Specifying prior distributions in reliability applications

Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular mater...

Full description

Saved in:
Bibliographic Details
Published inApplied stochastic models in business and industry Vol. 40; no. 1; pp. 5 - 62
Main Authors Tian, Qinglong, Lewis‐Beck, Colin, Niemi, Jarad B., Meeker, William Q.
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN1524-1904
1526-4025
DOI10.1002/asmb.2752

Cover

Loading…
Abstract Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular material to specify an informative prior distribution. Another advantage is the ability to make statistical inferences without having to rely on specious (when the number of failures is small) asymptotic theory needed to justify non‐Bayesian methods. Users of non‐Bayesian methods are faced with multiple methods of constructing uncertainty intervals (Wald, likelihood, and various bootstrap methods) that can give substantially different answers when there is little information in the data. For Bayesian inference, there is only one method of constructing equal‐tail credible intervals—but it is necessary to provide a prior distribution to fully specify the model. Much work has been done to find default prior distributions that will provide inference methods with good (and in some cases exact) frequentist coverage properties. This paper reviews some of this work and provides, evaluates, and illustrates principled extensions and adaptations of these methods to the practical realities of reliability data (e.g., non‐trivial censoring).
AbstractList Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference methods. These include the option to use information from physics‐of‐failure or previous experience with a failure mode in a particular material to specify an informative prior distribution. Another advantage is the ability to make statistical inferences without having to rely on specious (when the number of failures is small) asymptotic theory needed to justify non‐Bayesian methods. Users of non‐Bayesian methods are faced with multiple methods of constructing uncertainty intervals (Wald, likelihood, and various bootstrap methods) that can give substantially different answers when there is little information in the data. For Bayesian inference, there is only one method of constructing equal‐tail credible intervals—but it is necessary to provide a prior distribution to fully specify the model. Much work has been done to find default prior distributions that will provide inference methods with good (and in some cases exact) frequentist coverage properties. This paper reviews some of this work and provides, evaluates, and illustrates principled extensions and adaptations of these methods to the practical realities of reliability data (e.g., non‐trivial censoring).
Author Niemi, Jarad B.
Tian, Qinglong
Meeker, William Q.
Lewis‐Beck, Colin
Author_xml – sequence: 1
  givenname: Qinglong
  surname: Tian
  fullname: Tian, Qinglong
  email: qinglong.tian@uwaterloo.ca
  organization: University of Waterloo
– sequence: 2
  givenname: Colin
  surname: Lewis‐Beck
  fullname: Lewis‐Beck, Colin
  organization: Amazon.com Inc
– sequence: 3
  givenname: Jarad B.
  surname: Niemi
  fullname: Niemi, Jarad B.
  organization: Iowa State University
– sequence: 4
  givenname: William Q.
  surname: Meeker
  fullname: Meeker, William Q.
  organization: Iowa State University
BookMark eNp9kD9PwzAQxS1UJNrCwDeIxMSQ1j7bdcxWqvJHKmIozJbj2MhVmgQ7Fcq3J02ZkGC6k-737u69CRpVdWURuiZ4RjCGuY77fAaCwxkaEw6LlGHgo6FnKZGYXaBJjDuMCWGCjNHdtrHGu85XH0kTfB2Swsc2-PzQ-rqKia-SYEuvc1_6tkt005Te6GF2ic6dLqO9-qlT9P6wfls9pZvXx-fVcpMaSgFS4RgzQmgrMyFolvW_cUNZkQmXM5AGgOSuWHChici5A8xpYcHIghVaEo3pFN2c9jah_jzY2KpdfQhVf1KBhIxmTEjSU7cnyoQ6xmCd6u3sdegUweoYjTpGo47R9Oz8F2t8O5hqg_blf4ovX9ru79VquX25HxTfC_13gg
CitedBy_id crossref_primary_10_1287_deca_2023_0073
crossref_primary_10_1007_s00180_023_01444_3
crossref_primary_10_1002_asmb_2770
crossref_primary_10_1002_asmb_2781
crossref_primary_10_1109_TR_2023_3330288
crossref_primary_10_1002_asmb_2789
crossref_primary_10_1002_asmb_2799
crossref_primary_10_1002_asmb_2832
crossref_primary_10_1002_asmb_2786
crossref_primary_10_1002_asmb_2796
crossref_primary_10_1002_asmb_2784
crossref_primary_10_1002_asmb_2794
crossref_primary_10_3390_math12172747
crossref_primary_10_1002_asmb_2912
crossref_primary_10_1002_asmb_2812
crossref_primary_10_3390_axioms14030152
Cites_doi 10.1109/TR.2005.858093
10.1007/978-0-387-77950-8
10.1111/oik.05985
10.2307/2291146
10.1137/1.9780898718485
10.1080/01621459.1986.10478241
10.1109/RAMS.2001.902455
10.1080/00031305.2016.1255662
10.3390/e19100555
10.1093/biomet/85.1.55
10.1080/01621459.1989.10478756
10.1002/9781119287995
10.1080/00401706.2000.10485992
10.1016/j.apm.2015.01.066
10.1214/088342306000000510
10.21236/ADA143100
10.1287/opre.31.5.866
10.1214/ss/1177011136
10.1016/S0378-3758(96)00155-3
10.1109/TR.2005.843632
10.1111/j.2517-6161.1979.tb01066.x
10.1016/j.spl.2020.108873
10.1080/00401706.1984.10487964
10.1007/978-94-011-3482-8
10.1080/01621459.1996.10477003
10.1214/07-BA206
10.1080/08982112.2010.506146
10.1198/TECH.2009.0016
10.2307/2986276
10.1080/03610918.2014.925925
10.1214/08-AOAS191
10.2307/2684170
10.1093/biomet/79.1.25
10.1109/24.159813
10.1080/03610926.2013.802351
10.1016/S0951-8320(01)00069-2
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TA
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1002/asmb.2752
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Materials Business File
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Materials Business File
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1526-4025
EndPage 62
ExternalDocumentID 10_1002_asmb_2752
ASMB2752
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHQJS
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBA
EBO
EBR
EBS
EBU
EJD
EMK
EPL
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
K1G
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
QWB
R.K
ROL
RWI
RX1
RYL
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YHZ
ZL0
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
7SC
7TA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3322-7f44c77ae98773887525c34d87fb429c221bfd657a17b5f2053de2c9d4da91a03
IEDL.DBID 24P
ISSN 1524-1904
IngestDate Fri Jul 25 06:31:18 EDT 2025
Tue Jul 01 04:27:37 EDT 2025
Thu Apr 24 23:02:51 EDT 2025
Wed Jan 22 16:15:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3322-7f44c77ae98773887525c34d87fb429c221bfd657a17b5f2053de2c9d4da91a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2752
PQID 2928384791
PQPubID 2045197
PageCount 58
ParticipantIDs proquest_journals_2928384791
crossref_primary_10_1002_asmb_2752
crossref_citationtrail_10_1002_asmb_2752
wiley_primary_10_1002_asmb_2752_ASMB2752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January/February 2024
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Applied stochastic models in business and industry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 84
1992a; 4
2015; 39
1997; 61
1995; 90
1984; 26
2000; 42
1983; 31
2008
2006
2020; 166
2003
2019; 128
1991
1996; 91
2002
1998; 85
2008; 2
1994; 43
1992; 7
2010; 22
1986; 81
2009; 51
2017; 71
2001
2022
2006; 21
2021
2020
2017; 13
2015; 44
2019
2005; 54
1983
1961
2017; 19
1992; 46
1982
2007; 2
1979; 41
1992b; 79
2001; 74
2016; 45
1992; 41
1998; 8
e_1_2_14_31_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_16_1
e_1_2_14_37_1
Martz HF (e_1_2_14_5_1) 1982
Meeker WQ (e_1_2_14_20_1) 2022
e_1_2_14_6_1
e_1_2_14_8_1
Bernardo JM (e_1_2_14_25_1) 1979; 41
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_4_1
Escobar LA (e_1_2_14_24_1) 1998; 8
e_1_2_14_45_1
e_1_2_14_43_1
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_47_1
e_1_2_14_19_1
e_1_2_14_30_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_13_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_36_1
Krivtsov V (e_1_2_14_17_1) 2017; 13
e_1_2_14_29_1
Ghosh JK (e_1_2_14_32_1) 2006
Casella G (e_1_2_14_50_1) 2002
Lawless JF (e_1_2_14_21_1) 2003
e_1_2_14_7_1
e_1_2_14_9_1
Jeffreys H (e_1_2_14_33_1) 1961
Berger JO (e_1_2_14_26_1) 1992; 4
e_1_2_14_42_1
e_1_2_14_3_1
e_1_2_14_40_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_44_1
e_1_2_14_27_1
e_1_2_14_48_1
e_1_2_14_18_1
References_xml – volume: 79
  start-page: 25
  year: 1992b
  end-page: 37
  article-title: Ordered group reference priors with application to the multinomial problem
  publication-title: Biometrika
– volume: 44
  start-page: 2945
  year: 2015
  end-page: 2956
  article-title: Analysis of Fréchet distribution using reference priors
  publication-title: Commun Stat. Part A (Theory Methods)
– volume: 71
  start-page: 302
  year: 2017
  end-page: 304
  article-title: A simple analysis of the exact probability matching prior in the location‐scale model
  publication-title: Am Stat
– year: 1983
– volume: 8
  start-page: 221
  year: 1998
  end-page: 237
  article-title: Fisher information matrices with censoring, truncation, and explanatory variables
  publication-title: Stat Sin
– volume: 91
  start-page: 1343
  year: 1996
  end-page: 1370
  article-title: The selection of prior distributions by formal rules
  publication-title: J Am Stat Assoc
– year: 2001
– year: 2003
– year: 2021
– volume: 2
  start-page: 1360
  year: 2008
  end-page: 1383
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann Appl Stat
– volume: 43
  start-page: 533
  year: 1994
  end-page: 540
  article-title: Fisher information matrix for the extreme value, normal, and logistic distributions and censored data
  publication-title: Appl Stat
– volume: 61
  start-page: 319
  year: 1997
  end-page: 338
  article-title: A note on noninformative priors for Weibull distributions
  publication-title: J Stat Plan Infer
– volume: 45
  start-page: 2782
  year: 2016
  end-page: 2791
  article-title: Objective Bayesian analysis for log‐logistic distribution
  publication-title: Commun Stat. Part B (Simul Comput)
– volume: 19
  start-page: 555
  year: 2017
  article-title: The prior can often only be understood in the context of the likelihood
  publication-title: Entropy
– volume: 166
  year: 2020
  article-title: Posterior properties of the Weibull distribution for censored data
  publication-title: Stat Probab Lett
– volume: 2
  start-page: 137
  year: 2007
  end-page: 166
  article-title: A quantitative study of quantile based direct prior elicitation from expert opinion
  publication-title: Bayesian Anal
– start-page: 133
  year: 2001
  end-page: 138
– volume: 85
  start-page: 55
  year: 1998
  end-page: 71
  article-title: Reference priors with partial information
  publication-title: Biometrika
– year: 1961
– volume: 31
  start-page: 866
  year: 1983
  end-page: 880
  article-title: Reconciliation of probability distributions
  publication-title: Oper Res
– volume: 54
  start-page: 612
  year: 2005
  end-page: 616
  article-title: A simple procedure for Bayesian estimation of the Weibull distribution
  publication-title: IEEE Trans Reliab
– volume: 74
  start-page: 117
  year: 2001
  end-page: 128
  article-title: Building prior distributions to support bayesian reliability growth modelling using expert judgement
  publication-title: Reliab Eng Syst Saf
– volume: 26
  start-page: 265
  year: 1984
  end-page: 275
  article-title: Confidence bands for survival functions with censored data: a comparative study
  publication-title: Technometrics
– year: 1982
– volume: 21
  start-page: 428
  year: 2006
  end-page: 450
  article-title: Expert elicitation for reliable system design
  publication-title: Stat Sci
– volume: 41
  start-page: 427
  year: 1992
  end-page: 432
  article-title: Expert judgment in maintenance optimization
  publication-title: IEEE Trans Reliab
– volume: 39
  start-page: 6183
  year: 2015
  end-page: 6195
  article-title: Bayesian analysis of constant‐stress accelerated life test for the Weibull distribution using noninformative priors
  publication-title: Appl Math Model
– volume: 42
  start-page: 135
  year: 2000
  end-page: 148
  article-title: Comparisons of Weibull distribution approximate confidence intervals procedures for Type I censored data
  publication-title: Technometrics
– volume: 84
  start-page: 200
  year: 1989
  end-page: 207
  article-title: Estimating a product of means: Bayesian analysis with reference priors
  publication-title: J Am Stat Assoc
– volume: 128
  start-page: 912
  year: 2019
  end-page: 928
  article-title: Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses
  publication-title: Oikos
– year: 2002
– year: 2008
– year: 2006
– year: 2022
– year: 2020
– volume: 46
  start-page: 84
  year: 1992
  end-page: 88
  article-title: Bayesian statistics without tears: a sampling–resampling perspective
  publication-title: Am Stat
– volume: 22
  start-page: 284
  year: 2010
  end-page: 286
  article-title: Comments on Genschel and Meeker
  publication-title: Qual Eng
– volume: 51
  start-page: 146
  year: 2009
  end-page: 161
  article-title: Using accelerated life tests results to predict product field reliability
  publication-title: Technometrics
– volume: 41
  start-page: 113
  year: 1979
  end-page: 128
  article-title: Reference posterior distributions for Bayesian inference
  publication-title: J R Stat Soc: Ser B (Methodol)
– year: 1991
– volume: 90
  start-page: 220
  year: 1995
  end-page: 226
  article-title: Inference and predictions from poisson point processes incorporating expert knowledge
  publication-title: J Am Stat Assoc
– volume: 4
  start-page: 35
  year: 1992a
  end-page: 60
  article-title: On the development of the reference prior method
  publication-title: Bayesian Stat
– volume: 13
  start-page: 129
  year: 2017
  end-page: 134
  article-title: A Bayesian estimation procedure of reliability function for lifetime distributions
  publication-title: Int J Perform Eng
– year: 2019
– volume: 81
  start-page: 87
  year: 1986
  end-page: 90
  article-title: Reliability (and fault tree) analysis using expert opinions
  publication-title: J Am Stat Assoc
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
– volume: 54
  start-page: 262
  year: 2005
  end-page: 269
  article-title: A practical method for obtaining prior distributions in reliability
  publication-title: IEEE Trans Reliab
– ident: e_1_2_14_16_1
  doi: 10.1109/TR.2005.858093
– ident: e_1_2_14_6_1
  doi: 10.1007/978-0-387-77950-8
– volume-title: Statistical Inference
  year: 2002
  ident: e_1_2_14_50_1
– ident: e_1_2_14_40_1
  doi: 10.1111/oik.05985
– ident: e_1_2_14_12_1
  doi: 10.2307/2291146
– ident: e_1_2_14_18_1
  doi: 10.1137/1.9780898718485
– ident: e_1_2_14_19_1
– ident: e_1_2_14_10_1
  doi: 10.1080/01621459.1986.10478241
– volume: 4
  start-page: 35
  year: 1992
  ident: e_1_2_14_26_1
  article-title: On the development of the reference prior method
  publication-title: Bayesian Stat
– ident: e_1_2_14_3_1
  doi: 10.1109/RAMS.2001.902455
– ident: e_1_2_14_42_1
– ident: e_1_2_14_34_1
  doi: 10.1080/00031305.2016.1255662
– ident: e_1_2_14_39_1
  doi: 10.3390/e19100555
– ident: e_1_2_14_29_1
  doi: 10.1093/biomet/85.1.55
– volume-title: An Introduction to Bayesian Analysis: Theory and Methods
  year: 2006
  ident: e_1_2_14_32_1
– ident: e_1_2_14_47_1
  doi: 10.1080/01621459.1989.10478756
– ident: e_1_2_14_7_1
  doi: 10.1002/9781119287995
– ident: e_1_2_14_43_1
  doi: 10.1080/00401706.2000.10485992
– ident: e_1_2_14_46_1
  doi: 10.1016/j.apm.2015.01.066
– ident: e_1_2_14_14_1
  doi: 10.1214/088342306000000510
– ident: e_1_2_14_2_1
  doi: 10.21236/ADA143100
– volume-title: Statistical Methods for Reliability Data
  year: 2022
  ident: e_1_2_14_20_1
– ident: e_1_2_14_9_1
  doi: 10.1287/opre.31.5.866
– ident: e_1_2_14_45_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_14_28_1
  doi: 10.1016/S0378-3758(96)00155-3
– ident: e_1_2_14_15_1
  doi: 10.1109/TR.2005.843632
– volume: 41
  start-page: 113
  year: 1979
  ident: e_1_2_14_25_1
  article-title: Reference posterior distributions for Bayesian inference
  publication-title: J R Stat Soc: Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1979.tb01066.x
– ident: e_1_2_14_35_1
  doi: 10.1016/j.spl.2020.108873
– ident: e_1_2_14_23_1
– ident: e_1_2_14_37_1
  doi: 10.1080/00401706.1984.10487964
– ident: e_1_2_14_8_1
  doi: 10.1007/978-94-011-3482-8
– ident: e_1_2_14_36_1
  doi: 10.1080/01621459.1996.10477003
– ident: e_1_2_14_41_1
  doi: 10.1214/07-BA206
– ident: e_1_2_14_49_1
  doi: 10.1080/08982112.2010.506146
– ident: e_1_2_14_4_1
  doi: 10.1198/TECH.2009.0016
– volume-title: Bayesian Reliability Analysis
  year: 1982
  ident: e_1_2_14_5_1
– volume: 13
  start-page: 129
  year: 2017
  ident: e_1_2_14_17_1
  article-title: A Bayesian estimation procedure of reliability function for lifetime distributions
  publication-title: Int J Perform Eng
– ident: e_1_2_14_22_1
  doi: 10.2307/2986276
– ident: e_1_2_14_31_1
  doi: 10.1080/03610918.2014.925925
– ident: e_1_2_14_38_1
  doi: 10.1214/08-AOAS191
– ident: e_1_2_14_48_1
  doi: 10.2307/2684170
– volume-title: Statistical Models and Methods for Lifetime Data
  year: 2003
  ident: e_1_2_14_21_1
– ident: e_1_2_14_27_1
  doi: 10.1093/biomet/79.1.25
– ident: e_1_2_14_44_1
– ident: e_1_2_14_11_1
  doi: 10.1109/24.159813
– ident: e_1_2_14_30_1
  doi: 10.1080/03610926.2013.802351
– volume-title: The Theory of Probability
  year: 1961
  ident: e_1_2_14_33_1
– volume: 8
  start-page: 221
  year: 1998
  ident: e_1_2_14_24_1
  article-title: Fisher information matrices with censoring, truncation, and explanatory variables
  publication-title: Stat Sin
– ident: e_1_2_14_13_1
  doi: 10.1016/S0951-8320(01)00069-2
SSID ssj0011471
Score 2.398886
Snippet Especially when facing reliability data with limited information (e.g., a small number of failures), there are strong motivations for using Bayesian inference...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5
SubjectTerms Asymptotic methods
Bayesian analysis
Bayesian inference
default prior
Failure modes
few failures
fisher information matrix
Intervals
Jeffreys prior
noninformative prior
reference prior
Reliability
Statistical analysis
Statistical inference
Statistical methods
Title Specifying prior distributions in reliability applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasmb.2752
https://www.proquest.com/docview/2928384791
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KvehBfGK1ShAPXmKTzW62q6f6KEWoiFroLewTCpqWpB78987m1QoKXkIOm4R8uzPz7WO-QejCnWzXxMQ-YVb6xILNSaONr1jMIhtwyYsMufFTPJqQxymdttBNnQtT6kM0C27OMgp_7QxcyLy3Eg0V-Ye8woyC_91wqbVukGPy3GwhhNVsi2LiQ9QjtaxQgHvNoz-D0YphrvPUItAMd9B2xRC9Qdmlu6hl0j20NW7kVfN9dF1UjS8ylLxFNptnnnb6t1XpqtybpV4Gf1dKcH9565vUB2gyfHi7G_lVEQRfRW6iyCwhijFheJ-xCFwCxVRFRPcBW4glCuNQWh1TJkImqcVgVNpgxTXRgociiA5RO52n5gh5HCsrDLahsTF0j-CGBiLo80AIbomKO-iyRiNRlUK4K1TxnpTaxjhxwCUOuA46b5ouSlmM3xp1a0iTyjLyBHMgNBASeQifK2D--wXJ4HV8626O_9_0BG1i4B3lKkkXtZfZpzkF3rCUZ8X4gOv9C_4G4e_AAA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5KPagH8YnVqkE8eIlNNrvZrnipYqnaFMEWels2-4CCpiWpB_-9u3m1goK3HCYJ-TYz8-1jvgHgyp5sl0iFLiI6dpE2PhcrqVxBQhJoj8Y0r5CLRuFggp6neNoAd1UtTKEPUS-4Wc_I47V1cLsg3VmphvLsI76BBJsAvIFCSGzjBohe6z0Ev5xuYYhck_ZQpSvkwU59689stKKY60Q1zzT9XbBTUkSnV4zpHmioZB9sR7W-anYAbvO28XmJkrNIZ_PUkVYAt-xdlTmzxEnN5xUa3F_O-i71IZj0H8cPA7fsguCKwM4UiUZIEMIV7RISmJiAIRYBkl0DrkkmAkI_1jLEhPskxhoar5IKCiqR5NTnXnAEmsk8UcfAoVBorqD2lQ7N-HCqsMe9LvU4pxqJsAWuKzSYKCXCbaeKd1aIG0NmgWMWuBa4rE0XhS7Gb0btClJWukbGIDWMxuRE6pvX5TD__QDWe4vu7cXJ_00vwOZgHA3Z8Gn0cgq2oCEhxZJJGzSX6ac6MyRiGZ_n_8o3xRHCgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5jguiDeMXp1CI--FLXpkmz6NO8jHnZGOhgbyHNBQbalXY--O9NetsEBd_6kLb0S845X3J6vgPAhf2zXSIVuojoyEXa2FykpHIFCUmgPRrRvEJuOAoHE_Q0xdMGuKlqYQp9iPrAzVpG7q-tgSdSd5aioTz7iK4gwcb_rtlkn13eEI3rFIJf7rYwRK6JeqiSFfJgp771ZzBaMsxVnpoHmv422CoZotMrpnQHNFS8CzaHtbxqtgeu867xeYWSk6SzeepIq39btq7KnFnspObrCgnuL2c1Sb0PJv2Ht7uBWzZBcEVgN4pEIyQI4Yp2CQmMS8AQiwDJrsHWxBIBoR9pGWLCfRJhDY1RSQUFlUhy6nMvOADNeB6rQ-BQKDRXUPtKh2Z6OFXY416XepxTjUTYApcVGkyUCuG2UcU7K7SNIbPAMQtcC5zXQ5NCFuO3Qe0KUlZaRsYgNYTGhETqm9flMP_9ANZ7Hd7ai6P_Dz0D6-P7Pnt5HD0fgw1oKEhxYNIGzUX6qU4MhVhEp_lS-QbZW8G1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specifying+prior+distributions+in+reliability+applications&rft.jtitle=Applied+stochastic+models+in+business+and+industry&rft.au=Tian%2C+Qinglong&rft.au=Colin+Lewis%E2%80%90Beck&rft.au=Niemi%2C+Jarad+B&rft.au=Meeker%2C+William+Q&rft.date=2024-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1524-1904&rft.eissn=1526-4025&rft.volume=40&rft.issue=1&rft.spage=5&rft.epage=62&rft_id=info:doi/10.1002%2Fasmb.2752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-1904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-1904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-1904&client=summon