Genetic variation and biogeography of the spotted gar Lepisosteus oculatus from core and peripheral populations
The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in...
Saved in:
Published in | Journal of experimental zoology. Part B, Molecular and developmental evolution Vol. 328; no. 7; pp. 596 - 606 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter‐ and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI; cytochrome oxidase subunit II, COII; and 16S rRNA, 16S) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar (L. platyrhincus), although a significant correlation was found between genetic and geographical distance in L. oculatus. Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations.
GRAPHICAL ABSTRACT
We investigated inter‐ and intrapopulational variation in several mitochondrial genetic markers from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin, lowest in the Great Lakes Basin, and most divergent in the western Gulf Coast Basin. Average genetic distance between core and peripheral populations was over an order of magnitude less than that seen between Lepisosteus oculatus and its sister species, L. platyrhincus, although a significant correlation was found between genetic and geographical distance in L. oculatus. Genotypic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, being adapted to life at higher latitudes with shorter growing seasons. |
---|---|
AbstractList | The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter- and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI; cytochrome oxidase subunit II, COII; and 16S rRNA, 16S) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar (L. platyrhincus), although a significant correlation was found between genetic and geographical distance in L. oculatus. Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations. The spotted gar ( Lepisosteus oculatus ) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter‐ and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI ; cytochrome oxidase subunit II, COII ; and 16S rRNA, 16S ) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar ( L. platyrhincus ), although a significant correlation was found between genetic and geographical distance in L . oculatus . Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations. The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the U.S. gulf coast and a peripheral population in the southern Great Lakes Basin. Despite significant conservation concerns for this species in the Great Lakes watersheds where it occurs, few genetic examinations and comparisons of these populations have been performed. We investigated inter‐ and intrapopulational variation in several mitochondrial genetic markers (cytochrome oxidase subunit I, COI; cytochrome oxidase subunit II, COII; and 16S rRNA, 16S) from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin and lowest in the Great Lakes Basin, while the Nueces River Basin (Texas) population showed the greatest level of divergence from other populations. Average genetic distance among core and peripheral populations was over an order of magnitude less than that seen between L. oculatus and its sister species, the Florida gar (L. platyrhincus), although a significant correlation was found between genetic and geographical distance in L. oculatus. Genetic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or haplotype diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, and additional studies are needed to determine the genetic mechanisms underlying regional adaptations as well as potential morphological differentiation among spotted gar populations. GRAPHICAL ABSTRACT We investigated inter‐ and intrapopulational variation in several mitochondrial genetic markers from spotted gars taken from core and peripheral populations. Genetic diversity was highest in the Mississippi River Basin, lowest in the Great Lakes Basin, and most divergent in the western Gulf Coast Basin. Average genetic distance between core and peripheral populations was over an order of magnitude less than that seen between Lepisosteus oculatus and its sister species, L. platyrhincus, although a significant correlation was found between genetic and geographical distance in L. oculatus. Genotypic divergence in spotted gars is likely to be related to a combination of geographic isolation and founder effects associated with recent colonization following glacial retreat. Despite its apparent lack of significant genetic differentiation or diversity, the Great Lakes population of spotted gars has previously been shown to be a unique component of the species, being adapted to life at higher latitudes with shorter growing seasons. |
Author | David, Solomon R. Wright, Jeremy J. |
Author_xml | – sequence: 1 givenname: Solomon R. orcidid: 0000-0002-8596-3425 surname: David fullname: David, Solomon R. email: solomonrdavid@gmail.com organization: Nicholls State University – sequence: 2 givenname: Jeremy J. surname: Wright fullname: Wright, Jeremy J. organization: New York State Museum |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28980772$$D View this record in MEDLINE/PubMed |
BookMark | eNp90DtPwzAUhmELgSi3iR15REItviRxOkJVbqrEAguLZTsnraskNnYCKr8eQ4GR6Zzh0Tt8h2i3cx0gdErJhBLCLtfwMdETxoRgO-iA5jkb54Tmu38_ESN0GOM64YLk-T4asXJakuQPkLuFDnpr8JsKVvXWdVh1FdbWLcEtg_KrDXY17leAo3d9DxVeqoAX4G10sYchYmeGRvXpqYNrsXEBvhMegvUrCKrB3vkvkuLxGO3Vqolw8nOP0PPN_Gl2N1483t7PrhZjwzljY8ZJDZwKqKcFzTItVK21oMQITnPOjQZgpamy3EyLSmhaVQUrCaRPC1IzzY_Q-bbrg3sdIPaytdFA06gO3BAlnWaioGXJeKIXW2qCizFALX2wrQobSYn8WlimhaWW3wsnffYTHnQL1Z_9nTQBtgXvtoHNfy35MH-53lY_AfKwivY |
CitedBy_id | crossref_primary_10_1002_ece3_4745 crossref_primary_10_7717_peerj_15962 crossref_primary_10_1002_jez_b_22775 crossref_primary_10_1016_j_jglr_2023_05_009 crossref_primary_10_1038_s41598_022_20875_4 |
Cites_doi | 10.1046/j.1365-294x.1998.00308.x 10.3998/mpub.17658 10.1016/S0006-3207(01)00055-6 10.1046/j.1365-294x.1998.00319.x 10.1098/rstb.2005.1716 10.1111/j.1095-8649.2007.01575.x 10.1111/j.1365-294X.2006.02919.x 10.1046/j.1365-2699.2003.00888.x 10.1111/j.1095-8649.2008.01993.x 10.1080/00028487.2016.1167776 10.1111/j.1749-6632.2009.04575.x 10.1139/F09-155 10.1111/j.1469-185X.2006.00004.x 10.1046/j.1523-1739.1999.98278.x 10.1111/j.1755-0998.2010.02847.x 10.1016/j.ympev.2012.02.033 10.1139/f81-206 10.1111/j.1365-294X.2005.02655.x 10.2108/zsj.26.24 10.1093/genetics/28.2.114 10.1093/genetics/97.1.145 10.1038/ng.3526 10.1080/00028487.2015.1040523 10.1577/M06-184.1 10.1111/j.1600-0587.2010.06285.x 10.1007/s10641-010-9735-5 10.2307/2992197 10.1046/j.1523-1739.1995.09040753.x 10.1139/z92-302 10.1016/0169-5347(86)90059-5 10.1007/s10592-015-0708-2 10.1093/genetics/145.4.1219 10.1093/genetics/113.4.939 10.1046/j.1365-294X.2003.01731.x 10.1534/genetics.111.127324 10.1016/S1055-7903(02)00331-7 10.1038/ng.3532 10.1111/j.1365-2656.2006.01186.x 10.1111/j.1365-2699.2008.02032.x |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/jez.b.22772 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Ecology |
EISSN | 1552-5015 |
EndPage | 606 |
ExternalDocumentID | 10_1002_jez_b_22772 28980772 JEZB22772 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: University of Michigan School of Natural Resources & Environment – fundername: Michigan Department of Natural Resources – fundername: University of Michigan Museum of Zoology – fundername: North American Native Fishes Association |
GroupedDBID | --- .GA .GJ .Y3 05W 0R~ 10A 186 1L6 1OC 1ZS 31~ 33P 4.4 51W 52M 52O 52S 52T 52W 53G 5GY 5VS 7PT 8-1 85S A03 AAEVG AAHHS AANLZ AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACSCC ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BFHJK BRXPI BY8 C45 CO8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM O9- OIG OVD P2P P2W P4D QB0 ROL RWI SUPJJ SV3 TEORI UB1 UPT UQL V2E W99 WH7 WHG WIH WJL WQJ WRC WXSBR XG1 XSW XV2 ZCG ZKB CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7X8 |
ID | FETCH-LOGICAL-c3322-230fe317ef96144b7afbb710c731533cbee28cd45c96d7b1dd6280e7b1b70f2b3 |
IEDL.DBID | DR2 |
ISSN | 1552-5007 |
IngestDate | Wed Dec 04 11:40:58 EST 2024 Fri Dec 06 04:53:45 EST 2024 Sat Sep 28 08:02:56 EDT 2024 Sat Aug 24 00:40:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | ecology molecular ecology biogeography spotted gar conservation genetics |
Language | English |
License | 2017 Wiley Periodicals, Inc. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3322-230fe317ef96144b7afbb710c731533cbee28cd45c96d7b1dd6280e7b1b70f2b3 |
Notes | Funding information Grant sponsors: University of Michigan School of Natural Resources & Environment; University of Michigan Museum of Zoology; Michigan Department of Natural Resources; North American Native Fishes Association. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8596-3425 |
PMID | 28980772 |
PQID | 1947618823 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1947618823 crossref_primary_10_1002_jez_b_22772 pubmed_primary_28980772 wiley_primary_10_1002_jez_b_22772_JEZB22772 |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-Nov 2017-11-00 20171101 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of experimental zoology. Part B, Molecular and developmental evolution |
PublicationTitleAlternate | J Exp Zool B Mol Dev Evol |
PublicationYear | 2017 |
References | 1976; 64 2010; 10 2001; 101 1942; 28 2015; 144 1988; 37 2016; 145 2007; 71 2008; 73 2009; 1168 2003; 55 1986; 1 1989; 105 2000 1997; 145 2008; 28 1986 1981; 38 1983 1981 2001; 13 2016; 48 2012; 63 2009; 66 2010; 33 1995; 9 1986; 113 2015; 16 2012 2011 2010 2006; 15 1996 2007 2005 2004 2003 2002 1991 2003; 30 1991; 8 1987; 18 2009; 26 2009; 36 1992; 70 2005; 360 1992; 131 2011; 90 2003; 26 1963 2007; 82 2014 1998; 7 2011; 188 1981; 97 Rambaut A. (e_1_2_7_50_1) 1996 Trautman M. B. (e_1_2_7_57_1) 1981 e_1_2_7_5_1 e_1_2_7_3_1 Normark B. B. (e_1_2_7_43_1) 1991; 8 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 Grande L. (e_1_2_7_26_1) 2010 Suttkus R. D. (e_1_2_7_55_1) 1963 e_1_2_7_15_1 e_1_2_7_64_1 e_1_2_7_13_1 Palumbi S. R. (e_1_2_7_44_1) 1996 e_1_2_7_11_1 NatureServe (e_1_2_7_41_1) 2011 e_1_2_7_47_1 Hendrickson D. A. (e_1_2_7_28_1) 2010 Wiley E. O. (e_1_2_7_62_1) 1976 David S. R. (e_1_2_7_17_1) 2012 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 Swofford D. L. (e_1_2_7_56_1) 2003 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 Michigan Department of Natural Resources (e_1_2_7_40_1) 2014 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 Becker G. C. (e_1_2_7_8_1) 1983 U.S. Environmental Protection Agency (e_1_2_7_59_1) 2007 e_1_2_7_6_1 e_1_2_7_4_1 Hocutt C. H. (e_1_2_7_29_1) 1986 e_1_2_7_18_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 Page L. M. (e_1_2_7_46_1) 2011 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_27_1 Pope K. L. (e_1_2_7_49_1) 2003; 55 Scudder G. G. E. (e_1_2_7_53_1) 1989 COSEWIC (e_1_2_7_16_1) 2005 Carman S. M. (e_1_2_7_14_1) 2002 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 Page L. M. (e_1_2_7_45_1) 1991 e_1_2_7_20_1 e_1_2_7_36_1 Pennsylvania Code (e_1_2_7_48_1) 2011 e_1_2_7_38_1 Sipiorski J. T. (e_1_2_7_54_1) 2011 |
References_xml | – year: 2011 – volume: 7 start-page: 431 year: 1998 end-page: 452 article-title: Comparative phylogeography of Nearctic and Palearctic fishes publication-title: Molecular Ecology – year: 1981 – volume: 82 start-page: 173 year: 2007 end-page: 211 article-title: A critical review of adaptive genetic variation in Atlantic salmon: Implications for conservation publication-title: Biological Reviews – volume: 28 start-page: 572 year: 2008 end-page: 591 article-title: Genetic assessment of lake sturgeon population structure in the Laurentian Great Lakes publication-title: North American Journal of Fishries Management – volume: 63 start-page: 848 year: 2012 end-page: 856 article-title: Gene trees, species trees, and morphology converge on a similar phylogeny of living gars (Actinopterygii: Holostei: Lepisosteidae), an ancient clade of ray‐finned fishes. publication-title: Molecular Phylogenetics and Evolution – volume: 360 start-page: 1847 year: 2005 end-page: 1857 article-title: DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London publication-title: Series B: Biological Sciences – start-page: 1 year: 2002 end-page: 3 – volume: 48 start-page: 344 issue: 4 year: 2016 end-page: 345 article-title: The gar is a fish…is a bird…is a mammal? publication-title: Nature Genetics – volume: 188 start-page: 1 year: 2011 end-page: 10 article-title: Genome evolution and meiotic maps by massively parallel DNA sequencing: Spotted gar, an outgroup for the teleost genome duplication publication-title: Genetics – volume: 1168 start-page: 100 year: 2009 end-page: 129 article-title: The covariance between genetic and environmental influences across ecological gradients publication-title: Annals of New York Academy of Sciences – volume: 18 start-page: 489 year: 1987 end-page: 522 article-title: Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics publication-title: Annual Review of Ecology and Systematics – volume: 66 start-page: 2142 year: 2009 end-page: 2156 article-title: Phylogeography and postglacial dispersal of smallmouth bass ( ) into the Great Lakes publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 144 start-page: 837 year: 2015 end-page: 850 article-title: Evidence of countergradient variation in growth of Spotted Gar from core and peripheral populations publication-title: Transactions of the American Fisheries Society – volume: 13 start-page: 1069 year: 2001 end-page: 1078 article-title: Genetic diversity, population size, and fitness in central and peripheral populations of a rare plant publication-title: Conservation Biology – volume: 8 start-page: 819 year: 1991 end-page: 834 article-title: Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences publication-title: Molecular Biology and Evolution – year: 2014 – volume: 30 start-page: 1139 year: 2003 end-page: 1152 article-title: Phylogeography of the northern hogsucker, (Teleostei: Cypriniformes): Genetic evidence for the existence of the ancient Teays River publication-title: Journal of Biogeography – volume: 90 start-page: 235 year: 2011 end-page: 242 article-title: Pectoral fin ray aging: An evaluation of a non‐lethal method for aging gars and its application to a population of the threatened spotted gar publication-title: Environmental Biology of Fishes – volume: 71 start-page: 214 year: 2007 end-page: 222 article-title: Mitochondrial cytochrome analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic publication-title: Journal of Fish Biology – year: 1986 – volume: 73 start-page: 1919 year: 2008 end-page: 1936 article-title: Genetic variation and recent population history of the tropical gar Gill (Pisces: Lepisosteidae) publication-title: Journal of Fish Biology – volume: 48 start-page: 427 year: 2016 end-page: 437 article-title: The spotted gar genome illuminates vertebrate evolution and facilitates human‐teleost comparisons publication-title: Nature Genetics – volume: 28 start-page: 114 year: 1942 end-page: 138 article-title: Isolation by distance publication-title: Genetics – volume: 70 start-page: 2247 year: 1992 end-page: 2259 article-title: Postglacial dispersal of freshwater fishes into Ontario publication-title: Canadian Journal of Zoology – volume: 97 start-page: 145 issue: 1 year: 1981 end-page: 163 article-title: DNA polymorphism detectable by restriction endonucleases publication-title: Genetics – volume: 131 start-page: 479 year: 1992 end-page: 491 article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data publication-title: Genetics – volume: 7 start-page: 381 year: 1998 end-page: 397 article-title: Nested clade analyses of phylogeographic data: Testing hypotheses about gene flow and population history publication-title: Molecular Ecology – year: 2004 – volume: 64 start-page: 1 year: 1976 end-page: 111 – volume: 55 start-page: 43 year: 2003 end-page: 48 article-title: Variation in spotted gar ( ) mass‐length relationships in Texas reservoirs publication-title: Texas Journal of Science – volume: 26 start-page: 24 year: 2009 end-page: 34 article-title: Phylogeography of the Bluegill Sunfish, , in the Mississippi River Basin publication-title: Zoological Science – year: 1983 – volume: 9 start-page: 753 year: 1995 end-page: 760 article-title: When are peripheral populations valuable for conservation? publication-title: Conservation Biology – year: 2007 – volume: 16 start-page: 889 year: 2015 end-page: 899 article-title: Genetic structure and diversity of spotted gar ( ) at its northern range edge: Implications for conservation publication-title: Conservation Genetics – year: 2003 – start-page: 205 year: 1996 end-page: 247 – year: 2000 – year: 1996 – volume: 15 start-page: 2013 year: 2006 end-page: 2029 article-title: Life on the margin: Genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea publication-title: Molecular Ecology – start-page: 61 year: 1963 end-page: 88 – volume: 10 start-page: 564 year: 2010 end-page: 567 article-title: Arlequin suite version 3.5: A new series of programs to perform population genetics analyses under Linux and Windows publication-title: Molecular Ecology Resources – volume: 37 start-page: 329 year: 1988 end-page: 355 article-title: Vicariance biogeography, parsimony, and evolution in North American freshwater fishes publication-title: Systematic Zoology – volume: 145 start-page: 1219 issue: 4 year: 1997 end-page: 1228 article-title: Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance publication-title: Genetics – volume: 26 start-page: 110 year: 2003 end-page: 120 article-title: Basal actinopterygian relationships: A mitogenomic perspective on the phylogeny of the “ancient fish” publication-title: Molecular Phylogenetics and Evolution – year: 2010 – volume: 38 start-page: 1539 year: 1981 end-page: 1561 article-title: Origin and geography of the fish fauna of the Laurentian Great Lakes basin publication-title: Canadian Journal of Fisheries and Aquatic Sciences – year: 2012 – volume: 33 start-page: 315 year: 2010 end-page: 320 article-title: A meta‐analysis of isolation by distance: Relic or reference standard for landscape genetics? publication-title: Ecography – volume: 1 start-page: 9 year: 1986 end-page: 10 article-title: Species conservation and systematics: The dilemma of subspecies publication-title: Trends in Ecology and Evolution – volume: 36 start-page: 3 year: 2009 end-page: 15 article-title: Phylogeography: Retrospect and prospect publication-title: Journal of Biogeography – volume: 105 start-page: 180 year: 1989 end-page: 185 – volume: 113 start-page: 939 year: 1986 end-page: 965 article-title: Molecular zoogeography of freshwater fishes in the southeastern United States publication-title: Genetics – year: 1991 – start-page: 1 year: 2005 end-page: 17 – volume: 145 start-page: 835 year: 2016 end-page: 838 article-title: Natural habitat conditions in a captive environment lead to spawning of Spotted Gar publication-title: Transactions of the American Fisheries Society – volume: 101 start-page: 147 year: 2001 end-page: 156 article-title: The conservation of variation in geographically peripheral populations: (Liliaceae) in Britain publication-title: Biological Conservation – ident: e_1_2_7_58_1 doi: 10.1046/j.1365-294x.1998.00308.x – volume-title: An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of holostei year: 2010 ident: e_1_2_7_26_1 contributor: fullname: Grande L. – ident: e_1_2_7_30_1 doi: 10.3998/mpub.17658 – ident: e_1_2_7_34_1 doi: 10.1016/S0006-3207(01)00055-6 – volume-title: Life history, growth, and genetic diversity of the Spotted Gar Lepisosteus oculatus from peripheral and core populations year: 2012 ident: e_1_2_7_17_1 contributor: fullname: David S. R. – volume-title: The zoogeography of North American Freshwater Fishes year: 1986 ident: e_1_2_7_29_1 contributor: fullname: Hocutt C. H. – ident: e_1_2_7_11_1 doi: 10.1046/j.1365-294x.1998.00319.x – ident: e_1_2_7_60_1 doi: 10.1098/rstb.2005.1716 – ident: e_1_2_7_27_1 doi: 10.1111/j.1095-8649.2007.01575.x – ident: e_1_2_7_33_1 doi: 10.1111/j.1365-294X.2006.02919.x – ident: e_1_2_7_9_1 doi: 10.1046/j.1365-2699.2003.00888.x – ident: e_1_2_7_25_1 – volume-title: Se‐Al: Sequence Alignment Editor [computer program] year: 1996 ident: e_1_2_7_50_1 contributor: fullname: Rambaut A. – volume-title: Fishes of Wisconsin. Madison year: 1983 ident: e_1_2_7_8_1 contributor: fullname: Becker G. C. – start-page: 1 volume-title: COSEWIC assessment and update status report on the spotted gar Lepisosteus oculatus in Canada year: 2005 ident: e_1_2_7_16_1 contributor: fullname: COSEWIC – volume-title: Species of greatest conservation need. Michigan's wildlife action plan 2015–2025 year: 2014 ident: e_1_2_7_40_1 contributor: fullname: Michigan Department of Natural Resources – volume-title: A Field Guide to Freshwater Fishes, second edition. Boston year: 2011 ident: e_1_2_7_46_1 contributor: fullname: Page L. M. – ident: e_1_2_7_7_1 doi: 10.1111/j.1095-8649.2008.01993.x – volume-title: Fishes of Texas Project and Online Database year: 2010 ident: e_1_2_7_28_1 contributor: fullname: Hendrickson D. A. – ident: e_1_2_7_21_1 doi: 10.1080/00028487.2016.1167776 – ident: e_1_2_7_15_1 doi: 10.1111/j.1749-6632.2009.04575.x – ident: e_1_2_7_12_1 doi: 10.1139/F09-155 – ident: e_1_2_7_22_1 doi: 10.1111/j.1469-185X.2006.00004.x – ident: e_1_2_7_36_1 doi: 10.1046/j.1523-1739.1999.98278.x – start-page: 61 volume-title: Fishes of the Western Atlantic; Part three, Soft‐rayed fishes year: 1963 ident: e_1_2_7_55_1 contributor: fullname: Suttkus R. D. – ident: e_1_2_7_20_1 doi: 10.1111/j.1755-0998.2010.02847.x – ident: e_1_2_7_63_1 doi: 10.1016/j.ympev.2012.02.033 – ident: e_1_2_7_6_1 doi: 10.1139/f81-206 – volume: 8 start-page: 819 year: 1991 ident: e_1_2_7_43_1 article-title: Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences publication-title: Molecular Biology and Evolution contributor: fullname: Normark B. B. – volume-title: The world according to gars: The molecular systematics and comparative phylogeography of living gars (Actinopterygii: Lepisosteidae) year: 2011 ident: e_1_2_7_54_1 contributor: fullname: Sipiorski J. T. – volume-title: The Fishes of Ohio (revised edition).Columbus year: 1981 ident: e_1_2_7_57_1 contributor: fullname: Trautman M. B. – start-page: 205 volume-title: Molecular systematics year: 1996 ident: e_1_2_7_44_1 contributor: fullname: Palumbi S. R. – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-294X.2005.02655.x – ident: e_1_2_7_35_1 doi: 10.2108/zsj.26.24 – volume-title: 58 Pa. Code § 75.1 Endangered species year: 2011 ident: e_1_2_7_48_1 contributor: fullname: Pennsylvania Code – ident: e_1_2_7_64_1 doi: 10.1093/genetics/28.2.114 – ident: e_1_2_7_42_1 doi: 10.1093/genetics/97.1.145 – volume-title: A Field Guide to Freshwater Fishes. Boston year: 1991 ident: e_1_2_7_45_1 contributor: fullname: Page L. M. – volume: 55 start-page: 43 year: 2003 ident: e_1_2_7_49_1 article-title: Variation in spotted gar (Lepisosteus oculatus) mass‐length relationships in Texas reservoirs publication-title: Texas Journal of Science contributor: fullname: Pope K. L. – ident: e_1_2_7_13_1 doi: 10.1038/ng.3526 – ident: e_1_2_7_18_1 doi: 10.1080/00028487.2015.1040523 – ident: e_1_2_7_61_1 doi: 10.1577/M06-184.1 – ident: e_1_2_7_32_1 doi: 10.1111/j.1600-0587.2010.06285.x – start-page: 1 volume-title: Special animal abstract for Lepisosteus oculatus (spotted gar) year: 2002 ident: e_1_2_7_14_1 contributor: fullname: Carman S. M. – ident: e_1_2_7_23_1 doi: 10.1007/s10641-010-9735-5 – ident: e_1_2_7_39_1 doi: 10.2307/2992197 – volume-title: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) year: 2003 ident: e_1_2_7_56_1 contributor: fullname: Swofford D. L. – ident: e_1_2_7_37_1 doi: 10.1046/j.1523-1739.1995.09040753.x – ident: e_1_2_7_38_1 doi: 10.1139/z92-302 – ident: e_1_2_7_52_1 doi: 10.1016/0169-5347(86)90059-5 – ident: e_1_2_7_24_1 doi: 10.1007/s10592-015-0708-2 – ident: e_1_2_7_51_1 doi: 10.1093/genetics/145.4.1219 – start-page: 1 volume-title: The phylogeny and biogeography of fossil and recent gars (Actinopterygii: Lepisosteidae) year: 1976 ident: e_1_2_7_62_1 contributor: fullname: Wiley E. O. – ident: e_1_2_7_10_1 doi: 10.1093/genetics/113.4.939 – volume-title: Biological indicators of watershed health year: 2007 ident: e_1_2_7_59_1 contributor: fullname: U.S. Environmental Protection Agency – start-page: 180 volume-title: Proceedings of the national workshop on effects of habitat alteration on salmonid stocks year: 1989 ident: e_1_2_7_53_1 contributor: fullname: Scudder G. G. E. – ident: e_1_2_7_3_1 doi: 10.1046/j.1365-294X.2003.01731.x – ident: e_1_2_7_2_1 doi: 10.1534/genetics.111.127324 – ident: e_1_2_7_31_1 doi: 10.1016/S1055-7903(02)00331-7 – volume-title: NatureServe Explorer: An online encyclopedia of life [web application] year: 2011 ident: e_1_2_7_41_1 contributor: fullname: NatureServe – ident: e_1_2_7_47_1 doi: 10.1038/ng.3532 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-2656.2006.01186.x – ident: e_1_2_7_4_1 doi: 10.1111/j.1365-2699.2008.02032.x |
SSID | ssj0026055 |
Score | 2.2166097 |
Snippet | The spotted gar (Lepisosteus oculatus) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to the... The spotted gar ( Lepisosteus oculatus ) shows a disjunct natural distribution, with a core population extending from the central Mississippi River Basin to... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 596 |
SubjectTerms | Animal Distribution Animals biogeography conservation genetics ecology Fishes - genetics Genetic Variation molecular ecology Phylogeography spotted gar United States |
Title | Genetic variation and biogeography of the spotted gar Lepisosteus oculatus from core and peripheral populations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjez.b.22772 https://www.ncbi.nlm.nih.gov/pubmed/28980772 https://search.proquest.com/docview/1947618823 |
Volume | 328 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JasMwEBUlUOil-5JuqJBbcWLLi-Jjl4QQSg-lgZCLsRaHtMUOsVNovr4zspNuUGhvYyzJWKPlPXvmiZCGbzMVxsBOuEqU5cEWZYWJL6y22_Y8riX3YqP2eR_0Bl5_6A-r2BzMhSn1IVYf3HBmmPUaJ3gs8taHaOiTXjRFkzGAh7ACOy7HgL7bh5V4FAJ136il-kC3YCussvPgTutT3a_70Q-Q-RWzmk2nu1WerJobrUKMNXluzgvRlItvSo7_fp9tslnBUXpVjp8dsqbTXbLeMVLWb2CNMmPtkQz1qaEQfQVybbxJ41RRMcnGulK9pllCAU5SIMoF4Fg6jmf0Tk8nOeaRzHOaYchrAQamtFCUzzRNoNSy0TZ4odPVaWL5Phl0O483Pas6rMGSLhJaoDKJBjCikxA5puBxIgTAF8ldhJRSaM3woCRfhoHiwlEqYG1bgyW4nTDhHpBamqX6iNCYI84QviMD11OhChlcCNQmlHbihbJOGkuXRdNSkyMq1ZdZBL0Yicj0Yp1cLN0ZwZzBHyFxqrN5HjmhxwMHuIVbJ4eln1cNAQFt26b2pfHWb0-I-p3RtbGO_1T6hGwwRAcmpfGU1IrZXJ8BtinEuRnC72dq9VU |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VUAUXXi2wpRQjcauyJM7Dm2OhixZYOFQgIS5W_AiiRclqN4vE_npmnOzykiq1t4li5-HxxN_neD4D7Mc-N2mG7ESY3HgRDlFemsfK64SdKBJWiyhzap8XSe8qOr2Or5sJN8qFqfUhZhNuFBnue00BThPSB8-qob_tpK3anCM-nIMFDPiAlnT9_DWTjyKoHju91BgJFw6GTX4enjl4Ufn1iPQOZr5GrW7YOV4BOX3gerXJn_a4Um09eaPl-P9vtArLDSJlP-outAYfbLEOH7tOzfoRrZvSWZ-gJIlqLMQekF87h7KsMEzdlbe2Eb5mZc4QUTLkyhVCWXabDVnfDu5GlEoyHrGSVr1WaFBWCyMFTXcJUlt28gb3bDDbUGz0Ga6Ou5dHPa_Zr8HTIXFaZDO5RTxi85RophJZrhQiGC1CQpVaWctpr6RYp4kRKjAm4R3foqWEn3MVbsB8URZ2C1gmCGqoONBJGJnUpBwPFMkTaj-PUt2C_anP5KCW5ZC1ADOX2IpSSdeKLdib-lNi2NC_kKyw5XgkgzQSSYD0ImzBZu3o2YWQg3Z8V_u7c9ff7iBPuzeHzvryT6V3YbF3ed6X_ZOLs21Y4gQWXIbjV5ivhmO7g1CnUt9cf34CxHz5dg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bS9xAFMYHq1j64qWt7Xppp-BbyZqdTDI7j152sSoioiC-DJmbqCVZTFbQv95zJnG9QcG-nZAbyclkvi-Z8xtC1tOYWZmDOxHW24hDFxVJn-qon_Q5F84Ingfa52G2e8r3ztKzdmwO1sI0fIjJBzdsGeF9jQ18ZP3GEzT0yt13dZcxkIcfyAzPmER0_s7xhB6FSj0NuNQU_Bb0hW15HqzZeLbzyw7pjcp8KVpDrzOcb6ZWrQKsEAebXHfHte6a-1cox_--oAUy1-pRutk8QItkyhWfyewgsKzvIDovQ_SFlAioho3oLbjrkE6aF5bqy_LCtdhrWnoKepKCU65ByNKL_IYeuNFlhYUk44qWOOa1hgBrWijyM8MhkLUc4AZ_6WgynVj1lZwOByfbu1E7W0NkEnS04GW8AzXivESTqUXutQb9YkSCmtJo5xjOlJQamVmhe9ZmrB87iLSIPdPJEpkuysJ9JzQXKDR02jNZwq20ksGCRjihiT2XpkPWH1OmRg2UQzX4ZabgLiqtwl3skF-P6VTQaPBPSF64clypnuQi64G5SDrkW5PnyYHAgfbjsPfvkK1_nUHtDc63QrT8rq1_ko9HO0N18Odwf4V8YqgUQnnjKpmub8ZuDXROrX-Ep_kB5k_4JQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+variation+and+biogeography+of+the+spotted+gar+Lepisosteus+oculatus+from+core+and+peripheral+populations&rft.jtitle=Journal+of+experimental+zoology.+Part+B%2C+Molecular+and+developmental+evolution&rft.au=David%2C+Solomon+R.&rft.au=Wright%2C+Jeremy+J.&rft.date=2017-11-01&rft.issn=1552-5007&rft.eissn=1552-5015&rft.volume=328&rft.issue=7&rft.spage=596&rft.epage=606&rft_id=info:doi/10.1002%2Fjez.b.22772&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jez_b_22772 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5007&client=summon |