Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations

The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mech...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of quantum chemistry Vol. 118; no. 9
Main Authors Andrés, Juan, Gouveia, Amanda Fernandes, Gracia, Lourdes, Longo, Elson, Manzeppi Faccin, Giovani, da Silva, Edison Zacarias, Pereira, Douglas Henrique, San‐Miguel, Miguel Angel
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 05.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution. Combined studies involving experiments and multiscale computational approaches provide further understanding of the mechanisms of electron beam irradiation on α‐Ag2WO4 to form Ag nanoparticles in vacuum conditions. The increasing interplay between experimental and computational approaches at multiple length scales, aims to provide a deep insight into the rationalization of electron beam‐induced transformations.
AbstractList The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution. Combined studies involving experiments and multiscale computational approaches provide further understanding of the mechanisms of electron beam irradiation on α‐Ag2WO4 to form Ag nanoparticles in vacuum conditions. The increasing interplay between experimental and computational approaches at multiple length scales, aims to provide a deep insight into the rationalization of electron beam‐induced transformations.
The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag2WO4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag2WO4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution.
The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological applications. Recently, the formation of Ag nanoparticles on α‐Ag 2 WO 4 semiconductors induced by electron irradiation has been reported, but the mechanism underlying the transformations remains elusive. The aim of this article is to describe the mechanisms of electron beam irradiation on α‐Ag 2 WO 4 and its transformation to form Ag nanoparticles in vacuum conditions. To this end, a combined study involving experiments and multiscale computational approaches (density functional theory calculations and molecular dynamics simulations) is presented. With the increasing interplay between experimental and computational approaches at multiple length scales, we will also discuss how these combined data can be used to provide a deep insight into the rationalization of electron beam‐induced transformations. This phenomenon is likely to be promoted by electron charge redistribution in these materials due to electronic excitations combined with the formation of silver vacancies under electron beam irradiation. As this mechanism should be relevant to other Ag‐based materials, our results provide pointers for the further development and optimization of electron beam‐mediated engineering of the atomic structure and electronic properties at the atomic resolution.
Author Manzeppi Faccin, Giovani
Pereira, Douglas Henrique
Andrés, Juan
Gracia, Lourdes
Longo, Elson
Gouveia, Amanda Fernandes
da Silva, Edison Zacarias
San‐Miguel, Miguel Angel
Author_xml – sequence: 1
  givenname: Juan
  orcidid: 0000-0003-2656-5811
  surname: Andrés
  fullname: Andrés, Juan
  email: andres@qfa.uji.es
  organization: University Jaume I
– sequence: 2
  givenname: Amanda Fernandes
  orcidid: 0000-0003-3441-3674
  surname: Gouveia
  fullname: Gouveia, Amanda Fernandes
  organization: CDMF, Federal University of São Carlos, P.O. Box 676
– sequence: 3
  givenname: Lourdes
  surname: Gracia
  fullname: Gracia, Lourdes
  organization: University of Valencia
– sequence: 4
  givenname: Elson
  surname: Longo
  fullname: Longo, Elson
  organization: CDMF, Federal University of São Carlos, P.O. Box 676
– sequence: 5
  givenname: Giovani
  surname: Manzeppi Faccin
  fullname: Manzeppi Faccin, Giovani
  organization: Faculdade de Ciências Exatas e Tecnológicas, Universidade Federal da Grande Dourados, Unidade II, CP 533, 79804‐970
– sequence: 6
  givenname: Edison Zacarias
  surname: da Silva
  fullname: da Silva, Edison Zacarias
  organization: Institute of Physics ‘Gleb Wataghin’, State University of Campinas, 13083‐970
– sequence: 7
  givenname: Douglas Henrique
  surname: Pereira
  fullname: Pereira, Douglas Henrique
  organization: Federal University of Tocantins, 77410‐530
– sequence: 8
  givenname: Miguel Angel
  surname: San‐Miguel
  fullname: San‐Miguel, Miguel Angel
  organization: Institute of Chemistry, State University of Campinas, 13083‐970
BookMark eNp1kM1KAzEURoNUsK0ufIOAKxfTJpl_d6VYFQQRLLgLmSRTUmaSaZJBuvMRfEafxHTalegqXHLOd5NvAkbaaAnANUYzjBCZ73o2I2ma4jMwxqjMoyTD7yMwDncoyjNUXICJc1uEUBZn-Rj0K2Nb5pXR0NRwsYGaadMx6xVvpIO9FtJC2UjubUAqyVqorGVCDc4dXHjTKhdoaKzaKO1gbU0La2Wd__786qzSXHWHKM4a3jeD5i7Bec0aJ69O5xSsV_dvy8fo-eXhabl4jngcExzJtBR1WeUpLkVRJ5lAGRMVjgshU1TIROC4krIsRI7ypK5wmSRFFWbOCZOEl_EU3BxzO2t2vXSebk1vdVhJCcJ5jktCcKDmR4pb45yVNeXKDw_1lqmGYkQP3dLQLR26DcbtLyN8tGV2_yd7Sv9Qjdz_D9LX9eJo_AA-b47p
CitedBy_id crossref_primary_10_1002_slct_202000502
crossref_primary_10_1002_ppsc_201800237
crossref_primary_10_1016_j_jallcom_2022_163840
crossref_primary_10_1002_ppsc_201800533
crossref_primary_10_1021_acsabm_8b00673
crossref_primary_10_1016_j_mtchem_2022_101274
crossref_primary_10_1038_s41598_019_46159_y
crossref_primary_10_1016_j_matchemphys_2022_125710
crossref_primary_10_1021_acs_inorgchem_0c03186
crossref_primary_10_1007_s11249_022_01653_9
crossref_primary_10_1021_acs_cgd_0c01417
crossref_primary_10_1021_acsphyschemau_4c00062
crossref_primary_10_1063_1_5109230
crossref_primary_10_1021_acs_jpcc_4c08139
crossref_primary_10_1021_acsaem_2c02756
crossref_primary_10_1007_s41061_021_00332_y
crossref_primary_10_1021_acs_jpcc_9b02107
crossref_primary_10_1039_D0RA03179H
crossref_primary_10_1021_acs_jpcc_0c10321
crossref_primary_10_1016_j_jece_2020_104889
crossref_primary_10_1016_j_jmrt_2022_11_011
crossref_primary_10_1021_acs_jpcc_8b06947
crossref_primary_10_1038_s41598_020_78542_5
crossref_primary_10_1016_j_ceramint_2024_05_252
Cites_doi 10.1039/c1cp20488b
10.1088/0957-4484/27/22/225703
10.1021/acs.inorgchem.6b01215
10.1039/C4GC01638F
10.1038/srep05391
10.5772/58923
10.1039/C4CP05849F
10.1103/PhysRevA.31.1695
10.1007/s11468-009-9088-0
10.1016/j.cpc.2013.08.002
10.1016/j.jallcom.2016.05.078
10.1039/c3cs60364d
10.1126/science.1077229
10.1002/smll.200801202
10.1038/nmat2780
10.1021/acsnano.5b02077
10.1007/s11664-014-3078-5
10.1016/j.apsusc.2016.03.095
10.1016/j.mseb.2013.01.015
10.1103/PhysRevB.83.134118
10.1038/srep21498
10.1016/j.jcat.2010.12.011
10.1103/PhysRevB.37.785
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.59.1758
10.1093/oso/9780198551683.001.0001
10.1016/j.micron.2016.05.003
10.1103/PhysRevB.47.558
10.1103/PhysRevB.54.11169
10.1039/C4CP00941J
10.1006/jcph.1995.1039
10.1021/jp512111v
10.1063/1.464913
10.1103/PhysRevB.39.12554
10.1080/00268978400101201
10.1039/C3TA14494A
10.1126/science.1066541
10.1103/PhysRevB.50.17953
10.1166/asem.2015.1712
10.1109/38.310720
10.1023/A:1016754922933
10.1063/1.447334
10.1039/C2TA00669C
10.1021/nl034372s
10.1002/ejic.201402612
10.1002/ppsc.201400162
10.1103/PhysRevB.49.16223
10.1088/0957-4484/18/33/335604
10.1038/nmat3151
10.1039/C3NR05837A
10.1103/PhysRev.136.B864
10.1103/PhysRevB.29.6443
10.1103/PhysRevB.13.5188
10.1088/0965-0393/18/1/015012
10.1524/zkri.220.5.571.65065
10.1002/9783527610709
10.1103/PhysRevB.33.7983
10.1021/nl0344209
10.1038/nchem.1032
10.1107/S0021889882011510
10.1039/C4TA02991G
10.1021/acs.jpcc.7b00769
10.1103/PhysRevLett.90.255504
10.1021/j100303a014
10.1021/ja064884j
10.1021/acsami.5b02134
10.1155/2013/640428
10.1021/jp410564p
10.1103/PhysRevLett.77.3865
10.1039/C5DT02217G
10.1016/0263-7855(96)00018-5
10.1007/BF02704077
10.1021/nl301934w
10.1021/nn900922z
10.1039/C5CY00331H
10.1103/PhysRevB.46.6671
10.1039/C5RA02339D
10.1103/PhysRevB.59.3393
10.1016/j.cpc.2010.12.021
10.1021/jp408167v
10.1103/PhysRev.56.340
10.1038/srep01676
10.1021/nl301521z
10.1021/jp0608628
10.1038/35826
10.1039/9781847553317-00143
10.1039/c3ta12061a
10.1016/j.cpc.2011.10.012
10.1002/chem.201201435
10.1016/j.apsusc.2015.07.139
10.1016/j.matchemphys.2008.12.001
10.1021/ja961514u
10.1021/ic300948n
10.1088/0957-4484/17/15/026
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
2018 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: 2018 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
DOI 10.1002/qua.25551
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-461X
EndPage n/a
ExternalDocumentID 10_1002_qua_25551
QUA25551
Genre reviewArticle
GrantInformation_xml – fundername: National Center for High Performance Computing in São Paulo (CENAPAD)
– fundername: CCJDR‐UNICAMP
– fundername: Ministerio de Economia y Competitividad
  funderid: CTQ2015‐65207‐P
– fundername: FAPESP
  funderid: 2017/07240‐8 ; 2013/26671‐9 ; 2013/07296‐2 ; 2015/19709‐5
– fundername: Capes and CNPq
– fundername: Sistema de Computação Petaflópica SDUMONT‐SINALAD‐LNCC
– fundername: Generalitat Valenciana
  funderid: PrometeoII/2014/022 ; Prometeo/2016/079 ; ACOMP/2014/270 ; ACOMP/2015/1202
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWK
RX1
SUPJJ
TN5
TUS
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3321-e59df9b7519d8f46d06adb138de508e4d13bee98d7074fb19448be98cc2ae2c93
IEDL.DBID DR2
ISSN 0020-7608
IngestDate Fri Jul 25 12:11:33 EDT 2025
Thu Apr 24 23:05:22 EDT 2025
Tue Jul 01 02:38:09 EDT 2025
Wed Jan 22 16:39:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3321-e59df9b7519d8f46d06adb138de508e4d13bee98d7074fb19448be98cc2ae2c93
Notes Funding information
Sistema de Computação Petaflópica SDUMONT‐SINALAD‐LNCC; National Center for High Performance Computing in São Paulo (CENAPAD); CCJDR‐UNICAMP; FAPESP, Grant/Award Numbers: 2017/07240‐8; 2013/26671‐9, 2013/07296‐2, 2015/19709‐5; Capes and CNPq; Generalitat Valenciana (PrometeoII/2014/022, Prometeo/2016/079, ACOMP/2014/270, ACOMP/2015/1202); Ministerio de Economia y Competitividad, Grant/Award Number: CTQ2015‐65207‐P
This article is dedicated to our colleague and friend, Prof. Nino Russo, as a tribute on the occasion of his 70th birthday. We hereby take this opportunity to convey our most heartfelt congratulations to an excellent person and a great researcher who possesses a privileged vision of interpersonal relations, teaching‐learning processes, and technical‐scientific innovations.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3441-3674
0000-0003-2656-5811
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/qua.25551
PQID 2017719221
PQPubID 1026346
PageCount 15
ParticipantIDs proquest_journals_2017719221
crossref_citationtrail_10_1002_qua_25551
crossref_primary_10_1002_qua_25551
wiley_primary_10_1002_qua_25551_QUA25551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 5, 2018
PublicationDateYYYYMMDD 2018-05-05
PublicationDate_xml – month: 05
  year: 2018
  text: May 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle International journal of quantum chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 278
1982; 15
2013; 3
2013; 1
2010; 18
1986; 33
1988; 37
2015; 32
2017; 391
2011; 10
2005; 65
2011; 13
2012; 18
1984; 29
1939; 56
2012; 12
2009; 115
1964; 136
2012; 51
1996; 77
1984; 52
2001; 294
2014; 4
2003; 90
2014; 2
2005; 220
1990
2013; 2013
2000
1999; 59
2015; 44
2014; 16
2003; 3
1992; 46
2017; 121
2006; 128
2014; 6
2010; 9
1996; 6
1989; 39
2016; 88
2014; 118
2012; 183
1993; 47
2007; 18
2015; 17
2015; 5
1984; 81
1987; 91
2006; 17
2002; 298
2011; 83
1998
1995; 117
2006; 110
2016; 683
2007
1994; 49
2014; 2014
2013; 184
1996; 14
2011; 3
2015; 9
2015; 7
1996; 54
2014; 43
2016; 55
1998; 391
2016; 6
1976; 13
2015; 358
1993; 98
2013; 178
1994; 14
2015; 119
2009; 5
2014
2009; 4
2009; 3
2016; 27
1994; 50
1985; 31
2011; 182
1996; 118
2001; 75
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
Jonsson H. (e_1_2_7_68_1) 1998
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
Bader R. F. W. (e_1_2_7_69_1) 1990
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
Dovesi R. (e_1_2_7_52_1) 2014
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 1
  start-page: 10612
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 182
  start-page: 898
  year: 2011
  publication-title: Comput. Phys. Commun.
– volume: 39
  start-page: 12554
  year: 1989
  publication-title: Phys. Rev. B
– volume: 12
  start-page: 4271
  year: 2012
  publication-title: Nano Lett.
– volume: 3
  start-page: 1676
  year: 2013
  publication-title: Sci. Rep.
– volume: 17
  start-page: 474
  year: 2015
  publication-title: Green Chem.
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J. Chem. Phys.
– volume: 358
  start-page: 46
  year: 2015
  publication-title: Appl. Surf. Sci.
– volume: 10
  start-page: 911
  year: 2011
  publication-title: Nat. Mater.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
– volume: 33
  start-page: 7983
  year: 1986
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 559
  year: 2010
  publication-title: Nat. Mater.
– volume: 43
  start-page: 3898
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 683
  start-page: 186
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 391
  start-page: 775
  year: 1998
  publication-title: Nature
– volume: 119
  start-page: 6293
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 83
  start-page: 134118
  year: 2011
  publication-title: Phys. Rev. B
– volume: 220
  start-page: 571
  year: 2005
  publication-title: Z. Kristallogr.
– volume: 52
  start-page: 255
  year: 1984
  publication-title: Mol. Phys.
– volume: 2
  start-page: 14927
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 56
  start-page: 340
  year: 1939
  publication-title: Phys. Rev.
– volume: 13
  start-page: 10071
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 12174
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 22
  year: 2014
  publication-title: Nanomater. Nanotechnol.
– year: 1990
– year: 2014
– volume: 77
  start-page: 3865
  year: 1996
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 511
  year: 1984
  publication-title: J. Chem. Phys.
– year: 1998
– volume: 44
  start-page: 15888
  year: 2015
  publication-title: Dalton Trans.
– volume: 3
  start-page: 467
  year: 2011
  publication-title: Nat. Chem.
– volume: 110
  start-page: 15666
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graph.
– volume: 391
  start-page: 592
  year: 2017
  publication-title: Appl. Surf. Sci.
– volume: 14
  start-page: 19
  year: 1994
  publication-title: IEEE Comput. Graph. Appl.
– volume: 18
  start-page: 335604
  year: 2007
  publication-title: Nanotechnology
– volume: 298
  start-page: 2176
  year: 2002
  publication-title: Science
– volume: 5
  start-page: 341
  year: 2009
  publication-title: Small
– volume: 7
  start-page: 12597
  year: 2015
  publication-title: Acs Appl. Mater. Interfaces
– volume: 183
  start-page: 449
  year: 2012
  publication-title: Comput. Phys. Commun.
– volume: 184
  start-page: 2785
  year: 2013
  publication-title: Comput. Phys. Commun.
– volume: 54
  start-page: 11169
  year: 1996
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 81
  year: 2001
  publication-title: Catal. Lett.
– volume: 5
  start-page: 4091
  year: 2015
  publication-title: Catal. Sci. Technol.
– volume: 27
  start-page: 225703
  year: 2016
  publication-title: Nanotechnology
– volume: 4
  start-page: 5391
  year: 2014
  publication-title: Sci. Rep.
– volume: 3
  start-page: 1057
  year: 2003
  publication-title: Nano Lett.
– volume: 6
  start-page: 4058
  year: 2014
  publication-title: Nanoscale
– volume: 117
  start-page: 1
  year: 1995
  publication-title: J. Comput. Phys.
– volume: 278
  start-page: 276
  year: 2011
  publication-title: J. Catal.
– volume: 37
  start-page: 785
  year: 1988
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 646
  year: 2015
  publication-title: Part. Part. Syst. Char.
– volume: 294
  start-page: 1901
  year: 2001
  publication-title: Science
– volume: 136
  start-page: B864
  year: 1964
  publication-title: Phys. Rev.
– volume: 18
  start-page: 015012
  year: 2010
  publication-title: Modell. Simul. Mater. Sci. Eng.
– volume: 5
  start-page: 31298
  year: 2015
  publication-title: Rsc Adv.
– volume: 2
  start-page: 1677
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 5352
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 118
  start-page: 5769
  year: 2014
  publication-title: J. Phys. Chem. A
– volume: 15
  start-page: 114
  year: 1982
  publication-title: J. Appl. Crystallogr.
– year: 2007
– volume: 3
  start-page: 3015
  year: 2009
  publication-title: Acs Nano
– year: 2000
– volume: 29
  start-page: 6443
  year: 1984
  publication-title: Phys. Rev. B
– volume: 2014
  start-page: 5724
  year: 2014
  publication-title: Eur. J. Inorg. Chem.
– volume: 16
  start-page: 15422
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 115
  start-page: 296
  year: 2009
  publication-title: Mater. Chem. Phys.
– volume: 51
  start-page: 10675
  year: 2012
  publication-title: Inorg. Chem.
– volume: 88
  start-page: 1
  year: 2016
  publication-title: Micron
– volume: 18
  start-page: 14272
  year: 2012
  publication-title: Chemistry
– volume: 6
  start-page: 21498
  year: 2016
  publication-title: Sci. Rep.
– volume: 47
  start-page: 558
  year: 1993
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 4950
  year: 1987
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 171
  year: 2009
  publication-title: Plasmonics
– volume: 7
  start-page: 498
  year: 2015
  publication-title: Adv. Sci. Eng. Med.
– volume: 55
  start-page: 8661
  year: 2016
  publication-title: Inorg. Chem.
– volume: 46
  start-page: 6671
  year: 1992
  publication-title: Phys. Rev. B
– volume: 65
  start-page: 793
  year: 2005
  publication-title: Pramana‐J. Phys.
– volume: 43
  start-page: 2397
  year: 2014
  publication-title: J. Electron. Mater.
– volume: 121
  start-page: 7030
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 9
  start-page: 7256
  year: 2015
  publication-title: Acs Nano
– volume: 31
  start-page: 1695
  year: 1985
  publication-title: Phys. Rev. A
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 16223
  year: 1994
  publication-title: Phys. Rev. B
– volume: 59
  start-page: 3393
  year: 1999
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 15
  year: 1996
  publication-title: Comput. Mater. Sci.
– volume: 3
  start-page: 1229
  year: 2003
  publication-title: Nano Lett.
– volume: 1
  start-page: 2118
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 2013
  start-page: 640428
  year: 2013
  publication-title: Adv. Mater. Sci. Eng.
– volume: 178
  start-page: 344
  year: 2013
  publication-title: Mater. Sci. Eng. B Adv. Funct. Solid State Mater.
– volume: 12
  start-page: 4070
  year: 2012
  publication-title: Nano Lett.
– volume: 17
  start-page: 3768
  year: 2006
  publication-title: Nanotechnology
– volume: 50
  start-page: 17953
  year: 1994
  publication-title: Phys. Rev. B
– volume: 90
  start-page: 255504
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 128
  start-page: 15756
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 1229
  year: 2014
  publication-title: J. Phys. Chem. C
– ident: e_1_2_7_26_1
  doi: 10.1039/c1cp20488b
– volume-title: CRYSTAL14 User's Manual
  year: 2014
  ident: e_1_2_7_52_1
– ident: e_1_2_7_34_1
  doi: 10.1088/0957-4484/27/22/225703
– ident: e_1_2_7_73_1
  doi: 10.1021/acs.inorgchem.6b01215
– ident: e_1_2_7_42_1
  doi: 10.1039/C4GC01638F
– ident: e_1_2_7_31_1
  doi: 10.1038/srep05391
– ident: e_1_2_7_32_1
  doi: 10.5772/58923
– ident: e_1_2_7_33_1
  doi: 10.1039/C4CP05849F
– ident: e_1_2_7_82_1
  doi: 10.1103/PhysRevA.31.1695
– ident: e_1_2_7_24_1
  doi: 10.1007/s11468-009-9088-0
– ident: e_1_2_7_79_1
  doi: 10.1016/j.cpc.2013.08.002
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jallcom.2016.05.078
– ident: e_1_2_7_19_1
  doi: 10.1039/c3cs60364d
– ident: e_1_2_7_3_1
  doi: 10.1126/science.1077229
– ident: e_1_2_7_8_1
  doi: 10.1002/smll.200801202
– ident: e_1_2_7_14_1
  doi: 10.1038/nmat2780
– ident: e_1_2_7_45_1
  doi: 10.1021/acsnano.5b02077
– ident: e_1_2_7_12_1
  doi: 10.1007/s11664-014-3078-5
– ident: e_1_2_7_29_1
  doi: 10.1016/j.apsusc.2016.03.095
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mseb.2013.01.015
– ident: e_1_2_7_87_1
  doi: 10.1103/PhysRevB.83.134118
– ident: e_1_2_7_49_1
  doi: 10.1038/srep21498
– ident: e_1_2_7_57_1
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jcat.2010.12.011
– ident: e_1_2_7_55_1
  doi: 10.1103/PhysRevB.37.785
– ident: e_1_2_7_59_1
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_2_7_66_1
  doi: 10.1103/PhysRevB.59.1758
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: e_1_2_7_69_1
  doi: 10.1093/oso/9780198551683.001.0001
– ident: e_1_2_7_50_1
  doi: 10.1016/j.micron.2016.05.003
– ident: e_1_2_7_58_1
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_7_60_1
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_2_7_22_1
  doi: 10.1039/C4CP00941J
– ident: e_1_2_7_76_1
  doi: 10.1006/jcph.1995.1039
– ident: e_1_2_7_75_1
  doi: 10.1021/jp512111v
– ident: e_1_2_7_54_1
  doi: 10.1063/1.464913
– ident: e_1_2_7_85_1
  doi: 10.1103/PhysRevB.39.12554
– ident: e_1_2_7_80_1
  doi: 10.1080/00268978400101201
– ident: e_1_2_7_94_1
  doi: 10.1039/C3TA14494A
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1066541
– ident: e_1_2_7_65_1
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_7_46_1
  doi: 10.1166/asem.2015.1712
– ident: e_1_2_7_89_1
  doi: 10.1109/38.310720
– ident: e_1_2_7_96_1
  doi: 10.1023/A:1016754922933
– ident: e_1_2_7_81_1
  doi: 10.1063/1.447334
– ident: e_1_2_7_23_1
  doi: 10.1039/C2TA00669C
– ident: e_1_2_7_10_1
  doi: 10.1021/nl034372s
– ident: e_1_2_7_47_1
  doi: 10.1002/ejic.201402612
– ident: e_1_2_7_74_1
  doi: 10.1002/ppsc.201400162
– ident: e_1_2_7_62_1
  doi: 10.1103/PhysRevB.49.16223
– ident: e_1_2_7_95_1
  doi: 10.1088/0957-4484/18/33/335604
– ident: e_1_2_7_18_1
  doi: 10.1038/nmat3151
– ident: e_1_2_7_40_1
  doi: 10.1039/C3NR05837A
– ident: e_1_2_7_70_1
  doi: 10.1103/PhysRev.136.B864
– ident: e_1_2_7_83_1
  doi: 10.1103/PhysRevB.29.6443
– ident: e_1_2_7_61_1
  doi: 10.1103/PhysRevB.13.5188
– ident: e_1_2_7_90_1
  doi: 10.1088/0965-0393/18/1/015012
– ident: e_1_2_7_53_1
  doi: 10.1524/zkri.220.5.571.65065
– ident: e_1_2_7_72_1
  doi: 10.1002/9783527610709
– ident: e_1_2_7_84_1
  doi: 10.1103/PhysRevB.33.7983
– ident: e_1_2_7_7_1
  doi: 10.1021/nl0344209
– ident: e_1_2_7_20_1
  doi: 10.1038/nchem.1032
– ident: e_1_2_7_92_1
  doi: 10.1107/S0021889882011510
– ident: e_1_2_7_16_1
  doi: 10.1039/C4TA02991G
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.jpcc.7b00769
– ident: e_1_2_7_97_1
  doi: 10.1103/PhysRevLett.90.255504
– ident: e_1_2_7_91_1
  doi: 10.1021/j100303a014
– ident: e_1_2_7_6_1
  doi: 10.1021/ja064884j
– ident: e_1_2_7_13_1
  doi: 10.1021/acsami.5b02134
– ident: e_1_2_7_11_1
  doi: 10.1155/2013/640428
– ident: e_1_2_7_37_1
  doi: 10.1021/jp410564p
– ident: e_1_2_7_64_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_7_93_1
  doi: 10.1039/C5DT02217G
– ident: e_1_2_7_88_1
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_7_38_1
  doi: 10.1007/BF02704077
– volume-title: Classical and Quantum Dynamics in Condensed Phase Simulations
  year: 1998
  ident: e_1_2_7_68_1
– ident: e_1_2_7_35_1
  doi: 10.1021/nl301934w
– ident: e_1_2_7_98_1
  doi: 10.1021/nn900922z
– ident: e_1_2_7_44_1
  doi: 10.1039/C5CY00331H
– ident: e_1_2_7_63_1
  doi: 10.1103/PhysRevB.46.6671
– ident: e_1_2_7_39_1
  doi: 10.1039/C5RA02339D
– ident: e_1_2_7_86_1
  doi: 10.1103/PhysRevB.59.3393
– ident: e_1_2_7_77_1
  doi: 10.1016/j.cpc.2010.12.021
– ident: e_1_2_7_48_1
  doi: 10.1021/jp408167v
– ident: e_1_2_7_67_1
  doi: 10.1103/PhysRev.56.340
– ident: e_1_2_7_30_1
  doi: 10.1038/srep01676
– ident: e_1_2_7_25_1
  doi: 10.1021/nl301521z
– ident: e_1_2_7_5_1
  doi: 10.1021/jp0608628
– ident: e_1_2_7_4_1
  doi: 10.1038/35826
– ident: e_1_2_7_71_1
  doi: 10.1039/9781847553317-00143
– ident: e_1_2_7_27_1
  doi: 10.1039/c3ta12061a
– ident: e_1_2_7_78_1
  doi: 10.1016/j.cpc.2011.10.012
– ident: e_1_2_7_28_1
  doi: 10.1002/chem.201201435
– ident: e_1_2_7_15_1
  doi: 10.1016/j.apsusc.2015.07.139
– ident: e_1_2_7_36_1
  doi: 10.1016/j.matchemphys.2008.12.001
– ident: e_1_2_7_56_1
  doi: 10.1021/ja961514u
– ident: e_1_2_7_41_1
  doi: 10.1021/ic300948n
– ident: e_1_2_7_9_1
  doi: 10.1088/0957-4484/17/15/026
SSID ssj0006367
Score 2.3309343
SecondaryResourceType review_article
Snippet The formation of Ag nanoparticles is currently a topic subject to a great deal of research because they are excellent materials with many technological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ag nanoparticles
Atomic structure
Charge materials
Chemistry
Computation
Computer simulation
Density functional theory
electron beam irradiation
Electron beams
Electron irradiation
Electrons
first‐principles calculations
Mathematical analysis
Molecular dynamics
Multiscale analysis
Nanoparticles
Physical chemistry
plasmons
Quantum physics
Silver
Transformations
α‐Ag2WO4
Title Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from first‐principles calculations
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqua.25551
https://www.proquest.com/docview/2017719221
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LTuMwFIYtxCxgM9wFA1QWYtFN2iROYodZVYWqQnQWA0gskCJfR2iGFJp2w2oeYZ5xnmSOnbgFBBKaXaIc5-JL_Nk65z8IHYc6SihPogDQNQ2AiHkgDDWBkUZQyiPGXZTr6Fs2vE7Ob9KbJfTVx8LU-hDzDTc7Mtz_2g5wLqruQjT0ccY7wMMufNr6alkg-r6QjspI1qRrDQOahcyrCoVxd17y5Vy0AMznmOrmmcEauvVvWLuX_OzMpqIjn16JN_7nJ6yjzw1_4l7dYTbQki430Urfp33bQrOBD2fEY4N7P3DJS1hYN_5z2MacTbBPnoOF5vf4bjKxCge2zAnuTcf3TvwZ1zm3KmwjWLC5A8z8-_vPg9_crzD0DtkkD6u20fXg7Ko_DJrcDIEkJI4CnebK5IICACpmkkyFGVciIkxpQD6dqIgIrXOmKDCKEVEOy0AB51LGXMcyJztouRyXehdh6CqMx4REinAwZYwbKK04kCFNcyL3UNu3UiEb4XKbP-NXUUsuxwXUY-HqcQ8dzU0farWOt4wOfFMXzYCtCuAgSoF2Y7jcdm32_g0KWGy4gy8fN91Hq_AI5lwl0wO0PJ3M9CHgzFS00Kfe6ejisuX67z9ldvY-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qyqJsKE_RUsBCIHWTaWInsQeJxahlNKWPBWql7oKfVQXNDJMZIVjxCXwIv8JP8CVcO_EMIJDYdMEuUew87HvtY-fecwCepjbLucyzBKFrkSAiloly3CVOO8W5zIQMWa5Hx-XoNH91VpytwNeYC9PyQyw23LxnhPHaO7jfkN5Zsoa-n8seAuIi60IqD-zHD7hga17s72HvPqN0-PJkd5R0mgKJZoxmiS36xvUVR-BihMtLk5bSqIwJYxGq2NxkTFnbF4bj3OoULvFzofBcayot1Z56CQf8a15B3DP1771eklWVrOwEYtOEl6mIPEYp3Vm86q-z3xLS_gyMw8w2XIdvsU3agJa3vflM9fSn3-gi_5dGuwk3OohNBq1P3IIVW9-Gtd2obHcH5sOYsUnGjgzOSS3r8SSGCBKfVjclUR-IKCsvycV06kkcfJ3nZDAbXwZ-a9LKijXEJ-kQd4FI-vvnL5P4_6Ih6AC600dr7sLplXz1PVitx7W9DwS9QUjKWGaYxKJCSIe1jUTwy4s-0xuwHc2i0h03u5cIeVe1rNK0wn6rQr9twJNF0UlLSPKnQlvRtqpuTGoqhHqcI6CneHk7GMnfb1DheiocbP570cewNjo5OqwO948PHsB1fJwIkaHFFqzOpnP7ENHbTD0KTkPgzVUb3A8LhFP3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRQIu_KMWClgIpF6yTewkdpA4rLqsWgoVQlTqLfgXVdDsstkVghOPwHvwKjwFT8LYiXcBgcSlB26JMvmzZ-zPycz3ATxIbZZzmWcJQtciQUQsE-W4S5x2inOZCRmqXJ8flntH-dPj4ngNvsZamI4fYvnBzUdGGK99gE-N21mRhr5fyAHi4SLrMyoP7McPuF5rH--PsHMfUjp-8mp3L-klBRLNGM0SW1TGVYojbjHC5aVJS2lUxoSxiFRsbjKmrK2E4Ti1OoUr_Fwo3NeaSku1Z17C8f5cXqaV14kYvVxxVZWs7PVh04SXqYg0RindWT7qr5PfCtH-jIvDxDa-DN9ik3T5LG8Hi7ka6E-_sUX-J212BS71AJsMu4i4Cmu2uQYXdqOu3XVYjGO9Jpk4MnxDGtlMpjFBkPiiuhmJ6kBEWXlKTmYzT-Hgz3lEhvPJaWC3Jp2oWEt8iQ5xJ4ijv3_-Mo1_L1qC7q97dbT2BhydyVvfhPVm0tgNIBgLQlLGMsMkmgohHZ5tJEJfXlRMb8J29Ipa98zsXiDkXd1xStMa-60O_bYJ95em046O5E9GW9G16n5EamsEepwjnKd4eDv4yN8vUONqKmzc-nfTe3D-xWhcP9s_PLgNF_FuIqSFFluwPp8t7B2EbnN1N4QMgddn7W8_ALIvUqY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Ag+nanoparticles+under+electron+beam+irradiation%3A+Atomistic+origins+from+first%E2%80%90principles+calculations&rft.jtitle=International+journal+of+quantum+chemistry&rft.au=Andr%C3%A9s%2C+Juan&rft.au=Amanda+Fernandes+Gouveia&rft.au=Gracia%2C+Lourdes&rft.au=Longo%2C+Elson&rft.date=2018-05-05&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0020-7608&rft.eissn=1097-461X&rft.volume=118&rft.issue=9&rft_id=info:doi/10.1002%2Fqua.25551&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7608&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7608&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7608&client=summon