) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d=maxnpij. Then we show that the resulting adjacency matrix A′ concentrates with the optimal rate: ||A′−EA||=O(d). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L(A′)−L(EA′)||=O(1/d). Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017 |
---|---|
AbstractList | This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o(logn) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d=maxnpij. Then we show that the resulting adjacency matrix A′ concentrates with the optimal rate: ||A′−EA||=O(d). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L(A′)−L(EA′)||=O(1/d). Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017 This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities p ij . Sparse random graphs whose expected degrees are fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O ( d ) where . Then we show that the resulting adjacency matrix concentrates with the optimal rate: . Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: . Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017 This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös-Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o (log n ) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d =max n p i j. Then we show that the resulting adjacency matrix A ' concentrates with the optimal rate: ||A '-E A ||=O (d ). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L (A ')-L (E A ')||=O (1 /d ). Our approach is based on Grothendieck-Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538-561, 2017 |
Author | Le, Can M. Levina, Elizaveta Vershynin, Roman |
Author_xml | – sequence: 1 givenname: Can M. surname: Le fullname: Le, Can M. email: canle@ucdavis.edu organization: University of California – sequence: 2 givenname: Elizaveta surname: Levina fullname: Levina, Elizaveta email: elevina@umich.edu organization: University of Michigan – sequence: 3 givenname: Roman surname: Vershynin fullname: Vershynin, Roman email: romanv@umich.edu organization: University of Michigan |
BookMark | eNp1kE1rAjEQhkOxULU99B8s9NTD6iTZrxxF-gVCoR_nELMTu7ImNlkp9tc3up5Ke5pheN53Zt4RGVhnkZBrChMKwKY-qAmDkvIzMqQgqpRltBoc-oylouLsgoxCWANAyRkfEjp3VqPtvOoaZxNl68Tjatcq33z3I2cSH8duk6y82n6ES3JuVBvw6lTH5P3-7m3-mC6eH57ms0WqeXROsRR5hqosqaK0KqpCV9roZcaFYcXS6ExhzREFK0HkOWiuDOZUcF0rEILXfExuet-td587DJ1cu523caWMGPACcsoiNe0p7V0IHo3UTXc8PL7UtJKCPOQiYy7ymEtU3P5SbH2zUX7_J3ty_2pa3P8PypfXWa_4AcKKc2s |
CitedBy_id | crossref_primary_10_1002_rsa_20982 crossref_primary_10_1080_01621459_2023_2252137 crossref_primary_10_1214_20_AOP1495 crossref_primary_10_1002_cpa_21750 crossref_primary_10_1093_biomet_asz068 crossref_primary_10_1017_S0963548322000098 crossref_primary_10_1371_journal_pcbi_1008986 crossref_primary_10_3150_23_BEJ1699 crossref_primary_10_1137_22M1492003 crossref_primary_10_1017_S0963548324000166 crossref_primary_10_15622_ia_2020_19_6_7 crossref_primary_10_1002_wics_1566 crossref_primary_10_1109_TPAMI_2020_3013433 crossref_primary_10_1214_19_AOS1884 crossref_primary_10_1007_s10959_019_00929_6 crossref_primary_10_1093_biomet_asae014 crossref_primary_10_1103_PhysRevE_98_022322 crossref_primary_10_1214_18_AOAS1205 crossref_primary_10_1093_imaiai_iaad006 crossref_primary_10_1093_jrsssb_qkad074 crossref_primary_10_1137_19M1243026 crossref_primary_10_1007_s11856_018_1732_y crossref_primary_10_1007_s13171_021_00245_4 crossref_primary_10_1214_17_AOS1595 crossref_primary_10_1016_j_ic_2021_104808 crossref_primary_10_1214_22_AOS2202 crossref_primary_10_1093_jrsssb_qkad029 crossref_primary_10_1016_j_tcs_2025_115188 crossref_primary_10_1137_23M1545823 crossref_primary_10_1080_10618600_2022_2134874 crossref_primary_10_1007_s10878_020_00552_w crossref_primary_10_1080_01621459_2020_1833888 crossref_primary_10_1080_01621459_2023_2244731 crossref_primary_10_1093_imaiai_iaz031 crossref_primary_10_1214_21_AAP1680 crossref_primary_10_1214_19_AOAS1252 crossref_primary_10_1093_jrsssb_qkac009 crossref_primary_10_1080_01621459_2022_2054817 crossref_primary_10_1214_22_EJS1986 crossref_primary_10_1016_j_aim_2017_11_001 crossref_primary_10_1016_j_comcom_2023_09_028 crossref_primary_10_1017_S0269964824000135 crossref_primary_10_1080_07350015_2022_2139709 crossref_primary_10_1214_19_STS736 crossref_primary_10_1016_j_spa_2022_12_004 crossref_primary_10_2139_ssrn_3438987 crossref_primary_10_1214_18_EJS1521 crossref_primary_10_1214_20_EJS1744 crossref_primary_10_1016_j_csda_2023_107903 crossref_primary_10_1093_imrn_rnz077 crossref_primary_10_1109_TIT_2024_3425581 crossref_primary_10_1214_18_AOP1293 crossref_primary_10_1093_biomet_asaa006 crossref_primary_10_1093_biomet_asy070 crossref_primary_10_1080_00401706_2020_1796815 crossref_primary_10_1007_s42952_024_00260_9 crossref_primary_10_1111_rssb_12554 crossref_primary_10_1214_21_EJS1838 |
Cites_doi | 10.1002/rsa.20168 10.1109/TIT.2015.2490670 10.1214/15-AOP1025 10.1145/2591796.2591857 10.1007/s00493-007-2190-z 10.1137/1.9781611973068.106 10.1145/73007.73063 10.1214/16-AOS1447 10.1214/13-AOS1138 10.1007/s00440-015-0659-z 10.1017/S0963548302005424 10.1007/s00440-014-0576-6 10.1090/cbms/060 10.1002/rsa.20089 10.1103/PhysRevE.84.066106 10.1145/2746539.2746603 10.1093/acprof:oso/9780199535255.001.0001 10.1137/S0097539794270248 10.1007/BF02579329 10.1007/978-3-642-20212-4 10.1073/pnas.0907096106 10.1214/14-AOS1290 10.1145/2897518.2897548 10.1090/S0273-0979-2011-01348-9 10.1109/SFCS.2001.959929 10.1016/0378-8733(83)90021-7 10.2307/j.ctvcm4hpw 10.1214/14-AOS1274 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/rsa.20713 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1098-2418 |
EndPage | 561 |
ExternalDocumentID | 10_1002_rsa_20713 RSA20713 |
Genre | article |
GrantInformation_xml | – fundername: NSF funderid: DMS‐1159005; DMS‐1521551; 1265782 – fundername: U.S. Air Force funderid: FA9550‐14‐1‐0009 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WWM WXSBR WYISQ XBAML XG1 XPP XSW XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3323-e7954ea771a118686c8cfcb439f26bfc4aed3ee92709550c3afe5193cda0993d3 |
IEDL.DBID | DR2 |
ISSN | 1042-9832 |
IngestDate | Fri Jul 25 12:30:31 EDT 2025 Tue Jul 01 01:30:53 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Wed Jan 22 17:06:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#am http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3323-e7954ea771a118686c8cfcb439f26bfc4aed3ee92709550c3afe5193cda0993d3 |
Notes | This work was done while C. L. was a Ph.D. student at the University of Michigan. Supported by NSF (to E. L.) (DMS‐1159005; DMS‐1521551); NSF (to R. V.) (1265782); U.S. Air Force (to R. V.) (FA9550‐14‐1‐0009). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rsa.20713 |
PQID | 1930360512 |
PQPubID | 1016429 |
PageCount | 30 |
ParticipantIDs | proquest_journals_1930360512 crossref_citationtrail_10_1002_rsa_20713 crossref_primary_10_1002_rsa_20713 wiley_primary_10_1002_rsa_20713_RSA20713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Random structures & algorithms |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 162 2012 2011 2010 1997; 26 2011; 84 2013; 41 1983; 5 2009 1997 1996 2016; 165 1991 2007; 31 2012; 35 2005; 27 1978 2003; 12 2001 1980; 1 2015; 43 1986 2016; 62 2015 2014 2012; 49 2013 1989 20 2016; 44 2009; 106 2007; 27 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_27_1 Bhatia R. (e_1_2_8_6_1) 1996 Handel R. V. (e_1_2_8_22_1) e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 Tomczak‐Jaegermann N. (e_1_2_8_42_1) 1989 e_1_2_8_17_1 e_1_2_8_18_1 Lu L. (e_1_2_8_29_1); 20 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 Hajek B. (e_1_2_8_21_1) e_1_2_8_36_1 e_1_2_8_35_1 Chung F. R. K. (e_1_2_8_14_1) 1997 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Pietsch A. (e_1_2_8_37_1) 1978 Ledoux M. (e_1_2_8_26_1) 2001 Bordenave C. (e_1_2_8_9_1) e_1_2_8_32_1 e_1_2_8_10_1 Chaudhuri K. (e_1_2_8_12_1) 2012; 35 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_33_1 Vershynin R. (e_1_2_8_44_1) 2012 e_1_2_8_30_1 |
References_xml | – year: 2011 – volume: 5 start-page: 109 year: 1983 end-page: 137 article-title: Stochastic blockmodels: First steps publication-title: Soc Networks – volume: 84 start-page: 066106 year: 2011 article-title: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications publication-title: Physi Rev E – year: 2001 – volume: 49 start-page: 237 year: 2012 end-page: 323 article-title: Grothendiecks theorem, past and present publication-title: Bull (New Ser) Am Math Soc – year: 1989 – volume: 35 start-page: 1 year: 2012 end-page: 35.23 article-title: Spectral clustering of graphs with general degrees in the extended planted partition model publication-title: J Mach Learn Res Workshop Confe Proce 23 – year: 1996 – volume: 62 start-page: 471 year: 2016 end-page: 487 article-title: Exact recovery in the stochastic block model publication-title: IEEE Trans Inf Theory – volume: 1 start-page: 233 year: 1980 end-page: 241 article-title: The eigenvalues of random symmetric matrices publication-title: Combinatorica – volume: 27 start-page: 251 year: 2005 end-page: 275 article-title: Spectral techniques applied to sparse random graphs publication-title: Random Struct Algorithms – volume: 165 start-page: 1025 year: 2016 end-page: 1049 article-title: Community detection in sparse networks via Grothendieck's inequality publication-title: Probab Theory Relat Fields – year: 2014 – volume: 12 start-page: 61 year: 2003 end-page: 72 article-title: The largest eigenvalue of sparse random graphs publication-title: Combin Probab Comput – year: 2010 – volume: 43 start-page: 215 year: 2015 end-page: 237 article-title: Consistency of spectral clustering in stochastic block models publication-title: Ann Stat – start-page: 587 year: 1989 end-page: 598 – year: 1986 – start-page: 3120 year: 2013 end-page: 3128 – article-title: Achieving exact cluster recovery threshold via semidefinite programming publication-title: IEEE Transactions on Information Theory – start-page: 978 year: 2009 end-page: 986 – volume: 26 start-page: 1733 year: 1997 end-page: 1748 article-title: A spectral technique for coloring random 3‐colorable graphs publication-title: SIAM J Comput – volume: 44 start-page: 1765 year: 2016 end-page: 1791 article-title: Impact of regularization on spectral clustering publication-title: Ann Stat – volume: 44 start-page: 2479 year: 2016 end-page: 2506 article-title: Sharp nonasymptotic bounds on the norm of random matrices with independent entries publication-title: Ann Probab – volume: 27 start-page: 721 year: 2007 end-page: 736 article-title: Spectral norm of random matrices publication-title: Combinatorica – volume: 106 start-page: 21068 year: 2009 end-page: 21073 article-title: A nonparametric view of network models and Newman‐Girvan and other modularities publication-title: Proc Natl Acad Sci USA – volume: 20 issue: 2013 article-title: Spectra of edge‐independent random graphs publication-title: Electron J Combin – volume: 31 start-page: 3 year: 2007 end-page: 122 article-title: The phase transition in inhomogeneous random graphs publication-title: Random Struct Algorithms – year: 1997 – article-title: On the spectral norm of Gaussian random matrices publication-title: Trans Amer Math Soc – volume: 162 start-page: 431 year: 2015 end-page: 461 article-title: Reconstruction and estimation in the planted partition model publication-title: Probab Theory Relat Fields – volume: 43 start-page: 1027 year: 2015 end-page: 1059 article-title: Robust and computationally feasible community detection in the presence of arbitrary outlier nodes publication-title: Ann Stat – year: 1991 – year: 1978 – start-page: 210 year: 2012 end-page: 268 – volume: 41 start-page: 2097 year: 2013 end-page: 2122 article-title: Pseudo‐likelihood methods for community detection in large sparse networks publication-title: Ann Stat – start-page: 529 year: 2001 end-page: 537 – start-page: 694 year: 2014 end-page: 703 – year: 2015 – year: 2013 – ident: e_1_2_8_8_1 doi: 10.1002/rsa.20168 – ident: e_1_2_8_22_1 article-title: On the spectral norm of Gaussian random matrices publication-title: Trans Amer Math Soc – ident: e_1_2_8_2_1 doi: 10.1109/TIT.2015.2490670 – ident: e_1_2_8_5_1 doi: 10.1214/15-AOP1025 – volume-title: Spectral graph theory, CBMS Regional Conference Series in Mathematics year: 1997 ident: e_1_2_8_14_1 – ident: e_1_2_8_30_1 doi: 10.1145/2591796.2591857 – ident: e_1_2_8_45_1 doi: 10.1007/s00493-007-2190-z – ident: e_1_2_8_21_1 article-title: Achieving exact cluster recovery threshold via semidefinite programming publication-title: IEEE Transactions on Information Theory – ident: e_1_2_8_43_1 doi: 10.1137/1.9781611973068.106 – volume-title: Banach‐Mazur distances and finite‐dimensional operator ideals year: 1989 ident: e_1_2_8_42_1 – ident: e_1_2_8_36_1 – ident: e_1_2_8_40_1 – ident: e_1_2_8_18_1 doi: 10.1145/73007.73063 – ident: e_1_2_8_24_1 doi: 10.1214/16-AOS1447 – ident: e_1_2_8_4_1 doi: 10.1214/13-AOS1138 – ident: e_1_2_8_13_1 – start-page: 210 volume-title: Introduction to the non‐asymptotic analysis of random matrices, Compressed sensing year: 2012 ident: e_1_2_8_44_1 – ident: e_1_2_8_20_1 doi: 10.1007/s00440-015-0659-z – ident: e_1_2_8_25_1 doi: 10.1017/S0963548302005424 – ident: e_1_2_8_35_1 doi: 10.1007/s00440-014-0576-6 – volume: 35 start-page: 1 year: 2012 ident: e_1_2_8_12_1 article-title: Spectral clustering of graphs with general degrees in the extended planted partition model publication-title: J Mach Learn Res Workshop Confe Proce 23 – ident: e_1_2_8_38_1 doi: 10.1090/cbms/060 – ident: e_1_2_8_16_1 doi: 10.1002/rsa.20089 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevE.84.066106 – volume: 20 issue: 2013 ident: e_1_2_8_29_1 article-title: Spectra of edge‐independent random graphs publication-title: Electron J Combin – ident: e_1_2_8_33_1 doi: 10.1145/2746539.2746603 – ident: e_1_2_8_10_1 doi: 10.1093/acprof:oso/9780199535255.001.0001 – ident: e_1_2_8_19_1 – ident: e_1_2_8_3_1 doi: 10.1137/S0097539794270248 – ident: e_1_2_8_17_1 doi: 10.1007/BF02579329 – ident: e_1_2_8_27_1 doi: 10.1007/978-3-642-20212-4 – ident: e_1_2_8_7_1 doi: 10.1073/pnas.0907096106 – ident: e_1_2_8_11_1 doi: 10.1214/14-AOS1290 – ident: e_1_2_8_32_1 doi: 10.1145/2897518.2897548 – volume-title: Non‐backtracking spectrum of random graphs: community detection and non‐regular Ramanujan graphs ident: e_1_2_8_9_1 – ident: e_1_2_8_39_1 doi: 10.1090/S0273-0979-2011-01348-9 – ident: e_1_2_8_31_1 doi: 10.1109/SFCS.2001.959929 – ident: e_1_2_8_23_1 doi: 10.1016/0378-8733(83)90021-7 – volume-title: The concentration of measure phenomenon, volume 89 of Mathematical surveys and monographs year: 2001 ident: e_1_2_8_26_1 – ident: e_1_2_8_41_1 doi: 10.2307/j.ctvcm4hpw – ident: e_1_2_8_28_1 doi: 10.1214/14-AOS1274 – volume-title: Operator ideals year: 1978 ident: e_1_2_8_37_1 – volume-title: Matrix analysis year: 1996 ident: e_1_2_8_6_1 – ident: e_1_2_8_34_1 |
SSID | ssj0007323 |
Score | 2.5020905 |
Snippet | This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 538 |
SubjectTerms | community detection concentration Economic models graph Laplacian Graph theory Graphs Random graphs Regularization sparse networks |
Title | Concentration and regularization of random graphs |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20713 https://www.proquest.com/docview/1930360512 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4p48NKtzY-mw9MYjiHMw3Swg1DS5OWidtJuF_96k_THVBTEWw9pm74med-E9z4PoStGNSimmQ9BSn0aU-anilA_DCPBIwkBd1n80_toMqd3C7ZooZs6F6bkQzQHbnZmuPXaTnCRFv0NNDQvLDaIu4q1NlbLCqLZBh3FCS6D6yn2B2bY1lShAPebO7_6oo3A_CxTnZ8Z76KnuodleMlzb71Ke_L9G7zxn5-wh3Yq_ekNywGzj1qQHaDtaQNvLQ5ROLKpjFnF0_VEprzcVazPq5xNb6k94-LU8tVzvOviCM3Ht4-jiV9VVvAlMXbxgQ8YBcF5KELLy49kLLVMjTjROEq1pAIUARhgbgl1gSRCg5V6UgmjKIkix6idLTM4QZ7Rl3GsY9AghNmLKsE4AbMNg4CpkHDooOvaxomssOO2-sVLUgKTcWKskDgrdNBl0_StZG381Khb_6ikmm5FYrpmPLFZX7B5nbP47w9IZg9Dd3H696ZnaAtbd-6C-LqovcrXcG7EyCq9cKPuA-za2cw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ09T8MwEIatCgZg4BtRKBAhBpa0SezEqcRSVVQF2g6llbqgyLHPC5CipF349djORwGBhNgyOIlzsX2vrbvnELryiQThS98GJyY2CYlvxwIT23UDRgMODjVZ_MNR0J-S-5k_q6GbMhcm50NUB256Zpj1Wk9wfSDdWlFD00xzg6guWbuuK3qbDdV4BY-i2MvD64lnt9XALblCjteqbv3qjVYS87NQNZ6mt4Oeyj7mASbPzeUibvL3b_jG_37ELtouJKjVycfMHqpBso-2hhW_NTtAbldnMyYFUtdiibBSU7Q-LdI2rbm0lJcT81fLIK-zQzTt3U66fbsormBzrAxjA237BBilLnM1Mj_gIZc8VvpEekEsOWEgMEDboxpS53DMJGi1xwVTohILfITWknkCx8hSEjMMZQgSGFPbUcF8ikHtxMDxhYsp1NF1aeSIF-RxXQDjJcqZyV6krBAZK9TRZdX0Lcdt_NSoUf6pqJhxWaS6ppyxWmI89Tpj8t8fEI0fO-bi5O9NL9BGfzIcRIO70cMp2vS0dzcxfQ20tkiXcKa0ySI-N0PwA5MV3ec |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfDUBA9-FucTi3iwUu3tkmbDk9jc8wfGzId7CCUNHm5qN1Yt4t_vUn6YyoK4q2HtE1fX_K-CXmfh9CFTyQIX_o2ODGxSUh8OxaY2K4bMBpwcKjJ4u8Pgt6I3I79cQVdFbkwGR-i3HDTI8PM13qAT4VsLKGhs1Rjg6iuWLtKAifULt0ZLtlRFHvZ6Xri2U3ltwVWyPEa5a1fg9FSYX7WqSbQdLfQc9HF7HzJS30xj-v8_Ru98Z_fsI02cwFqtTKP2UEVSHbRRr-kt6Z7yG3rXMYkB-paLBHWzJSsn-VJm9ZEWirGicmbZYDX6T4ada-f2j07L61gc6zsYgNt-gQYpS5zNTA_4CGXPFbqRHpBLDlhIDBA06MaUedwzCRorccFU5ISC3yAVpJJAofIUgIzDGUIEhhTi1HBfIpBrcPA8YWLKVTRZWHjiOfccV3-4jXKiMlepKwQGStU0XnZdJrBNn5qVCt-VJSPtzRSXVOhWE0wnnqdsfjvD4iGjy1zcfT3pmdo7aHTje5vBnfHaN3Tod0c6KuhlflsASdKmMzjU-OAHzBH3J8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentration+and+regularization+of+random+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Le%2C+Can+M.&rft.au=Levina%2C+Elizaveta&rft.au=Vershynin%2C+Roman&rft.date=2017-10-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=51&rft.issue=3&rft.spage=538&rft.epage=561&rft_id=info:doi/10.1002%2Frsa.20713&rft.externalDBID=10.1002%252Frsa.20713&rft.externalDocID=RSA20713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon |