Application advances of deep learning methods for de novo drug design and molecular dynamics simulation
De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field....
Saved in:
Published in | Wiley interdisciplinary reviews. Computational molecular science Vol. 12; no. 3 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
Wiley Periodicals, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field. De novo drug design and MD simulation are effective tools for novel drug discovery. With the development of technology, deep learning methods, and interpretable machine learning (IML) have emerged in the research area of drug design. Deep learning methods and IML can be used further to improve the efficiency and accuracy of de novo drug design and MD simulations. The application summary of deep learning methods for de novo drug design, MD simulations, and IML can further promote the technical development of drug discovery. In this article, two major workflow methods and the related components of classical algorithm and deep learning are described for de novo drug design from a new perspective. The application progress of deep learning is also summarized for MD simulations. Furthermore, IML is introduced for the deep learning model interpretability of de novo drug design and MD simulations. Our paper deals with an interesting topic about deep learning applications of de novo drug design and MD simulations for the scientific community.
This article is categorized under:
Data Science > Chemoinformatics
Data Science > Artificial Intelligence/Machine Learning
Deep learning and interpretable machine learning for de novo drug design and MD simulation. |
---|---|
AbstractList | De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field. De novo drug design and MD simulation are effective tools for novel drug discovery. With the development of technology, deep learning methods, and interpretable machine learning (IML) have emerged in the research area of drug design. Deep learning methods and IML can be used further to improve the efficiency and accuracy of de novo drug design and MD simulations. The application summary of deep learning methods for de novo drug design, MD simulations, and IML can further promote the technical development of drug discovery. In this article, two major workflow methods and the related components of classical algorithm and deep learning are described for de novo drug design from a new perspective. The application progress of deep learning is also summarized for MD simulations. Furthermore, IML is introduced for the deep learning model interpretability of de novo drug design and MD simulations. Our paper deals with an interesting topic about deep learning applications of de novo drug design and MD simulations for the scientific community.
This article is categorized under:
Data Science > Chemoinformatics
Data Science > Artificial Intelligence/Machine Learning
Deep learning and interpretable machine learning for de novo drug design and MD simulation. |
Author | Pérez‐Sánchez, Horacio Huang, Junzhou Tian, Yanan Banegas‐Luna, Antonio Jesús Bai, Qifeng Liu, Huanxiang Xu, Tingyang Yao, Xiaojun Liu, Shuo |
Author_xml | – sequence: 1 givenname: Qifeng orcidid: 0000-0001-7296-6187 surname: Bai fullname: Bai, Qifeng email: baiqf@lzu.edu.cn organization: Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University – sequence: 2 givenname: Shuo surname: Liu fullname: Liu, Shuo organization: Lanzhou University – sequence: 3 givenname: Yanan surname: Tian fullname: Tian, Yanan organization: Lanzhou University – sequence: 4 givenname: Tingyang surname: Xu fullname: Xu, Tingyang email: tingyangxu@tencent.com organization: Tencent AI Lab, Shenzhen Tencent Computer Ltd – sequence: 5 givenname: Antonio Jesús surname: Banegas‐Luna fullname: Banegas‐Luna, Antonio Jesús organization: UCAM Universidad Católica de Murcia – sequence: 6 givenname: Horacio orcidid: 0000-0003-4468-7898 surname: Pérez‐Sánchez fullname: Pérez‐Sánchez, Horacio email: hperez@ucam.edu organization: UCAM Universidad Católica de Murcia – sequence: 7 givenname: Junzhou surname: Huang fullname: Huang, Junzhou organization: Tencent AI Lab, Shenzhen Tencent Computer Ltd – sequence: 8 givenname: Huanxiang surname: Liu fullname: Liu, Huanxiang organization: Lanzhou University – sequence: 9 givenname: Xiaojun surname: Yao fullname: Yao, Xiaojun organization: Lanzhou University |
BookMark | eNo9kMlOwzAQhi1UJErpgTfwC6T1ltg5VhFLpSIOgDhaju0Eo9iO4i7K25MIxMxh_tn-w3cLFiEGC8A9RhuMENletE8bnAt8BZaY52WGhGCLf82LG7BO6RtNwUpMKF6Cdtf3ndPq6GKAypxV0DbB2EBjbQ87q4bgQgu9PX5Fk2ATh2kDQzxHaIZTOzXJtdNnMNDHzupTp6aLMSjvdILJ-Wkwe9-B60Z1ya7_6gp8PD68V8_Z4fVpX-0OmaaU4KxmrEElE7XivOHCKouxFloVmDNRzMk1yjUhzChCqWGC1YYiWhaoQZzUdAW2v74X19lR9oPzahglRnImJGdCciYkP6uXt1nQH-COXio |
CitedBy_id | crossref_primary_10_1016_j_jsb_2022_107876 crossref_primary_10_1021_acs_jcim_3c01385 crossref_primary_10_56294_mw2024516 crossref_primary_10_1016_j_soh_2023_100045 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1016_j_ensm_2024_103535 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1016_j_sajb_2024_08_033 crossref_primary_10_1021_acs_jcim_2c00916 crossref_primary_10_1021_acs_jctc_3c01115 crossref_primary_10_3389_fphar_2024_1331062 crossref_primary_10_1016_j_fochms_2023_100168 crossref_primary_10_3390_ddc4010009 crossref_primary_10_1016_j_hlife_2024_01_002 crossref_primary_10_1080_07391102_2023_2291829 crossref_primary_10_1093_bib_bbac536 crossref_primary_10_2174_0113895575271267231123160503 crossref_primary_10_1016_j_ceja_2025_100731 crossref_primary_10_1134_S1070428023080055 crossref_primary_10_1021_acs_chemrev_3c00070 crossref_primary_10_1073_pnas_2305273120 crossref_primary_10_3390_ijms241915009 crossref_primary_10_1007_s12539_024_00644_9 crossref_primary_10_1098_rsos_220369 crossref_primary_10_1080_17460441_2023_2174522 crossref_primary_10_12688_f1000research_130936_2 crossref_primary_10_1016_j_gsf_2023_101735 crossref_primary_10_3390_molecules29153614 crossref_primary_10_1002_minf_202200188 crossref_primary_10_2174_1872212118666230417084231 crossref_primary_10_1016_j_compchemeng_2023_108403 crossref_primary_10_1021_acs_jpcb_4c06691 crossref_primary_10_1134_S1070428023040103 crossref_primary_10_1186_s12967_024_05067_0 crossref_primary_10_1007_s00210_024_03138_z crossref_primary_10_2144_fsoa_2022_0085 crossref_primary_10_1088_1361_6463_acdc36 crossref_primary_10_1002_ddr_22115 crossref_primary_10_1002_ddr_22159 crossref_primary_10_3390_math11061279 crossref_primary_10_1111_bph_16140 crossref_primary_10_1007_s00894_022_05434_y crossref_primary_10_1186_s40537_024_00929_2 crossref_primary_10_31857_S0514749223040109 crossref_primary_10_51847_tFgoN65qlJ crossref_primary_10_1128_msystems_00183_25 crossref_primary_10_1093_bib_bbac559 crossref_primary_10_1007_s10822_024_00552_6 crossref_primary_10_31857_S0514749223080050 crossref_primary_10_1016_j_csbj_2022_05_057 crossref_primary_10_1007_s11030_023_10718_3 crossref_primary_10_3390_ijms25105319 crossref_primary_10_1002_jmr_3100 crossref_primary_10_1002_wcms_1681 crossref_primary_10_1002_cbdv_202301833 crossref_primary_10_1021_acs_jpcb_2c04346 crossref_primary_10_1007_s10462_024_10731_4 crossref_primary_10_1038_s41467_024_54456_y crossref_primary_10_1080_03007995_2024_2387187 crossref_primary_10_1007_s00521_024_10437_2 crossref_primary_10_1134_S1070428022120041 crossref_primary_10_1134_S1070428024110101 crossref_primary_10_3390_ph16060891 crossref_primary_10_1093_bib_bbac592 crossref_primary_10_1007_s00530_024_01650_z crossref_primary_10_2174_0113892037281184231123111223 crossref_primary_10_1021_acs_energyfuels_4c05653 crossref_primary_10_3934_mbe_2023012 crossref_primary_10_3389_fonc_2022_943874 crossref_primary_10_3934_mbe_2023419 crossref_primary_10_1016_j_sbi_2024_102817 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. |
DBID | 24P |
DOI | 10.1002/wcms.1581 |
DatabaseName | Wiley Online Library Open Access |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-0884 |
EndPage | n/a |
ExternalDocumentID | WCMS1581 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Tencent AI Lab Rhino‐Bird Focused Research Program funderid: JR202004 – fundername: Lanzhou University |
GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- |
ID | FETCH-LOGICAL-c3321-b44f0948ba77f78eae11c8ca61748686867c05c224da233d484bd303960f072b3 |
IEDL.DBID | 24P |
ISSN | 1759-0876 |
IngestDate | Wed Jan 22 16:24:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3321-b44f0948ba77f78eae11c8ca61748686867c05c224da233d484bd303960f072b3 |
Notes | Funding information Edited by Peter Schreiner, Editor‐in‐Chief Tencent AI Lab Rhino‐Bird Focused Research Program, Grant/Award Number: JR202004; Lanzhou University |
ORCID | 0000-0001-7296-6187 0000-0003-4468-7898 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1581 |
PageCount | 19 |
ParticipantIDs | wiley_primary_10_1002_wcms_1581_WCMS1581 |
PublicationCentury | 2000 |
PublicationDate | May/June 2022 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May/June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA |
PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
PublicationYear | 2022 |
Publisher | Wiley Periodicals, Inc |
Publisher_xml | – name: Wiley Periodicals, Inc |
References | 2015; 1–2 1995; 38 2019; 11 2019; 10 2019; 15 2019; 16 2020; 15 2020; 205 2020; 12 2020; 11 2020; 10 2001; 46 1997; 9 2016; 35 1992; 6 2018; 9 1998; 19 2018; 4 2019; 24 2015; 91 2012; 26 2018; 34 2012; 20 2014; 10 2010; 31 2019; 9 2004; 303 2010; 38 2019; 4 2019; 5 2015; 521 2018; 228 2019; 32 2019; 37 2015; 55 2020; 37 1999; 103 2018; 23 2016; 12 2009; 73 2020; 153 2015; 61 2017; 57 2005; 4 2008; 48 2019; 576 2020; 22 2020; 21 2021; 61 2016; 26 2012; 40 2021; 26 2010; 53 2015; 36 2017; 8 2021; 23 2017; 3 2009; 42 2021; 22 2013; 27 2000; 6 2020; 61 2021; 125 2020; 60 2019; 59 2018; 80 2019; 2053 2005; 26 2019; 240 2012; 55 2009; 49 2017; 9 2007; 28 2020; 6 2020; 2 2017; 36 2002; 45 1994; 34 2019; 116 2001; 15 2009; 284 2018; 75 2015; 2 2021; 6 1991; 34 2017; 22 2015; 10 1995; 117 2008; 443 2016; 59 2009; 30 2015; 27 2021; 12 2004; 18 2017; 17 2021 2020 2017; 16 2020; 71 2021; 17 2011; 51 2021; 19 2019 2018 2017 2016 2015 2014 2013 1994; 5 2007; 47 2018; 58 |
References_xml | – year: 2014 article-title: Semi‐supervised learning with deep generative models publication-title: arXiv – volume: 303 start-page: 1813 year: 2004 end-page: 8 article-title: The many roles of computation in drug discovery publication-title: Science – start-page: 1 year: 2019 end-page: 17 – year: 2021 article-title: Prediction of ligand‐receptor pharmacological activities using a combined docking and machine learning approach publication-title: bioRxiv – volume: 71 start-page: 361 year: 2020 end-page: 90 article-title: Machine learning for molecular simulation publication-title: Annu Rev Phys Chem – start-page: 4768 year: 2017 end-page: 4777 – volume: 60 start-page: 5375 year: 2020 end-page: 81 article-title: Predicting small molecule transfer free energies by combining molecular dynamics simulations and deep learning publication-title: J Chem Inf Model – volume: 34 start-page: i821 year: 2018 end-page: 9 article-title: DeepDTA: deep drug–target binding affinity prediction publication-title: Bioinformatics – volume: 80 start-page: 2323 year: 2018 end-page: 32 article-title: Junction tree variational autoencoder for molecular graph generation publication-title: Proc Mach Learn Res – volume: 26 start-page: 1668 year: 2005 end-page: 88 article-title: The Amber biomolecular simulation programs publication-title: J Comput Chem – volume: 31 start-page: 455 year: 2010 end-page: 61 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J Comput Chem – volume: 53 start-page: 2719 year: 2010 end-page: 40 article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays publication-title: J Med Chem – volume: 61 start-page: 3240 year: 2021 end-page: 54 article-title: De novo molecule design through the molecular generative model conditioned by 3D information of protein binding sites publication-title: J Chem Inf Model – start-page: 1 year: 2013 end-page: 14 – volume: 16 start-page: 1401 year: 2017 end-page: 9 article-title: Deep‐learning‐based drug–target interaction prediction publication-title: J Proteome Res – volume: 6 start-page: 22945 year: 2021 end-page: 54 article-title: A novel scalarized scaffold hopping algorithm with graph‐based variational autoencoder for discovery of JAK1 inhibitors publication-title: ACS Omega – volume: 60 start-page: 1983 year: 2020 end-page: 95 article-title: Deep Generative Models for 3D Linker Design publication-title: J Chem Inf Model – volume: 10 start-page: 449 year: 2015 end-page: 61 article-title: The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities publication-title: Expert Opin Drug Discovery – volume: 23 start-page: 6800 year: 2021 end-page: 6 article-title: Reinforcement learning to boost molecular docking upon protein conformational ensemble publication-title: Phys Chem Chem Phys – volume: 2 start-page: 573 year: 2020 end-page: 84 article-title: Drug discovery with explainable artificial intelligence publication-title: Nature Machine Intelligence – volume: 55 start-page: 2932 year: 2012 end-page: 42 article-title: Exploring activity cliffs in medicinal chemistry publication-title: J Med Chem – volume: 2 start-page: 134 year: 2020 end-page: 40 article-title: Predicting drug–protein interaction using quasi‐visual question answering system publication-title: Nature Machine Intelligence – volume: 20 start-page: 30 year: 2012 end-page: 42 article-title: Context‐dependent pre‐trained deep neural networks for large‐vocabulary speech recognition publication-title: IEEE Trans Audio Speech Lang Process – volume: 11 year: 2020 article-title: Molecular sets (MOSES): a benchmarking platform for molecular generation models publication-title: Front Pharmacol – volume: 18 start-page: 189 year: 2004 end-page: 208 article-title: Validation of an empirical RNA‐ligand scoring function for fast flexible docking using Ribodock publication-title: J Comput Aided Mol Des – volume: 51 start-page: 69 year: 2011 end-page: 82 article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations publication-title: J Chem Inf Model – volume: 4 start-page: 649 year: 2005 end-page: 63 article-title: Computer‐based de novo design of drug‐like molecules publication-title: Nat Rev Drug Discov – volume: 23 start-page: 2384 year: 2018 article-title: Deep learning in drug discovery and medicine; scratching the surface publication-title: Molecules – volume: 19 start-page: 3573 year: 2021 end-page: 9 article-title: WADDAICA: a webserver for aiding protein drug design by artificial intelligence and classical algorithm publication-title: Comput Struct Biotechnol J – volume: 6 start-page: 104 year: 2020 article-title: Machine‐learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide publication-title: NPJ Comput Mater – volume: 22 start-page: 4394 year: 2021 article-title: Towards the interpretability of machine learning predictions for medical applications targeting personalised therapies: a cancer case survey publication-title: Int J Mol Sci – volume: 34 start-page: 207 year: 1994 end-page: 17 article-title: SPROUT: recent developments in the de novo design of molecules publication-title: J Chem Inf Comput Sci – year: 2017 article-title: Graph attention networks publication-title: arXiv – volume: 32 start-page: 9240 year: 2019 end-page: 51 article-title: GNNExplainer: generating explanations for graph neural networks publication-title: Adv Neural Inf Process Syst – volume: 4 start-page: 268 year: 2018 end-page: 76 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Central Science – volume: 57 start-page: 1007 year: 2017 end-page: 12 article-title: Structural and sequence similarity makes a significant impact on machine‐learning‐based scoring functions for protein‐ligand interactions publication-title: J Chem Inf Model – volume: 240 start-page: 38 year: 2019 end-page: 45 article-title: sGDML: constructing accurate and data efficient molecular force fields using machine learning publication-title: Comput Phys Commun – volume: 1–2 start-page: 19 year: 2015 end-page: 25 article-title: GROMACS: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 17 start-page: 2617 year: 2017 end-page: 25 article-title: Drug discovery and molecular dynamics: methods, applications and perspective beyond the second timescale publication-title: Curr Top Med Chem – volume: 125 start-page: 101 year: 2021 end-page: 14 article-title: Machine learning of allosteric effects: the analysis of ligand‐induced dynamics to predict functional effects in TRAP1 publication-title: J Phys Chem B – volume: 36 year: 2017 article-title: Energy‐based neural networks as a tool for harmony‐based virtual screening publication-title: Mol Inform – volume: 9 start-page: 2261 year: 2018 end-page: 9 article-title: The TensorMol‐0.1 model chemistry: a neural network augmented with long‐range physics publication-title: Chem Sci – volume: 22 start-page: 1676 year: 2021 article-title: Advances in de novo drug design: from conventional to machine learning methods publication-title: Int J Mol Sci – volume: 37 start-page: 1515 year: 2020 end-page: 20 article-title: METADOCK 2: a high‐throughput parallel metaheuristic scheme for molecular docking publication-title: Bioinformatics – volume: 38 start-page: W615 year: 2010 end-page: 21 article-title: E‐LEA3D: a computational‐aided drug design web server publication-title: Nucleic Acids Res – year: 2016 article-title: Semi‐supervised classification with graph convolutional networks publication-title: arXiv – volume: 24 start-page: 2097 year: 2019 article-title: A machine learning approach for the discovery of ligand‐specific functional mechanisms of GPCRs publication-title: Molecules – volume: 103 start-page: 3596 year: 1999 end-page: 607 article-title: The GROMOS biomolecular simulation program package publication-title: Chem A Eur J – volume: 37 start-page: 1140 year: 2020 end-page: 7 article-title: GraphDTA: predicting drug‐target binding affinity with graph neural networks publication-title: Bioinformatics – volume: 12 start-page: 3724 year: 2021 end-page: 32 article-title: Machine learning prediction of allosteric drug activity from molecular dynamics publication-title: J Phys Chem Lett – volume: 23 start-page: 1241 year: 2018 end-page: 50 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov Today – year: 2020 article-title: Learning a continuous representation of 3D molecular structures with deep generative models publication-title: arXiv – volume: 4 start-page: 828 year: 2019 end-page: 49 article-title: Deep learning for molecular design—a review of the state of the art publication-title: Mol Syst Design Eng – volume: 60 start-page: 4216 year: 2020 end-page: 30 article-title: Improving docking‐based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring publication-title: J Chem Inf Model – volume: 22 year: 2021 article-title: DeepDTAF: a deep learning method to predict protein‐ligand binding affinity publication-title: Brief Bioinform – volume: 59 start-page: 4171 year: 2016 end-page: 88 article-title: OpenGrowth: an automated and rational algorithm for finding new protein ligands publication-title: J Med Chem – volume: 49 start-page: 84 year: 2009 end-page: 96 article-title: Empirical scoring functions for advanced protein‐ligand docking with PLANTS publication-title: J Chem Inf Model – start-page: 1945 year: 2017 end-page: 1954 – volume: 26 start-page: 15 year: 2012 end-page: 26 article-title: The future of molecular dynamics simulations in drug discovery publication-title: J Comput Aided Mol Des – volume: 153 year: 2020 article-title: Scalable molecular dynamics on CPU and GPU architectures with NAMD publication-title: J Chem Phys – volume: 48 start-page: 186 year: 2008 end-page: 96 article-title: Similarity based docking publication-title: J Chem Inf Model – year: 2015 article-title: Adversarial autoencoders publication-title: arXiv, arXiv:1511.05644 – volume: 34 start-page: 786 year: 1991 end-page: 97 article-title: Structure‐activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity publication-title: J Med Chem – volume: 10 start-page: 1047 year: 2015 end-page: 57 article-title: Simulation with quantum mechanics/molecular mechanics for drug discovery publication-title: Expert Opin Drug Discovery – volume: 24 start-page: 2017 year: 2019 end-page: 32 article-title: Deep learning in drug discovery: opportunities, challenges and future prospects publication-title: Drug Discov Today – volume: 61 start-page: 621 year: 2021 end-page: 30 article-title: Accelerating De novo drug design against novel proteins using deep learning publication-title: J Chem Inf Model – volume: 19 start-page: 1639 year: 1998 end-page: 62 article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function publication-title: J Comput Chem – volume: 15 start-page: 911 year: 2001 end-page: 33 article-title: A genetic algorithm for structure‐based de novo design publication-title: J Comput Aided Mol Des – volume: 75 start-page: 398 year: 2018 end-page: 406 article-title: Very deep convolutional networks for large‐scale image recognition publication-title: Am J Health Syst Pharm – volume: 15 start-page: 672 year: 2019 end-page: 80 article-title: BAF complex vulnerabilities in cancer demonstrated via structure‐based PROTAC design publication-title: Nat Chem Biol – start-page: 2672 year: 2014 end-page: 2680 – volume: 46 start-page: 3 year: 2001 end-page: 26 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv Drug Deliv Rev – volume: 205 year: 2020 article-title: A molecular generative model of ADAM10 inhibitors by using GRU‐based deep neural network and transfer learning publication-title: Chemom Intel Lab Syst – volume: 9 start-page: 1735 year: 1997 end-page: 80 article-title: Long short‐term memory publication-title: Neural Comput – volume: 153 year: 2020 article-title: Coarse graining molecular dynamics with graph neural networks publication-title: J Chem Phys – start-page: 3057 year: 2014 end-page: 3070 – volume: 27 start-page: 543 year: 2015 end-page: 52 article-title: Evolutionary algorithms for de novo drug design—a survey publication-title: Appl Soft Comput – volume: 9 start-page: 24 year: 2017 article-title: SimBoost: a read‐across approach for predicting drug‐target binding affinities using gradient boosting machines publication-title: J Chem – volume: 10 start-page: 780 year: 2019 article-title: Machine learning from molecular dynamics trajectories to predict Caspase‐8 inhibitors against Alzheimer's disease publication-title: Front Pharmacol – year: 2018 article-title: Graph convolutional policy network for goal‐directed molecular graph generation publication-title: arXiv – volume: 117 start-page: 1 year: 1995 end-page: 19 article-title: Fast parallel algorithms for short‐range molecular dynamics publication-title: J Comput Phys – year: 2017 article-title: Axiomatic attribution for deep networks publication-title: arXiv – year: 2018 article-title: MolGAN: an implicit generative model for small molecular graphs publication-title: arXiv – volume: 30 start-page: 2785 year: 2009 end-page: 91 article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility publication-title: J Comput Chem – volume: 2053 start-page: 125 year: 2019 end-page: 48 article-title: Docking with AutoDock4 publication-title: Methods Mol Biol – volume: 61 start-page: 139 year: 2020 end-page: 45 article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations publication-title: Curr Opin Struct Biol – volume: 9 year: 2019 article-title: Optimization of molecules via deep reinforcement learning publication-title: Sci Rep – year: 2021 article-title: Learning to design drug‐like molecules in three‐dimensional space using deep generative models publication-title: arXiv – volume: 38 start-page: 466 year: 1995 end-page: 72 article-title: De novo design of enzyme inhibitors by Monte Carlo ligand generation publication-title: J Med Chem – volume: 10 start-page: 1243 year: 2019 article-title: GANsDTA: predicting drug‐target binding affinity using GANs publication-title: Front Genet – volume: 11 start-page: 74 year: 2019 article-title: A de novo molecular generation method using latent vector based generative adversarial network publication-title: J Cheminform – volume: 91 start-page: 1 year: 2015 end-page: 3 article-title: Molecular dynamics: new advances in drug discovery publication-title: Eur J Med Chem – volume: 443 start-page: 63 year: 2008 end-page: 88 article-title: Comparison of protein force fields for molecular dynamics simulations publication-title: Methods Mol Biol – year: 2018 – volume: 26 start-page: 3594 year: 2016 end-page: 7 article-title: Enriching screening libraries with bioactive fragment space publication-title: Bioorg Med Chem Lett – volume: 10 year: 2020 article-title: Elucidating the constitutive relationship of calcium‐silicate‐hydrate gel using high throughput reactive molecular simulations and machine learning publication-title: Sci Rep – year: 2020 article-title: Research and development of MolAICal for drug design via deep learning and classical programming publication-title: arXiv – year: 2020 article-title: Generating 3D molecular structures conditional on a receptor binding site with deep generative models publication-title: arXiv – volume: 4 start-page: 15956 year: 2019 end-page: 65 article-title: OnionNet: a multiple‐layer intermolecular‐contact‐based convolutional neural network for protein–ligand binding affinity prediction publication-title: ACS Omega – volume: 36 start-page: 1132 year: 2015 end-page: 56 article-title: DOCK 6: impact of new features and current docking performance publication-title: J Comput Chem – year: 2018 article-title: Deeply learning molecular structure‐property relationships using attention‐ and gate‐augmented graph convolutional network publication-title: arXiv – volume: 61 start-page: 85 year: 2015 end-page: 117 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – year: 2018 article-title: Syntax‐directed variational autoencoder for structured data publication-title: arXiv – volume: 15 start-page: 755 year: 2020 end-page: 64 article-title: The power of deep learning to ligand‐based novel drug discovery publication-title: Expert Opin Drug Discovery – volume: 11 start-page: 8312 year: 2020 end-page: 22 article-title: SyntaLinker: automatic fragment linking with deep conditional transformer neural networks publication-title: Chem Sci – year: 2018 article-title: Learning deep generative models of graphs publication-title: arXiv – volume: 37 start-page: 1038 year: 2019 end-page: 40 article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors publication-title: Nat Biotechnol – volume: 28 start-page: 1145 year: 2007 end-page: 52 article-title: A semiempirical free energy force field with charge‐based desolvation publication-title: J Comput Chem – volume: 12 start-page: 53 year: 2020 article-title: DeepGraphMolGen, a multi‐objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach publication-title: J Cheminform – volume: 35 start-page: 3 year: 2016 end-page: 14 article-title: Deep learning in drug discovery publication-title: Molecular Informatics – volume: 42 start-page: 724 year: 2009 end-page: 33 article-title: Efficient drug lead discovery and optimization publication-title: Acc Chem Res – year: 2017 article-title: Objective‐reinforced generative adversarial networks (ORGAN) for sequence generation models publication-title: arXiv – start-page: 64 year: 2019 end-page: 69 – volume: 2053 start-page: 203 year: 2019 end-page: 20 article-title: Molecular docking simulations with ArgusLab publication-title: Methods Mol Biol – volume: 576 start-page: S49 year: 2019 end-page: 53 article-title: Hunting for new drugs with AI publication-title: Nature – volume: 21 start-page: 1609 year: 2020 end-page: 27 article-title: Deep learning for drug–drug interaction extraction from the literature: a review publication-title: Brief Bioinform – volume: 2 start-page: 2224 year: 2015 end-page: 2232 – volume: 22 start-page: 1680 year: 2017 end-page: 5 article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery publication-title: Drug Discov Today – volume: 73 start-page: 168 year: 2009 end-page: 78 article-title: AutoGrow: a novel algorithm for protein inhibitor design publication-title: Chem Biol Drug Des – volume: 26 start-page: 182 year: 2021 article-title: Molecular simulation and statistical learning methods toward predicting drug‐polymer amorphous solid dispersion miscibility, stability, and formulation design publication-title: Molecules – volume: 16 start-page: 4282 year: 2019 end-page: 91 article-title: From target to drug: generative modeling for the multimodal structure‐based ligand design publication-title: Mol Pharm – volume: 284 start-page: 12853 year: 2009 end-page: 61 article-title: Structure‐activity relationships and X‐ray structures describing the selectivity of Aminopyrazole inhibitors for c‐Jun N‐terminal kinase 3 (JNK3) over p38 publication-title: J Biol Chem – volume: 5 start-page: 125 year: 2019 article-title: Coarse‐graining auto‐encoders for molecular dynamics publication-title: NPJ Comput Mater – volume: 4 start-page: 120 year: 2018 end-page: 31 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Central Sci – volume: 12 start-page: 878 year: 2016 article-title: Deep learning for computational biology publication-title: Mol Syst Biol – volume: 58 start-page: 1736 year: 2018 end-page: 41 article-title: Fréchet ChemNet distance: a metric for generativemodels for molecules in drug discovery publication-title: J Chem Inf Model – volume: 9 start-page: 3887 year: 2018 article-title: Towards exact molecular dynamics simulations with machine‐learned force fields publication-title: Nat Commun – volume: 10 year: 2014 article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids publication-title: PLoS Comput Biol – volume: 11 start-page: 71 year: 2019 article-title: Randomized SMILES strings improve the quality of molecular generative models publication-title: J Cheminform – volume: 6 start-page: 61 year: 1992 end-page: 78 article-title: The computer program LUDI: a new method for the de novo design of enzyme inhibitors publication-title: J Comput Aided Mol Des – volume: 45 start-page: 2770 year: 2002 end-page: 80 article-title: SMall molecule growth 2001 (SMoG2001): an improved knowledge‐based scoring function for protein‐ligand interactions publication-title: J Med Chem – volume: 17 start-page: 2355 year: 2021 end-page: 63 article-title: TorchMD: a deep learning framework for molecular simulations publication-title: J Chem Theory Comput – year: 2016 article-title: Model‐agnostic interpretability of machine learning publication-title: arXiv – volume: 11 start-page: 12464 year: 2020 end-page: 76 article-title: Fast predictions of liquid‐phase acid‐catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks publication-title: Chem Sci – volume: 11 year: 2020 article-title: Current advances in ligand‐based target prediction publication-title: WIREs Comput Mol Sci – volume: 47 start-page: 1657 year: 2007 end-page: 72 article-title: GlamDock: development and validation of a new docking tool on several thousand protein‐ligand complexes publication-title: J Chem Inf Model – volume: 3 year: 2017 article-title: Machine learning of accurate energy‐conserving molecular force fields publication-title: Sci Adv – volume: 228 start-page: 178 year: 2018 end-page: 84 article-title: DeePMD‐kit: a deep learning package for many‐body potential energy representation and molecular dynamics publication-title: Comput Phys Commun – volume: 11 start-page: 567 year: 2019 end-page: 97 article-title: Deep learning for molecular generation publication-title: Future Med Chem – volume: 5 start-page: 185 year: 1994 end-page: 97 article-title: Recurrent neural network training with feedforward complexity publication-title: IEEE Trans Neural Netw – volume: 521 start-page: 436 year: 2015 end-page: 44 article-title: Deep learning publication-title: Nature – volume: 59 start-page: 1205 year: 2019 end-page: 14 article-title: Shape‐based generative modeling for de novo drug design publication-title: J Chem Inf Model – volume: 27 start-page: 675 year: 2013 end-page: 9 article-title: Estimation of the size of drug‐like chemical space based on GDB‐17 data publication-title: J Comput Aided Mol Des – volume: 22 year: 2020 article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm publication-title: Brief Bioinform – volume: 34 start-page: 3666 year: 2018 end-page: 74 article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction publication-title: Bioinformatics – volume: 40 start-page: D1100 year: 2012 end-page: 7 article-title: ChEMBL: a large‐scale bioactivity database for drug discovery publication-title: Nucleic Acids Res – volume: 55 start-page: 2324 year: 2015 end-page: 37 article-title: ZINC 15—ligand discovery for everyone publication-title: J Chem Inf Model – year: 2020 – start-page: 303 year: 2019 end-page: 310 – volume: 60 start-page: 4200 year: 2020 end-page: 15 article-title: Three‐dimensional convolutional neural networks and a cross‐docked data set for structure‐based drug design publication-title: J Chem Inf Model – volume: 6 start-page: 498 year: 2000 end-page: 516 article-title: LigBuilder: a multi‐purpose program for structure‐based drug design publication-title: J Mol Model – volume: 116 start-page: 22071 year: 2019 end-page: 80 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 6924 year: 2017 end-page: 35 article-title: Machine learning molecular dynamics for the simulation of infrared spectra publication-title: Chem Sci |
SSID | ssj0000491231 |
Score | 2.5911453 |
SecondaryResourceType | review_article |
Snippet | De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular... |
SourceID | wiley |
SourceType | Publisher |
SubjectTerms | de novo drug design deep learning explainable artificial intelligence interpretable machine learning MD simulation |
Title | Application advances of deep learning methods for de novo drug design and molecular dynamics simulation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1581 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsCCeIq3PDCwhCa2E7tiqiqqCqkICSq6RX6lYmhSNS38fe7yaMWGsiRKspx1_r6zfd9HyL1EUiG9CwBbw0BI7gPj-hEKQSpgIwA6FruRJ6_JeCpeZvGsQ57aXphaH2K74IaZUc3XmODalL2daOiPXZSPUYxt13vYWovn-Zh42y6wAPWFWbkquGTcD1B6rVUWCllv-_dfUlqhyuiIHDZ0kA7q8TsmHZ-fkP1h68J2SuaD3Q4zbTbsS1pk1Hm_pI3nw5zWRtAlBQoKb2hefBfUrTZzeMATGlTnji5aJ1zqahv6kpZfi8a-64xMR88fw3HQmCMElnMWBUaIDEozZbSUmVRe-yiyympgJEIleEkbxhYQ2mnGuRNKGAd4BRVLFkpm-Dnp5kXuLwjtZ5ZrDdnrQyuYtUpxo7jnTjphXZhckocqROmyFsBIa6ljlmIQUwxi-jmcvOPN1f8_vSYHDFsJqsODN6S7Xm38LQD82txVA_kLbWuiTA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagDGVBPMUbDyCxhCa2U7sDQ1WoWvoQEq3oFhLbqRiaVE1LxX_iR3LOoxUbS5UlUaIoOtt33zl334fQLTeggmtlQWy1LcaptgJVcwwRpAA0AkFHmm7kXr_aGrKXkTvaQj9FL0zGD7HacDMrI_XXZoGbDenKmjV0KSfJg-MKJy-p7OjvJSRsyWP7CUb3jpDm86DRsnJNAUtSShwrYCyEjEYEPuchF9rXjiOF9CGQM1E1B5e2KyGwKZ9QqphggQI3D0A_tDkJKLx3G-2wKuFGL4Gw19WODmBtCANphsfdmmW43goqI5tUVl_7FwWnYay5j_Zy_Inr2YQ5QFs6OkTlRiH7doTG9fUvbZxXCCQ4DrHSeopzkYkxzpSnEwyYF-7gKP6KsZotxnBhSkKwHyk8KaR3scp07xOcfE5yvbBjNNyI5U5QKYojfYpwLZTU98FdaFsyIqUQNBBUU8UVk8qunqH71ETeNGPc8DJuZeIZI3rGiN57o_dmTs7__-gNKrcGva7Xbfc7F2iXmD6GtHLxEpXms4W-AnQxD67TQcXoY9Oz6BdGn92M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8QE_Vi_Izf9qCJl8nWdrQcPBCQgAghUSK3ubUd8cBGGEj8m_wnfd0HxpsXssuWLsvy2r73a_ve74fQDTeggmtlQWy1LcaptgJVcwwRpAA0AkFHmmrkXr_aHrKnkTsqoe-iFibjh1htuJmZkfprM8GnKqz8koYu5SS5d1zh5BmVXf21hPVa8tBpQufeEtJ6fG20rVxSwJKUEscKGAthQSMCn_OQC-1rx5FC-hDHmaiai0vblRDXlE8oVUywQIGXB5wf2pwEFL67gTbN4aLJHyNssNrQAagNUSBd4HG3Zhmqt4LJyCaV1d_-BcFpFGvtod0cfuJ6Nl72UUlHB2i7Uai-HaJx_fdEG-cJAgmOQ6y0nuJcY2KMM-HpBAPkhRYcxZ8xVrPFGB5MRgj2I4UnhfIuVpnsfYKTj0kuF3aEhmux3DEqR3GkTxCuhZL6PngLbUtGpBSCBoJqqrhiUtnVU3SXmsibZoQbXkatTDxjRM8Y0Xtr9F7Mzdn_X71GW4Nmy3vu9LvnaIeYKoY0b_ECleezhb4EbDEPrtI-xeh93YPoB_rN3L4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+advances+of+deep+learning+methods+for+de+novo+drug+design+and+molecular+dynamics+simulation&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Bai%2C+Qifeng&rft.au=Liu%2C+Shuo&rft.au=Tian%2C+Yanan&rft.au=Xu%2C+Tingyang&rft.date=2022-05-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1581&rft.externalDBID=10.1002%252Fwcms.1581&rft.externalDocID=WCMS1581 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |