Concentration and regularization of random graphs

This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possib...

Full description

Saved in:
Bibliographic Details
Published inRandom structures & algorithms Vol. 51; no. 3; pp. 538 - 561
Main Authors Le, Can M., Levina, Elizaveta, Vershynin, Roman
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2017
Subjects
Online AccessGet full text
ISSN1042-9832
1098-2418
DOI10.1002/rsa.20713

Cover

Loading…
Abstract This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o(logn) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d=maxnpij. Then we show that the resulting adjacency matrix A′ concentrates with the optimal rate: ||A′−EA||=O(d). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L(A′)−L(EA′)||=O(1/d). Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017
AbstractList This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o(logn) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d=maxnpij. Then we show that the resulting adjacency matrix A′ concentrates with the optimal rate: ||A′−EA||=O(d). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L(A′)−L(EA′)||=O(1/d). Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017
This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös‐Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities p ij . Sparse random graphs whose expected degrees are fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O ( d ) where . Then we show that the resulting adjacency matrix concentrates with the optimal rate: . Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: . Our approach is based on Grothendieck‐Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538–561, 2017
This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and Laplacian matrices in the spectral norm. We study inhomogeneous Erdös-Rényi random graphs on n vertices, where edges form independently and possibly with different probabilities pij. Sparse random graphs whose expected degrees are o (log n ) fail to concentrate; the obstruction is caused by vertices with abnormally high and low degrees. We show that concentration can be restored if we regularize the degrees of such vertices, and one can do this in various ways. As an example, let us reweight or remove enough edges to make all degrees bounded above by O(d) where d =max n p i j. Then we show that the resulting adjacency matrix A ' concentrates with the optimal rate: ||A '-E A ||=O (d ). Similarly, if we make all degrees bounded below by d by adding weight d / n to all edges, then the resulting Laplacian concentrates with the optimal rate: ||L (A ')-L (E A ')||=O (1 /d ). Our approach is based on Grothendieck-Pietsch factorization, using which we construct a new decomposition of random graphs. We illustrate the concentration results with an application to the community detection problem in the analysis of networks. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 538-561, 2017
Author Le, Can M.
Levina, Elizaveta
Vershynin, Roman
Author_xml – sequence: 1
  givenname: Can M.
  surname: Le
  fullname: Le, Can M.
  email: canle@ucdavis.edu
  organization: University of California
– sequence: 2
  givenname: Elizaveta
  surname: Levina
  fullname: Levina, Elizaveta
  email: elevina@umich.edu
  organization: University of Michigan
– sequence: 3
  givenname: Roman
  surname: Vershynin
  fullname: Vershynin, Roman
  email: romanv@umich.edu
  organization: University of Michigan
BookMark eNp1kE1rAjEQhkOxULU99B8s9NTD6iTZrxxF-gVCoR_nELMTu7ImNlkp9tc3up5Ke5pheN53Zt4RGVhnkZBrChMKwKY-qAmDkvIzMqQgqpRltBoc-oylouLsgoxCWANAyRkfEjp3VqPtvOoaZxNl68Tjatcq33z3I2cSH8duk6y82n6ES3JuVBvw6lTH5P3-7m3-mC6eH57ms0WqeXROsRR5hqosqaK0KqpCV9roZcaFYcXS6ExhzREFK0HkOWiuDOZUcF0rEILXfExuet-td587DJ1cu523caWMGPACcsoiNe0p7V0IHo3UTXc8PL7UtJKCPOQiYy7ymEtU3P5SbH2zUX7_J3ty_2pa3P8PypfXWa_4AcKKc2s
CitedBy_id crossref_primary_10_1002_rsa_20982
crossref_primary_10_1080_01621459_2023_2252137
crossref_primary_10_1214_20_AOP1495
crossref_primary_10_1002_cpa_21750
crossref_primary_10_1093_biomet_asz068
crossref_primary_10_1017_S0963548322000098
crossref_primary_10_1371_journal_pcbi_1008986
crossref_primary_10_3150_23_BEJ1699
crossref_primary_10_1137_22M1492003
crossref_primary_10_1017_S0963548324000166
crossref_primary_10_15622_ia_2020_19_6_7
crossref_primary_10_1002_wics_1566
crossref_primary_10_1109_TPAMI_2020_3013433
crossref_primary_10_1214_19_AOS1884
crossref_primary_10_1007_s10959_019_00929_6
crossref_primary_10_1093_biomet_asae014
crossref_primary_10_1103_PhysRevE_98_022322
crossref_primary_10_1214_18_AOAS1205
crossref_primary_10_1093_imaiai_iaad006
crossref_primary_10_1093_jrsssb_qkad074
crossref_primary_10_1137_19M1243026
crossref_primary_10_1007_s11856_018_1732_y
crossref_primary_10_1007_s13171_021_00245_4
crossref_primary_10_1214_17_AOS1595
crossref_primary_10_1016_j_ic_2021_104808
crossref_primary_10_1214_22_AOS2202
crossref_primary_10_1093_jrsssb_qkad029
crossref_primary_10_1016_j_tcs_2025_115188
crossref_primary_10_1137_23M1545823
crossref_primary_10_1080_10618600_2022_2134874
crossref_primary_10_1007_s10878_020_00552_w
crossref_primary_10_1080_01621459_2020_1833888
crossref_primary_10_1080_01621459_2023_2244731
crossref_primary_10_1093_imaiai_iaz031
crossref_primary_10_1214_21_AAP1680
crossref_primary_10_1214_19_AOAS1252
crossref_primary_10_1093_jrsssb_qkac009
crossref_primary_10_1080_01621459_2022_2054817
crossref_primary_10_1214_22_EJS1986
crossref_primary_10_1016_j_aim_2017_11_001
crossref_primary_10_1016_j_comcom_2023_09_028
crossref_primary_10_1017_S0269964824000135
crossref_primary_10_1080_07350015_2022_2139709
crossref_primary_10_1214_19_STS736
crossref_primary_10_1016_j_spa_2022_12_004
crossref_primary_10_2139_ssrn_3438987
crossref_primary_10_1214_18_EJS1521
crossref_primary_10_1214_20_EJS1744
crossref_primary_10_1016_j_csda_2023_107903
crossref_primary_10_1093_imrn_rnz077
crossref_primary_10_1109_TIT_2024_3425581
crossref_primary_10_1214_18_AOP1293
crossref_primary_10_1093_biomet_asaa006
crossref_primary_10_1093_biomet_asy070
crossref_primary_10_1080_00401706_2020_1796815
crossref_primary_10_1007_s42952_024_00260_9
crossref_primary_10_1111_rssb_12554
crossref_primary_10_1214_21_EJS1838
Cites_doi 10.1002/rsa.20168
10.1109/TIT.2015.2490670
10.1214/15-AOP1025
10.1145/2591796.2591857
10.1007/s00493-007-2190-z
10.1137/1.9781611973068.106
10.1145/73007.73063
10.1214/16-AOS1447
10.1214/13-AOS1138
10.1007/s00440-015-0659-z
10.1017/S0963548302005424
10.1007/s00440-014-0576-6
10.1090/cbms/060
10.1002/rsa.20089
10.1103/PhysRevE.84.066106
10.1145/2746539.2746603
10.1093/acprof:oso/9780199535255.001.0001
10.1137/S0097539794270248
10.1007/BF02579329
10.1007/978-3-642-20212-4
10.1073/pnas.0907096106
10.1214/14-AOS1290
10.1145/2897518.2897548
10.1090/S0273-0979-2011-01348-9
10.1109/SFCS.2001.959929
10.1016/0378-8733(83)90021-7
10.2307/j.ctvcm4hpw
10.1214/14-AOS1274
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/rsa.20713
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1098-2418
EndPage 561
ExternalDocumentID 10_1002_rsa_20713
RSA20713
Genre article
GrantInformation_xml – fundername: NSF
  funderid: DMS‐1159005; DMS‐1521551; 1265782
– fundername: U.S. Air Force
  funderid: FA9550‐14‐1‐0009
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3323-e7954ea771a118686c8cfcb439f26bfc4aed3ee92709550c3afe5193cda0993d3
IEDL.DBID DR2
ISSN 1042-9832
IngestDate Fri Jul 25 12:30:31 EDT 2025
Tue Jul 01 01:30:53 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Wed Jan 22 17:06:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3323-e7954ea771a118686c8cfcb439f26bfc4aed3ee92709550c3afe5193cda0993d3
Notes This work was done while C. L. was a Ph.D. student at the University of Michigan.
Supported by NSF (to E. L.) (DMS‐1159005; DMS‐1521551); NSF (to R. V.) (1265782); U.S. Air Force (to R. V.) (FA9550‐14‐1‐0009).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/rsa.20713
PQID 1930360512
PQPubID 1016429
PageCount 30
ParticipantIDs proquest_journals_1930360512
crossref_citationtrail_10_1002_rsa_20713
crossref_primary_10_1002_rsa_20713
wiley_primary_10_1002_rsa_20713_RSA20713
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Random structures & algorithms
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 162
2012
2011
2010
1997; 26
2011; 84
2013; 41
1983; 5
2009
1997
1996
2016; 165
1991
2007; 31
2012; 35
2005; 27
1978
2003; 12
2001
1980; 1
2015; 43
1986
2016; 62
2015
2014
2012; 49
2013
1989
20
2016; 44
2009; 106
2007; 27
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_27_1
Bhatia R. (e_1_2_8_6_1) 1996
Handel R. V. (e_1_2_8_22_1)
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
Tomczak‐Jaegermann N. (e_1_2_8_42_1) 1989
e_1_2_8_17_1
e_1_2_8_18_1
Lu L. (e_1_2_8_29_1); 20
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
Hajek B. (e_1_2_8_21_1)
e_1_2_8_36_1
e_1_2_8_35_1
Chung F. R. K. (e_1_2_8_14_1) 1997
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Pietsch A. (e_1_2_8_37_1) 1978
Ledoux M. (e_1_2_8_26_1) 2001
Bordenave C. (e_1_2_8_9_1)
e_1_2_8_32_1
e_1_2_8_10_1
Chaudhuri K. (e_1_2_8_12_1) 2012; 35
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
Vershynin R. (e_1_2_8_44_1) 2012
e_1_2_8_30_1
References_xml – year: 2011
– volume: 5
  start-page: 109
  year: 1983
  end-page: 137
  article-title: Stochastic blockmodels: First steps
  publication-title: Soc Networks
– volume: 84
  start-page: 066106
  year: 2011
  article-title: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
  publication-title: Physi Rev E
– year: 2001
– volume: 49
  start-page: 237
  year: 2012
  end-page: 323
  article-title: Grothendiecks theorem, past and present
  publication-title: Bull (New Ser) Am Math Soc
– year: 1989
– volume: 35
  start-page: 1
  year: 2012
  end-page: 35.23
  article-title: Spectral clustering of graphs with general degrees in the extended planted partition model
  publication-title: J Mach Learn Res Workshop Confe Proce 23
– year: 1996
– volume: 62
  start-page: 471
  year: 2016
  end-page: 487
  article-title: Exact recovery in the stochastic block model
  publication-title: IEEE Trans Inf Theory
– volume: 1
  start-page: 233
  year: 1980
  end-page: 241
  article-title: The eigenvalues of random symmetric matrices
  publication-title: Combinatorica
– volume: 27
  start-page: 251
  year: 2005
  end-page: 275
  article-title: Spectral techniques applied to sparse random graphs
  publication-title: Random Struct Algorithms
– volume: 165
  start-page: 1025
  year: 2016
  end-page: 1049
  article-title: Community detection in sparse networks via Grothendieck's inequality
  publication-title: Probab Theory Relat Fields
– year: 2014
– volume: 12
  start-page: 61
  year: 2003
  end-page: 72
  article-title: The largest eigenvalue of sparse random graphs
  publication-title: Combin Probab Comput
– year: 2010
– volume: 43
  start-page: 215
  year: 2015
  end-page: 237
  article-title: Consistency of spectral clustering in stochastic block models
  publication-title: Ann Stat
– start-page: 587
  year: 1989
  end-page: 598
– year: 1986
– start-page: 3120
  year: 2013
  end-page: 3128
– article-title: Achieving exact cluster recovery threshold via semidefinite programming
  publication-title: IEEE Transactions on Information Theory
– start-page: 978
  year: 2009
  end-page: 986
– volume: 26
  start-page: 1733
  year: 1997
  end-page: 1748
  article-title: A spectral technique for coloring random 3‐colorable graphs
  publication-title: SIAM J Comput
– volume: 44
  start-page: 1765
  year: 2016
  end-page: 1791
  article-title: Impact of regularization on spectral clustering
  publication-title: Ann Stat
– volume: 44
  start-page: 2479
  year: 2016
  end-page: 2506
  article-title: Sharp nonasymptotic bounds on the norm of random matrices with independent entries
  publication-title: Ann Probab
– volume: 27
  start-page: 721
  year: 2007
  end-page: 736
  article-title: Spectral norm of random matrices
  publication-title: Combinatorica
– volume: 106
  start-page: 21068
  year: 2009
  end-page: 21073
  article-title: A nonparametric view of network models and Newman‐Girvan and other modularities
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  issue: 2013
  article-title: Spectra of edge‐independent random graphs
  publication-title: Electron J Combin
– volume: 31
  start-page: 3
  year: 2007
  end-page: 122
  article-title: The phase transition in inhomogeneous random graphs
  publication-title: Random Struct Algorithms
– year: 1997
– article-title: On the spectral norm of Gaussian random matrices
  publication-title: Trans Amer Math Soc
– volume: 162
  start-page: 431
  year: 2015
  end-page: 461
  article-title: Reconstruction and estimation in the planted partition model
  publication-title: Probab Theory Relat Fields
– volume: 43
  start-page: 1027
  year: 2015
  end-page: 1059
  article-title: Robust and computationally feasible community detection in the presence of arbitrary outlier nodes
  publication-title: Ann Stat
– year: 1991
– year: 1978
– start-page: 210
  year: 2012
  end-page: 268
– volume: 41
  start-page: 2097
  year: 2013
  end-page: 2122
  article-title: Pseudo‐likelihood methods for community detection in large sparse networks
  publication-title: Ann Stat
– start-page: 529
  year: 2001
  end-page: 537
– start-page: 694
  year: 2014
  end-page: 703
– year: 2015
– year: 2013
– ident: e_1_2_8_8_1
  doi: 10.1002/rsa.20168
– ident: e_1_2_8_22_1
  article-title: On the spectral norm of Gaussian random matrices
  publication-title: Trans Amer Math Soc
– ident: e_1_2_8_2_1
  doi: 10.1109/TIT.2015.2490670
– ident: e_1_2_8_5_1
  doi: 10.1214/15-AOP1025
– volume-title: Spectral graph theory, CBMS Regional Conference Series in Mathematics
  year: 1997
  ident: e_1_2_8_14_1
– ident: e_1_2_8_30_1
  doi: 10.1145/2591796.2591857
– ident: e_1_2_8_45_1
  doi: 10.1007/s00493-007-2190-z
– ident: e_1_2_8_21_1
  article-title: Achieving exact cluster recovery threshold via semidefinite programming
  publication-title: IEEE Transactions on Information Theory
– ident: e_1_2_8_43_1
  doi: 10.1137/1.9781611973068.106
– volume-title: Banach‐Mazur distances and finite‐dimensional operator ideals
  year: 1989
  ident: e_1_2_8_42_1
– ident: e_1_2_8_36_1
– ident: e_1_2_8_40_1
– ident: e_1_2_8_18_1
  doi: 10.1145/73007.73063
– ident: e_1_2_8_24_1
  doi: 10.1214/16-AOS1447
– ident: e_1_2_8_4_1
  doi: 10.1214/13-AOS1138
– ident: e_1_2_8_13_1
– start-page: 210
  volume-title: Introduction to the non‐asymptotic analysis of random matrices, Compressed sensing
  year: 2012
  ident: e_1_2_8_44_1
– ident: e_1_2_8_20_1
  doi: 10.1007/s00440-015-0659-z
– ident: e_1_2_8_25_1
  doi: 10.1017/S0963548302005424
– ident: e_1_2_8_35_1
  doi: 10.1007/s00440-014-0576-6
– volume: 35
  start-page: 1
  year: 2012
  ident: e_1_2_8_12_1
  article-title: Spectral clustering of graphs with general degrees in the extended planted partition model
  publication-title: J Mach Learn Res Workshop Confe Proce 23
– ident: e_1_2_8_38_1
  doi: 10.1090/cbms/060
– ident: e_1_2_8_16_1
  doi: 10.1002/rsa.20089
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevE.84.066106
– volume: 20
  issue: 2013
  ident: e_1_2_8_29_1
  article-title: Spectra of edge‐independent random graphs
  publication-title: Electron J Combin
– ident: e_1_2_8_33_1
  doi: 10.1145/2746539.2746603
– ident: e_1_2_8_10_1
  doi: 10.1093/acprof:oso/9780199535255.001.0001
– ident: e_1_2_8_19_1
– ident: e_1_2_8_3_1
  doi: 10.1137/S0097539794270248
– ident: e_1_2_8_17_1
  doi: 10.1007/BF02579329
– ident: e_1_2_8_27_1
  doi: 10.1007/978-3-642-20212-4
– ident: e_1_2_8_7_1
  doi: 10.1073/pnas.0907096106
– ident: e_1_2_8_11_1
  doi: 10.1214/14-AOS1290
– ident: e_1_2_8_32_1
  doi: 10.1145/2897518.2897548
– volume-title: Non‐backtracking spectrum of random graphs: community detection and non‐regular Ramanujan graphs
  ident: e_1_2_8_9_1
– ident: e_1_2_8_39_1
  doi: 10.1090/S0273-0979-2011-01348-9
– ident: e_1_2_8_31_1
  doi: 10.1109/SFCS.2001.959929
– ident: e_1_2_8_23_1
  doi: 10.1016/0378-8733(83)90021-7
– volume-title: The concentration of measure phenomenon, volume 89 of Mathematical surveys and monographs
  year: 2001
  ident: e_1_2_8_26_1
– ident: e_1_2_8_41_1
  doi: 10.2307/j.ctvcm4hpw
– ident: e_1_2_8_28_1
  doi: 10.1214/14-AOS1274
– volume-title: Operator ideals
  year: 1978
  ident: e_1_2_8_37_1
– volume-title: Matrix analysis
  year: 1996
  ident: e_1_2_8_6_1
– ident: e_1_2_8_34_1
SSID ssj0007323
Score 2.5020905
Snippet This paper studies how close random graphs are typically to their expectations. We interpret this question through the concentration of the adjacency and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 538
SubjectTerms community detection
concentration
Economic models
graph Laplacian
Graph theory
Graphs
Random graphs
Regularization
sparse networks
Title Concentration and regularization of random graphs
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frsa.20713
https://www.proquest.com/docview/1930360512
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfD2EkP_hanU4p48NKtzY-mw9MYjiHMw3Swg1DS5OWidtJuF_96k_THVBTEWw9pm74med-E9z4PoStGNSimmQ9BSn0aU-anilA_DCPBIwkBd1n80_toMqd3C7ZooZs6F6bkQzQHbnZmuPXaTnCRFv0NNDQvLDaIu4q1NlbLCqLZBh3FCS6D6yn2B2bY1lShAPebO7_6oo3A_CxTnZ8Z76KnuodleMlzb71Ke_L9G7zxn5-wh3Yq_ekNywGzj1qQHaDtaQNvLQ5ROLKpjFnF0_VEprzcVazPq5xNb6k94-LU8tVzvOviCM3Ht4-jiV9VVvAlMXbxgQ8YBcF5KELLy49kLLVMjTjROEq1pAIUARhgbgl1gSRCg5V6UgmjKIkix6idLTM4QZ7Rl3GsY9AghNmLKsE4AbMNg4CpkHDooOvaxomssOO2-sVLUgKTcWKskDgrdNBl0_StZG381Khb_6ikmm5FYrpmPLFZX7B5nbP47w9IZg9Dd3H696ZnaAtbd-6C-LqovcrXcG7EyCq9cKPuA-za2cw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ09T8MwEIatCgZg4BtRKBAhBpa0SezEqcRSVVQF2g6llbqgyLHPC5CipF349djORwGBhNgyOIlzsX2vrbvnELryiQThS98GJyY2CYlvxwIT23UDRgMODjVZ_MNR0J-S-5k_q6GbMhcm50NUB256Zpj1Wk9wfSDdWlFD00xzg6guWbuuK3qbDdV4BY-i2MvD64lnt9XALblCjteqbv3qjVYS87NQNZ6mt4Oeyj7mASbPzeUibvL3b_jG_37ELtouJKjVycfMHqpBso-2hhW_NTtAbldnMyYFUtdiibBSU7Q-LdI2rbm0lJcT81fLIK-zQzTt3U66fbsormBzrAxjA237BBilLnM1Mj_gIZc8VvpEekEsOWEgMEDboxpS53DMJGi1xwVTohILfITWknkCx8hSEjMMZQgSGFPbUcF8ikHtxMDxhYsp1NF1aeSIF-RxXQDjJcqZyV6krBAZK9TRZdX0Lcdt_NSoUf6pqJhxWaS6ppyxWmI89Tpj8t8fEI0fO-bi5O9NL9BGfzIcRIO70cMp2vS0dzcxfQ20tkiXcKa0ySI-N0PwA5MV3ec
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMfDUBA9-FucTi3iwUu3tkmbDk9jc8wfGzId7CCUNHm5qN1Yt4t_vUn6YyoK4q2HtE1fX_K-CXmfh9CFTyQIX_o2ODGxSUh8OxaY2K4bMBpwcKjJ4u8Pgt6I3I79cQVdFbkwGR-i3HDTI8PM13qAT4VsLKGhs1Rjg6iuWLtKAifULt0ZLtlRFHvZ6Xri2U3ltwVWyPEa5a1fg9FSYX7WqSbQdLfQc9HF7HzJS30xj-v8_Ru98Z_fsI02cwFqtTKP2UEVSHbRRr-kt6Z7yG3rXMYkB-paLBHWzJSsn-VJm9ZEWirGicmbZYDX6T4ada-f2j07L61gc6zsYgNt-gQYpS5zNTA_4CGXPFbqRHpBLDlhIDBA06MaUedwzCRorccFU5ISC3yAVpJJAofIUgIzDGUIEhhTi1HBfIpBrcPA8YWLKVTRZWHjiOfccV3-4jXKiMlepKwQGStU0XnZdJrBNn5qVCt-VJSPtzRSXVOhWE0wnnqdsfjvD4iGjy1zcfT3pmdo7aHTje5vBnfHaN3Tod0c6KuhlflsASdKmMzjU-OAHzBH3J8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Concentration+and+regularization+of+random+graphs&rft.jtitle=Random+structures+%26+algorithms&rft.au=Le%2C+Can+M.&rft.au=Levina%2C+Elizaveta&rft.au=Vershynin%2C+Roman&rft.date=2017-10-01&rft.issn=1042-9832&rft.eissn=1098-2418&rft.volume=51&rft.issue=3&rft.spage=538&rft.epage=561&rft_id=info:doi/10.1002%2Frsa.20713&rft.externalDBID=10.1002%252Frsa.20713&rft.externalDocID=RSA20713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1042-9832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1042-9832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1042-9832&client=summon