Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations
The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mech...
Saved in:
Published in | International journal of quantum chemistry Vol. 118; no. 9 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
05.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution.
Combined studies involving experiments and multiscale computational approaches provide further understanding of the mechanisms of electron beam irradiation on α‐Ag2WO4 to form Ag nanoparticles in vacuum conditions. The increasing interplay between experimental and computational approaches at multiple length scales, aims to provide a deep insight into the rationalization of electron beam‐induced transformations. |
---|---|
AbstractList | The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution.
Combined studies involving experiments and multiscale computational approaches provide further understanding of the mechanisms of electron beam irradiation on α‐Ag2WO4 to form Ag nanoparticles in vacuum conditions. The increasing interplay between experimental and computational approaches at multiple length scales, aims to provide a deep insight into the rationalization of electron beam‐induced transformations. The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution. The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag 2 WO 4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag 2 WO 4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution. |
Author | Manzeppi Faccin, Giovani Pereira, Douglas Henrique Andrés, Juan Gracia, Lourdes Longo, Elson Gouveia, Amanda Fernandes da Silva, Edison Zacarias San‐Miguel, Miguel Angel |
Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0003-2656-5811 surname: Andrés fullname: Andrés, Juan email: andres@qfa.uji.es organization: University Jaume I – sequence: 2 givenname: Amanda Fernandes orcidid: 0000-0003-3441-3674 surname: Gouveia fullname: Gouveia, Amanda Fernandes organization: CDMF, Federal University of São Carlos, P.O. Box 676 – sequence: 3 givenname: Lourdes surname: Gracia fullname: Gracia, Lourdes organization: University of Valencia – sequence: 4 givenname: Elson surname: Longo fullname: Longo, Elson organization: CDMF, Federal University of São Carlos, P.O. Box 676 – sequence: 5 givenname: Giovani surname: Manzeppi Faccin fullname: Manzeppi Faccin, Giovani organization: Faculdade de Ciências Exatas e Tecnológicas, Universidade Federal da Grande Dourados, Unidade II, CP 533, 79804‐970 – sequence: 6 givenname: Edison Zacarias surname: da Silva fullname: da Silva, Edison Zacarias organization: Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083‐970 – sequence: 7 givenname: Douglas Henrique surname: Pereira fullname: Pereira, Douglas Henrique organization: Federal University of Tocantins, 77410‐530 – sequence: 8 givenname: Miguel Angel surname: San‐Miguel fullname: San‐Miguel, Miguel Angel organization: Institute of Chemistry, State University of Campinas, 13083‐970 |
BookMark | eNp1kM1KAzEURoNUsK0ufIOAKxfTJpl_d6VYFQQRLLgLmSRTUmaSaZJBuvMRfEafxHTalegqXHLOd5NvAkbaaAnANUYzjBCZ73o2I2ma4jMwxqjMoyTD7yMwDncoyjNUXICJc1uEUBZn-Rj0K2Nb5pXR0NRwsYGaadMx6xVvpIO9FtJC2UjubUAqyVqorGVCDc4dXHjTKhdoaKzaKO1gbU0La2Wd__786qzSXHWHKM4a3jeD5i7Bec0aJ69O5xSsV_dvy8fo-eXhabl4jngcExzJtBR1WeUpLkVRJ5lAGRMVjgshU1TIROC4krIsRI7ypK5wmSRFFWbOCZOEl_EU3BxzO2t2vXSebk1vdVhJCcJ5jktCcKDmR4pb45yVNeXKDw_1lqmGYkQP3dLQLR26DcbtLyN8tGV2_yd7Sv9Qjdz_D9LX9eJo_AA-b47p |
CitedBy_id | crossref_primary_10_1002_slct_202000502 crossref_primary_10_1002_ppsc_201800237 crossref_primary_10_1016_j_jallcom_2022_163840 crossref_primary_10_1002_ppsc_201800533 crossref_primary_10_1021_acsabm_8b00673 crossref_primary_10_1016_j_mtchem_2022_101274 crossref_primary_10_1038_s41598_019_46159_y crossref_primary_10_1016_j_matchemphys_2022_125710 crossref_primary_10_1021_acs_inorgchem_0c03186 crossref_primary_10_1007_s11249_022_01653_9 crossref_primary_10_1021_acs_cgd_0c01417 crossref_primary_10_1021_acsphyschemau_4c00062 crossref_primary_10_1063_1_5109230 crossref_primary_10_1021_acs_jpcc_4c08139 crossref_primary_10_1021_acsaem_2c02756 crossref_primary_10_1007_s41061_021_00332_y crossref_primary_10_1021_acs_jpcc_9b02107 crossref_primary_10_1039_D0RA03179H crossref_primary_10_1021_acs_jpcc_0c10321 crossref_primary_10_1016_j_jece_2020_104889 crossref_primary_10_1016_j_jmrt_2022_11_011 crossref_primary_10_1021_acs_jpcc_8b06947 crossref_primary_10_1038_s41598_020_78542_5 crossref_primary_10_1016_j_ceramint_2024_05_252 |
Cites_doi | 10.1039/c1cp20488b 10.1088/0957-4484/27/22/225703 10.1021/acs.inorgchem.6b01215 10.1039/C4GC01638F 10.1038/srep05391 10.5772/58923 10.1039/C4CP05849F 10.1103/PhysRevA.31.1695 10.1007/s11468-009-9088-0 10.1016/j.cpc.2013.08.002 10.1016/j.jallcom.2016.05.078 10.1039/c3cs60364d 10.1126/science.1077229 10.1002/smll.200801202 10.1038/nmat2780 10.1021/acsnano.5b02077 10.1007/s11664-014-3078-5 10.1016/j.apsusc.2016.03.095 10.1016/j.mseb.2013.01.015 10.1103/PhysRevB.83.134118 10.1038/srep21498 10.1016/j.jcat.2010.12.011 10.1103/PhysRevB.37.785 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.59.1758 10.1093/oso/9780198551683.001.0001 10.1016/j.micron.2016.05.003 10.1103/PhysRevB.47.558 10.1103/PhysRevB.54.11169 10.1039/C4CP00941J 10.1006/jcph.1995.1039 10.1021/jp512111v 10.1063/1.464913 10.1103/PhysRevB.39.12554 10.1080/00268978400101201 10.1039/C3TA14494A 10.1126/science.1066541 10.1103/PhysRevB.50.17953 10.1166/asem.2015.1712 10.1109/38.310720 10.1023/A:1016754922933 10.1063/1.447334 10.1039/C2TA00669C 10.1021/nl034372s 10.1002/ejic.201402612 10.1002/ppsc.201400162 10.1103/PhysRevB.49.16223 10.1088/0957-4484/18/33/335604 10.1038/nmat3151 10.1039/C3NR05837A 10.1103/PhysRev.136.B864 10.1103/PhysRevB.29.6443 10.1103/PhysRevB.13.5188 10.1088/0965-0393/18/1/015012 10.1524/zkri.220.5.571.65065 10.1002/9783527610709 10.1103/PhysRevB.33.7983 10.1021/nl0344209 10.1038/nchem.1032 10.1107/S0021889882011510 10.1039/C4TA02991G 10.1021/acs.jpcc.7b00769 10.1103/PhysRevLett.90.255504 10.1021/j100303a014 10.1021/ja064884j 10.1021/acsami.5b02134 10.1155/2013/640428 10.1021/jp410564p 10.1103/PhysRevLett.77.3865 10.1039/C5DT02217G 10.1016/0263-7855(96)00018-5 10.1007/BF02704077 10.1021/nl301934w 10.1021/nn900922z 10.1039/C5CY00331H 10.1103/PhysRevB.46.6671 10.1039/C5RA02339D 10.1103/PhysRevB.59.3393 10.1016/j.cpc.2010.12.021 10.1021/jp408167v 10.1103/PhysRev.56.340 10.1038/srep01676 10.1021/nl301521z 10.1021/jp0608628 10.1038/35826 10.1039/9781847553317-00143 10.1039/c3ta12061a 10.1016/j.cpc.2011.10.012 10.1002/chem.201201435 10.1016/j.apsusc.2015.07.139 10.1016/j.matchemphys.2008.12.001 10.1021/ja961514u 10.1021/ic300948n 10.1088/0957-4484/17/15/026 |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION |
DOI | 10.1002/qua.25551 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1097-461X |
EndPage | n/a |
ExternalDocumentID | 10_1002_qua_25551 QUA25551 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Center for High Performance Computing in São Paulo (CENAPAD) – fundername: CCJDR‐UNICAMP – fundername: Ministerio de Economia y Competitividad funderid: CTQ2015‐65207‐P – fundername: FAPESP funderid: 2017/07240‐8 ; 2013/26671‐9 ; 2013/07296‐2 ; 2015/19709‐5 – fundername: Capes and CNPq – fundername: Sistema de Computação Petaflópica SDUMONT‐SINALAD‐LNCC – fundername: Generalitat Valenciana funderid: PrometeoII/2014/022 ; Prometeo/2016/079 ; ACOMP/2014/270 ; ACOMP/2015/1202 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWK RX1 SUPJJ TN5 TUS UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3321-e59df9b7519d8f46d06adb138de508e4d13bee98d7074fb19448be98cc2ae2c93 |
IEDL.DBID | DR2 |
ISSN | 0020-7608 |
IngestDate | Fri Jul 25 12:11:33 EDT 2025 Thu Apr 24 23:05:22 EDT 2025 Tue Jul 01 02:38:09 EDT 2025 Wed Jan 22 16:39:29 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3321-e59df9b7519d8f46d06adb138de508e4d13bee98d7074fb19448be98cc2ae2c93 |
Notes | Funding information Sistema de Computação Petaflópica SDUMONT‐SINALAD‐LNCC; National Center for High Performance Computing in São Paulo (CENAPAD); CCJDR‐UNICAMP; FAPESP, Grant/Award Numbers: 2017/07240‐8; 2013/26671‐9, 2013/07296‐2, 2015/19709‐5; Capes and CNPq; Generalitat Valenciana (PrometeoII/2014/022, Prometeo/2016/079, ACOMP/2014/270, ACOMP/2015/1202); Ministerio de Economia y Competitividad, Grant/Award Number: CTQ2015‐65207‐P This article is dedicated to our colleague and friend, Prof. Nino Russo, as a tribute on the occasion of his 70th birthday. We hereby take this opportunity to convey our most heartfelt congratulations to an excellent person and a great researcher who possesses a privileged vision of interpersonal relations, teaching‐learning processes, and technical‐scientific innovations. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3441-3674 0000-0003-2656-5811 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qua.25551 |
PQID | 2017719221 |
PQPubID | 1026346 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2017719221 crossref_citationtrail_10_1002_qua_25551 crossref_primary_10_1002_qua_25551 wiley_primary_10_1002_qua_25551_QUA25551 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 5, 2018 |
PublicationDateYYYYMMDD | 2018-05-05 |
PublicationDate_xml | – month: 05 year: 2018 text: May 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International journal of quantum chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 278 1982; 15 2013; 3 2013; 1 2010; 18 1986; 33 1988; 37 2015; 32 2017; 391 2011; 10 2005; 65 2011; 13 2012; 18 1984; 29 1939; 56 2012; 12 2009; 115 1964; 136 2012; 51 1996; 77 1984; 52 2001; 294 2014; 4 2003; 90 2014; 2 2005; 220 1990 2013; 2013 2000 1999; 59 2015; 44 2014; 16 2003; 3 1992; 46 2017; 121 2006; 128 2014; 6 2010; 9 1996; 6 1989; 39 2016; 88 2014; 118 2012; 183 1993; 47 2007; 18 2015; 17 2015; 5 1984; 81 1987; 91 2006; 17 2002; 298 2011; 83 1998 1995; 117 2006; 110 2016; 683 2007 1994; 49 2014; 2014 2013; 184 1996; 14 2011; 3 2015; 9 2015; 7 1996; 54 2014; 43 2016; 55 1998; 391 2016; 6 1976; 13 2015; 358 1993; 98 2013; 178 1994; 14 2015; 119 2009; 5 2014 2009; 4 2009; 3 2016; 27 1994; 50 1985; 31 2011; 182 1996; 118 2001; 75 e_1_2_7_3_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 Jonsson H. (e_1_2_7_68_1) 1998 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 Bader R. F. W. (e_1_2_7_69_1) 1990 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 Dovesi R. (e_1_2_7_52_1) 2014 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 1 start-page: 10612 year: 2013 publication-title: J. Mater. Chem. A – volume: 182 start-page: 898 year: 2011 publication-title: Comput. Phys. Commun. – volume: 39 start-page: 12554 year: 1989 publication-title: Phys. Rev. B – volume: 12 start-page: 4271 year: 2012 publication-title: Nano Lett. – volume: 3 start-page: 1676 year: 2013 publication-title: Sci. Rep. – volume: 17 start-page: 474 year: 2015 publication-title: Green Chem. – volume: 98 start-page: 5648 year: 1993 publication-title: J. Chem. Phys. – volume: 358 start-page: 46 year: 2015 publication-title: Appl. Surf. Sci. – volume: 10 start-page: 911 year: 2011 publication-title: Nat. Mater. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. – volume: 33 start-page: 7983 year: 1986 publication-title: Phys. Rev. B – volume: 9 start-page: 559 year: 2010 publication-title: Nat. Mater. – volume: 43 start-page: 3898 year: 2014 publication-title: Chem. Soc. Rev. – volume: 683 start-page: 186 year: 2016 publication-title: J. Alloys Compd. – volume: 391 start-page: 775 year: 1998 publication-title: Nature – volume: 119 start-page: 6293 year: 2015 publication-title: J. Phys. Chem. C – volume: 83 start-page: 134118 year: 2011 publication-title: Phys. Rev. B – volume: 220 start-page: 571 year: 2005 publication-title: Z. Kristallogr. – volume: 52 start-page: 255 year: 1984 publication-title: Mol. Phys. – volume: 2 start-page: 14927 year: 2014 publication-title: J. Mater. Chem. A – volume: 56 start-page: 340 year: 1939 publication-title: Phys. Rev. – volume: 13 start-page: 10071 year: 2011 publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 12174 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 22 year: 2014 publication-title: Nanomater. Nanotechnol. – year: 1990 – year: 2014 – volume: 77 start-page: 3865 year: 1996 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. – volume: 81 start-page: 511 year: 1984 publication-title: J. Chem. Phys. – year: 1998 – volume: 44 start-page: 15888 year: 2015 publication-title: Dalton Trans. – volume: 3 start-page: 467 year: 2011 publication-title: Nat. Chem. – volume: 110 start-page: 15666 year: 2006 publication-title: J. Phys. Chem. B – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graph. – volume: 391 start-page: 592 year: 2017 publication-title: Appl. Surf. Sci. – volume: 14 start-page: 19 year: 1994 publication-title: IEEE Comput. Graph. Appl. – volume: 18 start-page: 335604 year: 2007 publication-title: Nanotechnology – volume: 298 start-page: 2176 year: 2002 publication-title: Science – volume: 5 start-page: 341 year: 2009 publication-title: Small – volume: 7 start-page: 12597 year: 2015 publication-title: Acs Appl. Mater. Interfaces – volume: 183 start-page: 449 year: 2012 publication-title: Comput. Phys. Commun. – volume: 184 start-page: 2785 year: 2013 publication-title: Comput. Phys. Commun. – volume: 54 start-page: 11169 year: 1996 publication-title: Phys. Rev. B – volume: 75 start-page: 81 year: 2001 publication-title: Catal. Lett. – volume: 5 start-page: 4091 year: 2015 publication-title: Catal. Sci. Technol. – volume: 27 start-page: 225703 year: 2016 publication-title: Nanotechnology – volume: 4 start-page: 5391 year: 2014 publication-title: Sci. Rep. – volume: 3 start-page: 1057 year: 2003 publication-title: Nano Lett. – volume: 6 start-page: 4058 year: 2014 publication-title: Nanoscale – volume: 117 start-page: 1 year: 1995 publication-title: J. Comput. Phys. – volume: 278 start-page: 276 year: 2011 publication-title: J. Catal. – volume: 37 start-page: 785 year: 1988 publication-title: Phys. Rev. B – volume: 32 start-page: 646 year: 2015 publication-title: Part. Part. Syst. Char. – volume: 294 start-page: 1901 year: 2001 publication-title: Science – volume: 136 start-page: B864 year: 1964 publication-title: Phys. Rev. – volume: 18 start-page: 015012 year: 2010 publication-title: Modell. Simul. Mater. Sci. Eng. – volume: 5 start-page: 31298 year: 2015 publication-title: Rsc Adv. – volume: 2 start-page: 1677 year: 2014 publication-title: J. Mater. Chem. A – volume: 17 start-page: 5352 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 118 start-page: 5769 year: 2014 publication-title: J. Phys. Chem. A – volume: 15 start-page: 114 year: 1982 publication-title: J. Appl. Crystallogr. – year: 2007 – volume: 3 start-page: 3015 year: 2009 publication-title: Acs Nano – year: 2000 – volume: 29 start-page: 6443 year: 1984 publication-title: Phys. Rev. B – volume: 2014 start-page: 5724 year: 2014 publication-title: Eur. J. Inorg. Chem. – volume: 16 start-page: 15422 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 115 start-page: 296 year: 2009 publication-title: Mater. Chem. Phys. – volume: 51 start-page: 10675 year: 2012 publication-title: Inorg. Chem. – volume: 88 start-page: 1 year: 2016 publication-title: Micron – volume: 18 start-page: 14272 year: 2012 publication-title: Chemistry – volume: 6 start-page: 21498 year: 2016 publication-title: Sci. Rep. – volume: 47 start-page: 558 year: 1993 publication-title: Phys. Rev. B – volume: 91 start-page: 4950 year: 1987 publication-title: J. Phys. Chem. – volume: 4 start-page: 171 year: 2009 publication-title: Plasmonics – volume: 7 start-page: 498 year: 2015 publication-title: Adv. Sci. Eng. Med. – volume: 55 start-page: 8661 year: 2016 publication-title: Inorg. Chem. – volume: 46 start-page: 6671 year: 1992 publication-title: Phys. Rev. B – volume: 65 start-page: 793 year: 2005 publication-title: Pramana‐J. Phys. – volume: 43 start-page: 2397 year: 2014 publication-title: J. Electron. Mater. – volume: 121 start-page: 7030 year: 2017 publication-title: J. Phys. Chem. C – volume: 9 start-page: 7256 year: 2015 publication-title: Acs Nano – volume: 31 start-page: 1695 year: 1985 publication-title: Phys. Rev. A – volume: 13 start-page: 5188 year: 1976 publication-title: Phys. Rev. B – volume: 49 start-page: 16223 year: 1994 publication-title: Phys. Rev. B – volume: 59 start-page: 3393 year: 1999 publication-title: Phys. Rev. B – volume: 6 start-page: 15 year: 1996 publication-title: Comput. Mater. Sci. – volume: 3 start-page: 1229 year: 2003 publication-title: Nano Lett. – volume: 1 start-page: 2118 year: 2013 publication-title: J. Mater. Chem. A – volume: 2013 start-page: 640428 year: 2013 publication-title: Adv. Mater. Sci. Eng. – volume: 178 start-page: 344 year: 2013 publication-title: Mater. Sci. Eng. B Adv. Funct. Solid State Mater. – volume: 12 start-page: 4070 year: 2012 publication-title: Nano Lett. – volume: 17 start-page: 3768 year: 2006 publication-title: Nanotechnology – volume: 50 start-page: 17953 year: 1994 publication-title: Phys. Rev. B – volume: 90 start-page: 255504 year: 2003 publication-title: Phys. Rev. Lett. – volume: 128 start-page: 15756 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 1229 year: 2014 publication-title: J. Phys. Chem. C – ident: e_1_2_7_26_1 doi: 10.1039/c1cp20488b – volume-title: CRYSTAL14 User's Manual year: 2014 ident: e_1_2_7_52_1 – ident: e_1_2_7_34_1 doi: 10.1088/0957-4484/27/22/225703 – ident: e_1_2_7_73_1 doi: 10.1021/acs.inorgchem.6b01215 – ident: e_1_2_7_42_1 doi: 10.1039/C4GC01638F – ident: e_1_2_7_31_1 doi: 10.1038/srep05391 – ident: e_1_2_7_32_1 doi: 10.5772/58923 – ident: e_1_2_7_33_1 doi: 10.1039/C4CP05849F – ident: e_1_2_7_82_1 doi: 10.1103/PhysRevA.31.1695 – ident: e_1_2_7_24_1 doi: 10.1007/s11468-009-9088-0 – ident: e_1_2_7_79_1 doi: 10.1016/j.cpc.2013.08.002 – ident: e_1_2_7_43_1 doi: 10.1016/j.jallcom.2016.05.078 – ident: e_1_2_7_19_1 doi: 10.1039/c3cs60364d – ident: e_1_2_7_3_1 doi: 10.1126/science.1077229 – ident: e_1_2_7_8_1 doi: 10.1002/smll.200801202 – ident: e_1_2_7_14_1 doi: 10.1038/nmat2780 – ident: e_1_2_7_45_1 doi: 10.1021/acsnano.5b02077 – ident: e_1_2_7_12_1 doi: 10.1007/s11664-014-3078-5 – ident: e_1_2_7_29_1 doi: 10.1016/j.apsusc.2016.03.095 – ident: e_1_2_7_17_1 doi: 10.1016/j.mseb.2013.01.015 – ident: e_1_2_7_87_1 doi: 10.1103/PhysRevB.83.134118 – ident: e_1_2_7_49_1 doi: 10.1038/srep21498 – ident: e_1_2_7_57_1 – ident: e_1_2_7_21_1 doi: 10.1016/j.jcat.2010.12.011 – ident: e_1_2_7_55_1 doi: 10.1103/PhysRevB.37.785 – ident: e_1_2_7_59_1 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_2_7_66_1 doi: 10.1103/PhysRevB.59.1758 – volume-title: Atoms in Molecules: A Quantum Theory year: 1990 ident: e_1_2_7_69_1 doi: 10.1093/oso/9780198551683.001.0001 – ident: e_1_2_7_50_1 doi: 10.1016/j.micron.2016.05.003 – ident: e_1_2_7_58_1 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_7_60_1 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_2_7_22_1 doi: 10.1039/C4CP00941J – ident: e_1_2_7_76_1 doi: 10.1006/jcph.1995.1039 – ident: e_1_2_7_75_1 doi: 10.1021/jp512111v – ident: e_1_2_7_54_1 doi: 10.1063/1.464913 – ident: e_1_2_7_85_1 doi: 10.1103/PhysRevB.39.12554 – ident: e_1_2_7_80_1 doi: 10.1080/00268978400101201 – ident: e_1_2_7_94_1 doi: 10.1039/C3TA14494A – ident: e_1_2_7_2_1 doi: 10.1126/science.1066541 – ident: e_1_2_7_65_1 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_7_46_1 doi: 10.1166/asem.2015.1712 – ident: e_1_2_7_89_1 doi: 10.1109/38.310720 – ident: e_1_2_7_96_1 doi: 10.1023/A:1016754922933 – ident: e_1_2_7_81_1 doi: 10.1063/1.447334 – ident: e_1_2_7_23_1 doi: 10.1039/C2TA00669C – ident: e_1_2_7_10_1 doi: 10.1021/nl034372s – ident: e_1_2_7_47_1 doi: 10.1002/ejic.201402612 – ident: e_1_2_7_74_1 doi: 10.1002/ppsc.201400162 – ident: e_1_2_7_62_1 doi: 10.1103/PhysRevB.49.16223 – ident: e_1_2_7_95_1 doi: 10.1088/0957-4484/18/33/335604 – ident: e_1_2_7_18_1 doi: 10.1038/nmat3151 – ident: e_1_2_7_40_1 doi: 10.1039/C3NR05837A – ident: e_1_2_7_70_1 doi: 10.1103/PhysRev.136.B864 – ident: e_1_2_7_83_1 doi: 10.1103/PhysRevB.29.6443 – ident: e_1_2_7_61_1 doi: 10.1103/PhysRevB.13.5188 – ident: e_1_2_7_90_1 doi: 10.1088/0965-0393/18/1/015012 – ident: e_1_2_7_53_1 doi: 10.1524/zkri.220.5.571.65065 – ident: e_1_2_7_72_1 doi: 10.1002/9783527610709 – ident: e_1_2_7_84_1 doi: 10.1103/PhysRevB.33.7983 – ident: e_1_2_7_7_1 doi: 10.1021/nl0344209 – ident: e_1_2_7_20_1 doi: 10.1038/nchem.1032 – ident: e_1_2_7_92_1 doi: 10.1107/S0021889882011510 – ident: e_1_2_7_16_1 doi: 10.1039/C4TA02991G – ident: e_1_2_7_51_1 doi: 10.1021/acs.jpcc.7b00769 – ident: e_1_2_7_97_1 doi: 10.1103/PhysRevLett.90.255504 – ident: e_1_2_7_91_1 doi: 10.1021/j100303a014 – ident: e_1_2_7_6_1 doi: 10.1021/ja064884j – ident: e_1_2_7_13_1 doi: 10.1021/acsami.5b02134 – ident: e_1_2_7_11_1 doi: 10.1155/2013/640428 – ident: e_1_2_7_37_1 doi: 10.1021/jp410564p – ident: e_1_2_7_64_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_7_93_1 doi: 10.1039/C5DT02217G – ident: e_1_2_7_88_1 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_7_38_1 doi: 10.1007/BF02704077 – volume-title: Classical and Quantum Dynamics in Condensed Phase Simulations year: 1998 ident: e_1_2_7_68_1 – ident: e_1_2_7_35_1 doi: 10.1021/nl301934w – ident: e_1_2_7_98_1 doi: 10.1021/nn900922z – ident: e_1_2_7_44_1 doi: 10.1039/C5CY00331H – ident: e_1_2_7_63_1 doi: 10.1103/PhysRevB.46.6671 – ident: e_1_2_7_39_1 doi: 10.1039/C5RA02339D – ident: e_1_2_7_86_1 doi: 10.1103/PhysRevB.59.3393 – ident: e_1_2_7_77_1 doi: 10.1016/j.cpc.2010.12.021 – ident: e_1_2_7_48_1 doi: 10.1021/jp408167v – ident: e_1_2_7_67_1 doi: 10.1103/PhysRev.56.340 – ident: e_1_2_7_30_1 doi: 10.1038/srep01676 – ident: e_1_2_7_25_1 doi: 10.1021/nl301521z – ident: e_1_2_7_5_1 doi: 10.1021/jp0608628 – ident: e_1_2_7_4_1 doi: 10.1038/35826 – ident: e_1_2_7_71_1 doi: 10.1039/9781847553317-00143 – ident: e_1_2_7_27_1 doi: 10.1039/c3ta12061a – ident: e_1_2_7_78_1 doi: 10.1016/j.cpc.2011.10.012 – ident: e_1_2_7_28_1 doi: 10.1002/chem.201201435 – ident: e_1_2_7_15_1 doi: 10.1016/j.apsusc.2015.07.139 – ident: e_1_2_7_36_1 doi: 10.1016/j.matchemphys.2008.12.001 – ident: e_1_2_7_56_1 doi: 10.1021/ja961514u – ident: e_1_2_7_41_1 doi: 10.1021/ic300948n – ident: e_1_2_7_9_1 doi: 10.1088/0957-4484/17/15/026 |
SSID | ssj0006367 |
Score | 2.3309343 |
SecondaryResourceType | review_article |
Snippet | The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ag nanoparticles Atomic structure Charge materials Chemistry Computation Computer simulation Density functional theory electron beam irradiation Electron beams Electron irradiation Electrons first‐principles calculations Mathematical analysis Molecular dynamics Multiscale analysis Nanoparticles Physical chemistry plasmons Quantum physics Silver Transformations α‐Ag2WO4 |
Title | Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.25551 https://www.proquest.com/docview/2017719221 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTuMwFIYtxCxgM9wFA1QWYtFN2iROYodZVYWqQnQWA0gskCJfR2iGFJp2w2oeYZ5xnmSOnbgFBBKaXaIc5-JL_Nk65z8IHYc6SihPogDQNQ2AiHkgDDWBkUZQyiPGXZTr6Fs2vE7Ob9KbJfTVx8LU-hDzDTc7Mtz_2g5wLqruQjT0ccY7wMMufNr6alkg-r6QjspI1qRrDQOahcyrCoVxd17y5Vy0AMznmOrmmcEauvVvWLuX_OzMpqIjn16JN_7nJ6yjzw1_4l7dYTbQki430Urfp33bQrOBD2fEY4N7P3DJS1hYN_5z2MacTbBPnoOF5vf4bjKxCge2zAnuTcf3TvwZ1zm3KmwjWLC5A8z8-_vPg9_crzD0DtkkD6u20fXg7Ko_DJrcDIEkJI4CnebK5IICACpmkkyFGVciIkxpQD6dqIgIrXOmKDCKEVEOy0AB51LGXMcyJztouRyXehdh6CqMx4REinAwZYwbKK04kCFNcyL3UNu3UiEb4XKbP-NXUUsuxwXUY-HqcQ8dzU0farWOt4wOfFMXzYCtCuAgSoF2Y7jcdm32_g0KWGy4gy8fN91Hq_AI5lwl0wO0PJ3M9CHgzFS00Kfe6ejisuX67z9ldvY- |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qyqJsKE_RUsBCIHWTaWInsQeJxahlNKWPBWql7oKfVQXNDJMZIVjxCXwIv8JP8CVcO_EMIJDYdMEuUew87HvtY-fecwCepjbLucyzBKFrkSAiloly3CVOO8W5zIQMWa5Hx-XoNH91VpytwNeYC9PyQyw23LxnhPHaO7jfkN5Zsoa-n8seAuIi60IqD-zHD7hga17s72HvPqN0-PJkd5R0mgKJZoxmiS36xvUVR-BihMtLk5bSqIwJYxGq2NxkTFnbF4bj3OoULvFzofBcayot1Z56CQf8a15B3DP1771eklWVrOwEYtOEl6mIPEYp3Vm86q-z3xLS_gyMw8w2XIdvsU3agJa3vflM9fSn3-gi_5dGuwk3OohNBq1P3IIVW9-Gtd2obHcH5sOYsUnGjgzOSS3r8SSGCBKfVjclUR-IKCsvycV06kkcfJ3nZDAbXwZ-a9LKijXEJ-kQd4FI-vvnL5P4_6Ih6AC600dr7sLplXz1PVitx7W9DwS9QUjKWGaYxKJCSIe1jUTwy4s-0xuwHc2i0h03u5cIeVe1rNK0wn6rQr9twJNF0UlLSPKnQlvRtqpuTGoqhHqcI6CneHk7GMnfb1DheiocbP570cewNjo5OqwO948PHsB1fJwIkaHFFqzOpnP7ENHbTD0KTkPgzVUb3A8LhFP3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu_KMWClgIpF6yTewkdpA4rLqsWgoVQlTqLfgXVdDsstkVghOPwHvwKjwFT8LYiXcBgcSlB26JMvmzZ-zPycz3ATxIbZZzmWcJQtciQUQsE-W4S5x2inOZCRmqXJ8flntH-dPj4ngNvsZamI4fYvnBzUdGGK99gE-N21mRhr5fyAHi4SLrMyoP7McPuF5rH--PsHMfUjp-8mp3L-klBRLNGM0SW1TGVYojbjHC5aVJS2lUxoSxiFRsbjKmrK2E4Ti1OoUr_Fwo3NeaSku1Z17C8f5cXqaV14kYvVxxVZWs7PVh04SXqYg0RindWT7qr5PfCtH-jIvDxDa-DN9ik3T5LG8Hi7ka6E-_sUX-J212BS71AJsMu4i4Cmu2uQYXdqOu3XVYjGO9Jpk4MnxDGtlMpjFBkPiiuhmJ6kBEWXlKTmYzT-Hgz3lEhvPJaWC3Jp2oWEt8iQ5xJ4ijv3_-Mo1_L1qC7q97dbT2BhydyVvfhPVm0tgNIBgLQlLGMsMkmgohHZ5tJEJfXlRMb8J29Ipa98zsXiDkXd1xStMa-60O_bYJ95em046O5E9GW9G16n5EamsEepwjnKd4eDv4yN8vUONqKmzc-nfTe3D-xWhcP9s_PLgNF_FuIqSFFluwPp8t7B2EbnN1N4QMgddn7W8_ALIvUqY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Ag+nanoparticles+under+electron+beam+irradiation%3A+Atomistic+origins+from+first%E2%80%90principles+calculations&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Andr%C3%A9s%2C+Juan&rft.au=Amanda+Fernandes+Gouveia&rft.au=Gracia%2C+Lourdes&rft.au=Longo%2C+Elson&rft.date=2018-05-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=118&rft.issue=9&rft_id=info:doi/10.1002%2Fqua.25551&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon |