Specifying prior distributions in reliability applications
Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular mater...
Saved in:
Published in | Applied stochastic models in business and industry Vol. 40; no. 1; pp. 5 - 62 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1524-1904 1526-4025 |
DOI | 10.1002/asmb.2752 |
Cover
Loading…
Abstract | Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular material to specify an informative prior distribution. Another advantage is the ability to make statistical inferences without having to rely on specious (when the number of failures is small) asymptotic theory needed to justify non‐Bayesian methods. Users of non‐Bayesian methods are faced with multiple methods of constructing uncertainty intervals (Wald, likelihood, and various bootstrap methods) that can give substantially different answers when there is little information in the data. For Bayesian inference, there is only one method of constructing equal‐tail credible intervals—but it is necessary to provide a prior distribution to fully specify the model. Much work has been done to find default prior distributions that will provide inference methods with good (and in some cases exact) frequentist coverage properties. This paper reviews some of this work and provides, evaluates, and illustrates principled extensions and adaptations of these methods to the practical realities of reliability data (e.g., non‐trivial censoring). |
---|---|
AbstractList | Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular material to specify an informative prior distribution. Another advantage is the ability to make statistical inferences without having to rely on specious (when the number of failures is small) asymptotic theory needed to justify non‐Bayesian methods. Users of non‐Bayesian methods are faced with multiple methods of constructing uncertainty intervals (Wald, likelihood, and various bootstrap methods) that can give substantially different answers when there is little information in the data. For Bayesian inference, there is only one method of constructing equal‐tail credible intervals—but it is necessary to provide a prior distribution to fully specify the model. Much work has been done to find default prior distributions that will provide inference methods with good (and in some cases exact) frequentist coverage properties. This paper reviews some of this work and provides, evaluates, and illustrates principled extensions and adaptations of these methods to the practical realities of reliability data (e.g., non‐trivial censoring). |
Author | Niemi, Jarad B. Tian, Qinglong Meeker, William Q. Lewis‐Beck, Colin |
Author_xml | – sequence: 1 givenname: Qinglong surname: Tian fullname: Tian, Qinglong email: qinglong.tian@uwaterloo.ca organization: University of Waterloo – sequence: 2 givenname: Colin surname: Lewis‐Beck fullname: Lewis‐Beck, Colin organization: Amazon.com Inc – sequence: 3 givenname: Jarad B. surname: Niemi fullname: Niemi, Jarad B. organization: Iowa State University – sequence: 4 givenname: William Q. surname: Meeker fullname: Meeker, William Q. organization: Iowa State University |
BookMark | eNp9kD9PwzAQxS1UJNrCwDeIxMSQ1j7bdcxWqvJHKmIozJbj2MhVmgQ7Fcq3J02ZkGC6k-737u69CRpVdWURuiZ4RjCGuY77fAaCwxkaEw6LlGHgo6FnKZGYXaBJjDuMCWGCjNHdtrHGu85XH0kTfB2Swsc2-PzQ-rqKia-SYEuvc1_6tkt005Te6GF2ic6dLqO9-qlT9P6wfls9pZvXx-fVcpMaSgFS4RgzQmgrMyFolvW_cUNZkQmXM5AGgOSuWHChici5A8xpYcHIghVaEo3pFN2c9jah_jzY2KpdfQhVf1KBhIxmTEjSU7cnyoQ6xmCd6u3sdegUweoYjTpGo47R9Oz8F2t8O5hqg_blf4ovX9ru79VquX25HxTfC_13gg |
CitedBy_id | crossref_primary_10_1287_deca_2023_0073 crossref_primary_10_1007_s00180_023_01444_3 crossref_primary_10_1002_asmb_2770 crossref_primary_10_1002_asmb_2781 crossref_primary_10_1109_TR_2023_3330288 crossref_primary_10_1002_asmb_2789 crossref_primary_10_1002_asmb_2799 crossref_primary_10_1002_asmb_2832 crossref_primary_10_1002_asmb_2786 crossref_primary_10_1002_asmb_2796 crossref_primary_10_1002_asmb_2784 crossref_primary_10_1002_asmb_2794 crossref_primary_10_3390_math12172747 crossref_primary_10_1002_asmb_2912 crossref_primary_10_1002_asmb_2812 crossref_primary_10_3390_axioms14030152 |
Cites_doi | 10.1109/TR.2005.858093 10.1007/978-0-387-77950-8 10.1111/oik.05985 10.2307/2291146 10.1137/1.9780898718485 10.1080/01621459.1986.10478241 10.1109/RAMS.2001.902455 10.1080/00031305.2016.1255662 10.3390/e19100555 10.1093/biomet/85.1.55 10.1080/01621459.1989.10478756 10.1002/9781119287995 10.1080/00401706.2000.10485992 10.1016/j.apm.2015.01.066 10.1214/088342306000000510 10.21236/ADA143100 10.1287/opre.31.5.866 10.1214/ss/1177011136 10.1016/S0378-3758(96)00155-3 10.1109/TR.2005.843632 10.1111/j.2517-6161.1979.tb01066.x 10.1016/j.spl.2020.108873 10.1080/00401706.1984.10487964 10.1007/978-94-011-3482-8 10.1080/01621459.1996.10477003 10.1214/07-BA206 10.1080/08982112.2010.506146 10.1198/TECH.2009.0016 10.2307/2986276 10.1080/03610918.2014.925925 10.1214/08-AOAS191 10.2307/2684170 10.1093/biomet/79.1.25 10.1109/24.159813 10.1080/03610926.2013.802351 10.1016/S0951-8320(01)00069-2 |
ContentType | Journal Article |
Copyright | 2023 The Authors. published by John Wiley & Sons Ltd. 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd. – notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7SC 7TA 8FD JG9 JQ2 L7M L~C L~D |
DOI | 10.1002/asmb.2752 |
DatabaseName | Wiley Online Library Open Access CrossRef Computer and Information Systems Abstracts Materials Business File Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Materials Business File Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1526-4025 |
EndPage | 62 |
ExternalDocumentID | 10_1002_asmb_2752 ASMB2752 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHQJS AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBA EBO EBR EBS EBU EJD EMK EPL F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC K1G KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW QWB R.K ROL RWI RX1 RYL SUPJJ TH9 UB1 W8V W99 WBKPD WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 YHZ ZL0 ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION 7SC 7TA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3322-7f44c77ae98773887525c34d87fb429c221bfd657a17b5f2053de2c9d4da91a03 |
IEDL.DBID | 24P |
ISSN | 1524-1904 |
IngestDate | Fri Jul 25 06:31:18 EDT 2025 Tue Jul 01 04:27:37 EDT 2025 Thu Apr 24 23:02:51 EDT 2025 Wed Jan 22 16:15:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3322-7f44c77ae98773887525c34d87fb429c221bfd657a17b5f2053de2c9d4da91a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2752 |
PQID | 2928384791 |
PQPubID | 2045197 |
PageCount | 58 |
ParticipantIDs | proquest_journals_2928384791 crossref_primary_10_1002_asmb_2752 crossref_citationtrail_10_1002_asmb_2752 wiley_primary_10_1002_asmb_2752_ASMB2752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/February 2024 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January/February 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Applied stochastic models in business and industry |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1989; 84 1992a; 4 2015; 39 1997; 61 1995; 90 1984; 26 2000; 42 1983; 31 2008 2006 2020; 166 2003 2019; 128 1991 1996; 91 2002 1998; 85 2008; 2 1994; 43 1992; 7 2010; 22 1986; 81 2009; 51 2017; 71 2001 2022 2006; 21 2021 2020 2017; 13 2015; 44 2019 2005; 54 1983 1961 2017; 19 1992; 46 1982 2007; 2 1979; 41 1992b; 79 2001; 74 2016; 45 1992; 41 1998; 8 e_1_2_14_31_1 e_1_2_14_10_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_14_1 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_37_1 Martz HF (e_1_2_14_5_1) 1982 Meeker WQ (e_1_2_14_20_1) 2022 e_1_2_14_6_1 e_1_2_14_8_1 Bernardo JM (e_1_2_14_25_1) 1979; 41 e_1_2_14_2_1 e_1_2_14_41_1 e_1_2_14_4_1 Escobar LA (e_1_2_14_24_1) 1998; 8 e_1_2_14_45_1 e_1_2_14_43_1 e_1_2_14_22_1 e_1_2_14_28_1 e_1_2_14_49_1 e_1_2_14_47_1 e_1_2_14_19_1 e_1_2_14_30_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_13_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_36_1 Krivtsov V (e_1_2_14_17_1) 2017; 13 e_1_2_14_29_1 Ghosh JK (e_1_2_14_32_1) 2006 Casella G (e_1_2_14_50_1) 2002 Lawless JF (e_1_2_14_21_1) 2003 e_1_2_14_7_1 e_1_2_14_9_1 Jeffreys H (e_1_2_14_33_1) 1961 Berger JO (e_1_2_14_26_1) 1992; 4 e_1_2_14_42_1 e_1_2_14_3_1 e_1_2_14_40_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_44_1 e_1_2_14_27_1 e_1_2_14_48_1 e_1_2_14_18_1 |
References_xml | – volume: 79 start-page: 25 year: 1992b end-page: 37 article-title: Ordered group reference priors with application to the multinomial problem publication-title: Biometrika – volume: 44 start-page: 2945 year: 2015 end-page: 2956 article-title: Analysis of Fréchet distribution using reference priors publication-title: Commun Stat. Part A (Theory Methods) – volume: 71 start-page: 302 year: 2017 end-page: 304 article-title: A simple analysis of the exact probability matching prior in the location‐scale model publication-title: Am Stat – year: 1983 – volume: 8 start-page: 221 year: 1998 end-page: 237 article-title: Fisher information matrices with censoring, truncation, and explanatory variables publication-title: Stat Sin – volume: 91 start-page: 1343 year: 1996 end-page: 1370 article-title: The selection of prior distributions by formal rules publication-title: J Am Stat Assoc – year: 2001 – year: 2003 – year: 2021 – volume: 2 start-page: 1360 year: 2008 end-page: 1383 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann Appl Stat – volume: 43 start-page: 533 year: 1994 end-page: 540 article-title: Fisher information matrix for the extreme value, normal, and logistic distributions and censored data publication-title: Appl Stat – volume: 61 start-page: 319 year: 1997 end-page: 338 article-title: A note on noninformative priors for Weibull distributions publication-title: J Stat Plan Infer – volume: 45 start-page: 2782 year: 2016 end-page: 2791 article-title: Objective Bayesian analysis for log‐logistic distribution publication-title: Commun Stat. Part B (Simul Comput) – volume: 19 start-page: 555 year: 2017 article-title: The prior can often only be understood in the context of the likelihood publication-title: Entropy – volume: 166 year: 2020 article-title: Posterior properties of the Weibull distribution for censored data publication-title: Stat Probab Lett – volume: 2 start-page: 137 year: 2007 end-page: 166 article-title: A quantitative study of quantile based direct prior elicitation from expert opinion publication-title: Bayesian Anal – start-page: 133 year: 2001 end-page: 138 – volume: 85 start-page: 55 year: 1998 end-page: 71 article-title: Reference priors with partial information publication-title: Biometrika – year: 1961 – volume: 31 start-page: 866 year: 1983 end-page: 880 article-title: Reconciliation of probability distributions publication-title: Oper Res – volume: 54 start-page: 612 year: 2005 end-page: 616 article-title: A simple procedure for Bayesian estimation of the Weibull distribution publication-title: IEEE Trans Reliab – volume: 74 start-page: 117 year: 2001 end-page: 128 article-title: Building prior distributions to support bayesian reliability growth modelling using expert judgement publication-title: Reliab Eng Syst Saf – volume: 26 start-page: 265 year: 1984 end-page: 275 article-title: Confidence bands for survival functions with censored data: a comparative study publication-title: Technometrics – year: 1982 – volume: 21 start-page: 428 year: 2006 end-page: 450 article-title: Expert elicitation for reliable system design publication-title: Stat Sci – volume: 41 start-page: 427 year: 1992 end-page: 432 article-title: Expert judgment in maintenance optimization publication-title: IEEE Trans Reliab – volume: 39 start-page: 6183 year: 2015 end-page: 6195 article-title: Bayesian analysis of constant‐stress accelerated life test for the Weibull distribution using noninformative priors publication-title: Appl Math Model – volume: 42 start-page: 135 year: 2000 end-page: 148 article-title: Comparisons of Weibull distribution approximate confidence intervals procedures for Type I censored data publication-title: Technometrics – volume: 84 start-page: 200 year: 1989 end-page: 207 article-title: Estimating a product of means: Bayesian analysis with reference priors publication-title: J Am Stat Assoc – volume: 128 start-page: 912 year: 2019 end-page: 928 article-title: Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses publication-title: Oikos – year: 2002 – year: 2008 – year: 2006 – year: 2022 – year: 2020 – volume: 46 start-page: 84 year: 1992 end-page: 88 article-title: Bayesian statistics without tears: a sampling–resampling perspective publication-title: Am Stat – volume: 22 start-page: 284 year: 2010 end-page: 286 article-title: Comments on Genschel and Meeker publication-title: Qual Eng – volume: 51 start-page: 146 year: 2009 end-page: 161 article-title: Using accelerated life tests results to predict product field reliability publication-title: Technometrics – volume: 41 start-page: 113 year: 1979 end-page: 128 article-title: Reference posterior distributions for Bayesian inference publication-title: J R Stat Soc: Ser B (Methodol) – year: 1991 – volume: 90 start-page: 220 year: 1995 end-page: 226 article-title: Inference and predictions from poisson point processes incorporating expert knowledge publication-title: J Am Stat Assoc – volume: 4 start-page: 35 year: 1992a end-page: 60 article-title: On the development of the reference prior method publication-title: Bayesian Stat – volume: 13 start-page: 129 year: 2017 end-page: 134 article-title: A Bayesian estimation procedure of reliability function for lifetime distributions publication-title: Int J Perform Eng – year: 2019 – volume: 81 start-page: 87 year: 1986 end-page: 90 article-title: Reliability (and fault tree) analysis using expert opinions publication-title: J Am Stat Assoc – volume: 7 start-page: 457 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci – volume: 54 start-page: 262 year: 2005 end-page: 269 article-title: A practical method for obtaining prior distributions in reliability publication-title: IEEE Trans Reliab – ident: e_1_2_14_16_1 doi: 10.1109/TR.2005.858093 – ident: e_1_2_14_6_1 doi: 10.1007/978-0-387-77950-8 – volume-title: Statistical Inference year: 2002 ident: e_1_2_14_50_1 – ident: e_1_2_14_40_1 doi: 10.1111/oik.05985 – ident: e_1_2_14_12_1 doi: 10.2307/2291146 – ident: e_1_2_14_18_1 doi: 10.1137/1.9780898718485 – ident: e_1_2_14_19_1 – ident: e_1_2_14_10_1 doi: 10.1080/01621459.1986.10478241 – volume: 4 start-page: 35 year: 1992 ident: e_1_2_14_26_1 article-title: On the development of the reference prior method publication-title: Bayesian Stat – ident: e_1_2_14_3_1 doi: 10.1109/RAMS.2001.902455 – ident: e_1_2_14_42_1 – ident: e_1_2_14_34_1 doi: 10.1080/00031305.2016.1255662 – ident: e_1_2_14_39_1 doi: 10.3390/e19100555 – ident: e_1_2_14_29_1 doi: 10.1093/biomet/85.1.55 – volume-title: An Introduction to Bayesian Analysis: Theory and Methods year: 2006 ident: e_1_2_14_32_1 – ident: e_1_2_14_47_1 doi: 10.1080/01621459.1989.10478756 – ident: e_1_2_14_7_1 doi: 10.1002/9781119287995 – ident: e_1_2_14_43_1 doi: 10.1080/00401706.2000.10485992 – ident: e_1_2_14_46_1 doi: 10.1016/j.apm.2015.01.066 – ident: e_1_2_14_14_1 doi: 10.1214/088342306000000510 – ident: e_1_2_14_2_1 doi: 10.21236/ADA143100 – volume-title: Statistical Methods for Reliability Data year: 2022 ident: e_1_2_14_20_1 – ident: e_1_2_14_9_1 doi: 10.1287/opre.31.5.866 – ident: e_1_2_14_45_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_14_28_1 doi: 10.1016/S0378-3758(96)00155-3 – ident: e_1_2_14_15_1 doi: 10.1109/TR.2005.843632 – volume: 41 start-page: 113 year: 1979 ident: e_1_2_14_25_1 article-title: Reference posterior distributions for Bayesian inference publication-title: J R Stat Soc: Ser B (Methodol) doi: 10.1111/j.2517-6161.1979.tb01066.x – ident: e_1_2_14_35_1 doi: 10.1016/j.spl.2020.108873 – ident: e_1_2_14_23_1 – ident: e_1_2_14_37_1 doi: 10.1080/00401706.1984.10487964 – ident: e_1_2_14_8_1 doi: 10.1007/978-94-011-3482-8 – ident: e_1_2_14_36_1 doi: 10.1080/01621459.1996.10477003 – ident: e_1_2_14_41_1 doi: 10.1214/07-BA206 – ident: e_1_2_14_49_1 doi: 10.1080/08982112.2010.506146 – ident: e_1_2_14_4_1 doi: 10.1198/TECH.2009.0016 – volume-title: Bayesian Reliability Analysis year: 1982 ident: e_1_2_14_5_1 – volume: 13 start-page: 129 year: 2017 ident: e_1_2_14_17_1 article-title: A Bayesian estimation procedure of reliability function for lifetime distributions publication-title: Int J Perform Eng – ident: e_1_2_14_22_1 doi: 10.2307/2986276 – ident: e_1_2_14_31_1 doi: 10.1080/03610918.2014.925925 – ident: e_1_2_14_38_1 doi: 10.1214/08-AOAS191 – ident: e_1_2_14_48_1 doi: 10.2307/2684170 – volume-title: Statistical Models and Methods for Lifetime Data year: 2003 ident: e_1_2_14_21_1 – ident: e_1_2_14_27_1 doi: 10.1093/biomet/79.1.25 – ident: e_1_2_14_44_1 – ident: e_1_2_14_11_1 doi: 10.1109/24.159813 – ident: e_1_2_14_30_1 doi: 10.1080/03610926.2013.802351 – volume-title: The Theory of Probability year: 1961 ident: e_1_2_14_33_1 – volume: 8 start-page: 221 year: 1998 ident: e_1_2_14_24_1 article-title: Fisher information matrices with censoring, truncation, and explanatory variables publication-title: Stat Sin – ident: e_1_2_14_13_1 doi: 10.1016/S0951-8320(01)00069-2 |
SSID | ssj0011471 |
Score | 2.398886 |
Snippet | Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5 |
SubjectTerms | Asymptotic methods Bayesian analysis Bayesian inference default prior Failure modes few failures fisher information matrix Intervals Jeffreys prior noninformative prior reference prior Reliability Statistical analysis Statistical inference Statistical methods |
Title | Specifying prior distributions in reliability applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2752 https://www.proquest.com/docview/2928384791 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KvehBfGK1ShAPXmKTzW62q6f6KEWoiFroLewTCpqWpB78987m1QoKXkIOm4R8uzPz7WO-QejCnWzXxMQ-YVb6xILNSaONr1jMIhtwyYsMufFTPJqQxymdttBNnQtT6kM0C27OMgp_7QxcyLy3Eg0V-Ye8woyC_91wqbVukGPy3GwhhNVsi2LiQ9QjtaxQgHvNoz-D0YphrvPUItAMd9B2xRC9Qdmlu6hl0j20NW7kVfN9dF1UjS8ylLxFNptnnnb6t1XpqtybpV4Gf1dKcH9565vUB2gyfHi7G_lVEQRfRW6iyCwhijFheJ-xCFwCxVRFRPcBW4glCuNQWh1TJkImqcVgVNpgxTXRgociiA5RO52n5gh5HCsrDLahsTF0j-CGBiLo80AIbomKO-iyRiNRlUK4K1TxnpTaxjhxwCUOuA46b5ouSlmM3xp1a0iTyjLyBHMgNBASeQifK2D--wXJ4HV8626O_9_0BG1i4B3lKkkXtZfZpzkF3rCUZ8X4gOv9C_4G4e_AAA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KPagH8YnVqkE8eIlNNrvZrnipYqnaFMEWels2-4CCpiWpB_-9u3m1goK3HCYJ-TYz8-1jvgHgyp5sl0iFLiI6dpE2PhcrqVxBQhJoj8Y0r5CLRuFggp6neNoAd1UtTKEPUS-4Wc_I47V1cLsg3VmphvLsI76BBJsAvIFCSGzjBohe6z0Ev5xuYYhck_ZQpSvkwU59689stKKY60Q1zzT9XbBTUkSnV4zpHmioZB9sR7W-anYAbvO28XmJkrNIZ_PUkVYAt-xdlTmzxEnN5xUa3F_O-i71IZj0H8cPA7fsguCKwM4UiUZIEMIV7RISmJiAIRYBkl0DrkkmAkI_1jLEhPskxhoar5IKCiqR5NTnXnAEmsk8UcfAoVBorqD2lQ7N-HCqsMe9LvU4pxqJsAWuKzSYKCXCbaeKd1aIG0NmgWMWuBa4rE0XhS7Gb0btClJWukbGIDWMxuRE6pvX5TD__QDWe4vu7cXJ_00vwOZgHA3Z8Gn0cgq2oCEhxZJJGzSX6ac6MyRiGZ_n_8o3xRHCgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5jguiDeMXp1CI--FLXpkmz6NO8jHnZGOhgbyHNBQbalXY--O9NetsEBd_6kLb0S845X3J6vgPAhf2zXSIVuojoyEXa2FykpHIFCUmgPRrRvEJuOAoHE_Q0xdMGuKlqYQp9iPrAzVpG7q-tgSdSd5aioTz7iK4gwcb_rtlkn13eEI3rFIJf7rYwRK6JeqiSFfJgp771ZzBaMsxVnpoHmv422CoZotMrpnQHNFS8CzaHtbxqtgeu867xeYWSk6SzeepIq39btq7KnFnspObrCgnuL2c1Sb0PJv2Ht7uBWzZBcEVgN4pEIyQI4Yp2CQmMS8AQiwDJrsHWxBIBoR9pGWLCfRJhDY1RSQUFlUhy6nMvOADNeB6rQ-BQKDRXUPtKh2Z6OFXY416XepxTjUTYApcVGkyUCuG2UcU7K7SNIbPAMQtcC5zXQ5NCFuO3Qe0KUlZaRsYgNYTGhETqm9flMP_9ANZ7Hd7ai6P_Dz0D6-P7Pnt5HD0fgw1oKEhxYNIGzUX6qU4MhVhEp_lS-QbZW8G1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specifying+prior+distributions+in+reliability+applications&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Tian%2C+Qinglong&rft.au=Colin+Lewis%E2%80%90Beck&rft.au=Niemi%2C+Jarad+B&rft.au=Meeker%2C+William+Q&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=40&rft.issue=1&rft.spage=5&rft.epage=62&rft_id=info:doi/10.1002%2Fasmb.2752&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon |