Application advances of deep learning methods for de novo drug design and molecular dynamics simulation

De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field....

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Computational molecular science Vol. 12; no. 3
Main Authors Bai, Qifeng, Liu, Shuo, Tian, Yanan, Xu, Tingyang, Banegas‐Luna, Antonio Jesús, Pérez‐Sánchez, Horacio, Huang, Junzhou, Liu, Huanxiang, Yao, Xiaojun
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field. De novo drug design and MD simulation are effective tools for novel drug discovery. With the development of technology, deep learning methods, and interpretable machine learning (IML) have emerged in the research area of drug design. Deep learning methods and IML can be used further to improve the efficiency and accuracy of de novo drug design and MD simulations. The application summary of deep learning methods for de novo drug design, MD simulations, and IML can further promote the technical development of drug discovery. In this article, two major workflow methods and the related components of classical algorithm and deep learning are described for de novo drug design from a new perspective. The application progress of deep learning is also summarized for MD simulations. Furthermore, IML is introduced for the deep learning model interpretability of de novo drug design and MD simulations. Our paper deals with an interesting topic about deep learning applications of de novo drug design and MD simulations for the scientific community. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning Deep learning and interpretable machine learning for de novo drug design and MD simulation.
AbstractList De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular dynamics (MD) simulation is a dynamical way to study the interaction mechanism between the ligands and receptors based on the molecular force field. De novo drug design and MD simulation are effective tools for novel drug discovery. With the development of technology, deep learning methods, and interpretable machine learning (IML) have emerged in the research area of drug design. Deep learning methods and IML can be used further to improve the efficiency and accuracy of de novo drug design and MD simulations. The application summary of deep learning methods for de novo drug design, MD simulations, and IML can further promote the technical development of drug discovery. In this article, two major workflow methods and the related components of classical algorithm and deep learning are described for de novo drug design from a new perspective. The application progress of deep learning is also summarized for MD simulations. Furthermore, IML is introduced for the deep learning model interpretability of de novo drug design and MD simulations. Our paper deals with an interesting topic about deep learning applications of de novo drug design and MD simulations for the scientific community. This article is categorized under: Data Science > Chemoinformatics Data Science > Artificial Intelligence/Machine Learning Deep learning and interpretable machine learning for de novo drug design and MD simulation.
Author Pérez‐Sánchez, Horacio
Huang, Junzhou
Tian, Yanan
Banegas‐Luna, Antonio Jesús
Bai, Qifeng
Liu, Huanxiang
Xu, Tingyang
Yao, Xiaojun
Liu, Shuo
Author_xml – sequence: 1
  givenname: Qifeng
  orcidid: 0000-0001-7296-6187
  surname: Bai
  fullname: Bai, Qifeng
  email: baiqf@lzu.edu.cn
  organization: Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University
– sequence: 2
  givenname: Shuo
  surname: Liu
  fullname: Liu, Shuo
  organization: Lanzhou University
– sequence: 3
  givenname: Yanan
  surname: Tian
  fullname: Tian, Yanan
  organization: Lanzhou University
– sequence: 4
  givenname: Tingyang
  surname: Xu
  fullname: Xu, Tingyang
  email: tingyangxu@tencent.com
  organization: Tencent AI Lab, Shenzhen Tencent Computer Ltd
– sequence: 5
  givenname: Antonio Jesús
  surname: Banegas‐Luna
  fullname: Banegas‐Luna, Antonio Jesús
  organization: UCAM Universidad Católica de Murcia
– sequence: 6
  givenname: Horacio
  orcidid: 0000-0003-4468-7898
  surname: Pérez‐Sánchez
  fullname: Pérez‐Sánchez, Horacio
  email: hperez@ucam.edu
  organization: UCAM Universidad Católica de Murcia
– sequence: 7
  givenname: Junzhou
  surname: Huang
  fullname: Huang, Junzhou
  organization: Tencent AI Lab, Shenzhen Tencent Computer Ltd
– sequence: 8
  givenname: Huanxiang
  surname: Liu
  fullname: Liu, Huanxiang
  organization: Lanzhou University
– sequence: 9
  givenname: Xiaojun
  surname: Yao
  fullname: Yao, Xiaojun
  organization: Lanzhou University
BookMark eNo9kMlOwzAQhi1UJErpgTfwC6T1ltg5VhFLpSIOgDhaju0Eo9iO4i7K25MIxMxh_tn-w3cLFiEGC8A9RhuMENletE8bnAt8BZaY52WGhGCLf82LG7BO6RtNwUpMKF6Cdtf3ndPq6GKAypxV0DbB2EBjbQ87q4bgQgu9PX5Fk2ATh2kDQzxHaIZTOzXJtdNnMNDHzupTp6aLMSjvdILJ-Wkwe9-B60Z1ya7_6gp8PD68V8_Z4fVpX-0OmaaU4KxmrEElE7XivOHCKouxFloVmDNRzMk1yjUhzChCqWGC1YYiWhaoQZzUdAW2v74X19lR9oPzahglRnImJGdCciYkP6uXt1nQH-COXio
CitedBy_id crossref_primary_10_1016_j_jsb_2022_107876
crossref_primary_10_1021_acs_jcim_3c01385
crossref_primary_10_56294_mw2024516
crossref_primary_10_1016_j_soh_2023_100045
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1016_j_ensm_2024_103535
crossref_primary_10_1080_17460441_2024_2367014
crossref_primary_10_1016_j_sajb_2024_08_033
crossref_primary_10_1021_acs_jcim_2c00916
crossref_primary_10_1021_acs_jctc_3c01115
crossref_primary_10_3389_fphar_2024_1331062
crossref_primary_10_1016_j_fochms_2023_100168
crossref_primary_10_3390_ddc4010009
crossref_primary_10_1016_j_hlife_2024_01_002
crossref_primary_10_1080_07391102_2023_2291829
crossref_primary_10_1093_bib_bbac536
crossref_primary_10_2174_0113895575271267231123160503
crossref_primary_10_1016_j_ceja_2025_100731
crossref_primary_10_1134_S1070428023080055
crossref_primary_10_1021_acs_chemrev_3c00070
crossref_primary_10_1073_pnas_2305273120
crossref_primary_10_3390_ijms241915009
crossref_primary_10_1007_s12539_024_00644_9
crossref_primary_10_1098_rsos_220369
crossref_primary_10_1080_17460441_2023_2174522
crossref_primary_10_12688_f1000research_130936_2
crossref_primary_10_1016_j_gsf_2023_101735
crossref_primary_10_3390_molecules29153614
crossref_primary_10_1002_minf_202200188
crossref_primary_10_2174_1872212118666230417084231
crossref_primary_10_1016_j_compchemeng_2023_108403
crossref_primary_10_1021_acs_jpcb_4c06691
crossref_primary_10_1134_S1070428023040103
crossref_primary_10_1186_s12967_024_05067_0
crossref_primary_10_1007_s00210_024_03138_z
crossref_primary_10_2144_fsoa_2022_0085
crossref_primary_10_1088_1361_6463_acdc36
crossref_primary_10_1002_ddr_22115
crossref_primary_10_1002_ddr_22159
crossref_primary_10_3390_math11061279
crossref_primary_10_1111_bph_16140
crossref_primary_10_1007_s00894_022_05434_y
crossref_primary_10_1186_s40537_024_00929_2
crossref_primary_10_31857_S0514749223040109
crossref_primary_10_51847_tFgoN65qlJ
crossref_primary_10_1128_msystems_00183_25
crossref_primary_10_1093_bib_bbac559
crossref_primary_10_1007_s10822_024_00552_6
crossref_primary_10_31857_S0514749223080050
crossref_primary_10_1016_j_csbj_2022_05_057
crossref_primary_10_1007_s11030_023_10718_3
crossref_primary_10_3390_ijms25105319
crossref_primary_10_1002_jmr_3100
crossref_primary_10_1002_wcms_1681
crossref_primary_10_1002_cbdv_202301833
crossref_primary_10_1021_acs_jpcb_2c04346
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_1038_s41467_024_54456_y
crossref_primary_10_1080_03007995_2024_2387187
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1134_S1070428022120041
crossref_primary_10_1134_S1070428024110101
crossref_primary_10_3390_ph16060891
crossref_primary_10_1093_bib_bbac592
crossref_primary_10_1007_s00530_024_01650_z
crossref_primary_10_2174_0113892037281184231123111223
crossref_primary_10_1021_acs_energyfuels_4c05653
crossref_primary_10_3934_mbe_2023012
crossref_primary_10_3389_fonc_2022_943874
crossref_primary_10_3934_mbe_2023419
crossref_primary_10_1016_j_sbi_2024_102817
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
DBID 24P
DOI 10.1002/wcms.1581
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID WCMS1581
Genre reviewArticle
GrantInformation_xml – fundername: Tencent AI Lab Rhino‐Bird Focused Research Program
  funderid: JR202004
– fundername: Lanzhou University
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c3321-b44f0948ba77f78eae11c8ca61748686867c05c224da233d484bd303960f072b3
IEDL.DBID 24P
ISSN 1759-0876
IngestDate Wed Jan 22 16:24:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3321-b44f0948ba77f78eae11c8ca61748686867c05c224da233d484bd303960f072b3
Notes Funding information
Edited by
Peter Schreiner, Editor‐in‐Chief
Tencent AI Lab Rhino‐Bird Focused Research Program, Grant/Award Number: JR202004; Lanzhou University
ORCID 0000-0001-7296-6187
0000-0003-4468-7898
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1581
PageCount 19
ParticipantIDs wiley_primary_10_1002_wcms_1581_WCMS1581
PublicationCentury 2000
PublicationDate May/June 2022
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May/June 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2022
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 2015; 1–2
1995; 38
2019; 11
2019; 10
2019; 15
2019; 16
2020; 15
2020; 205
2020; 12
2020; 11
2020; 10
2001; 46
1997; 9
2016; 35
1992; 6
2018; 9
1998; 19
2018; 4
2019; 24
2015; 91
2012; 26
2018; 34
2012; 20
2014; 10
2010; 31
2019; 9
2004; 303
2010; 38
2019; 4
2019; 5
2015; 521
2018; 228
2019; 32
2019; 37
2015; 55
2020; 37
1999; 103
2018; 23
2016; 12
2009; 73
2020; 153
2015; 61
2017; 57
2005; 4
2008; 48
2019; 576
2020; 22
2020; 21
2021; 61
2016; 26
2012; 40
2021; 26
2010; 53
2015; 36
2017; 8
2021; 23
2017; 3
2009; 42
2021; 22
2013; 27
2000; 6
2020; 61
2021; 125
2020; 60
2019; 59
2018; 80
2019; 2053
2005; 26
2019; 240
2012; 55
2009; 49
2017; 9
2007; 28
2020; 6
2020; 2
2017; 36
2002; 45
1994; 34
2019; 116
2001; 15
2009; 284
2018; 75
2015; 2
2021; 6
1991; 34
2017; 22
2015; 10
1995; 117
2008; 443
2016; 59
2009; 30
2015; 27
2021; 12
2004; 18
2017; 17
2021
2020
2017; 16
2020; 71
2021; 17
2011; 51
2021; 19
2019
2018
2017
2016
2015
2014
2013
1994; 5
2007; 47
2018; 58
References_xml – year: 2014
  article-title: Semi‐supervised learning with deep generative models
  publication-title: arXiv
– volume: 303
  start-page: 1813
  year: 2004
  end-page: 8
  article-title: The many roles of computation in drug discovery
  publication-title: Science
– start-page: 1
  year: 2019
  end-page: 17
– year: 2021
  article-title: Prediction of ligand‐receptor pharmacological activities using a combined docking and machine learning approach
  publication-title: bioRxiv
– volume: 71
  start-page: 361
  year: 2020
  end-page: 90
  article-title: Machine learning for molecular simulation
  publication-title: Annu Rev Phys Chem
– start-page: 4768
  year: 2017
  end-page: 4777
– volume: 60
  start-page: 5375
  year: 2020
  end-page: 81
  article-title: Predicting small molecule transfer free energies by combining molecular dynamics simulations and deep learning
  publication-title: J Chem Inf Model
– volume: 34
  start-page: i821
  year: 2018
  end-page: 9
  article-title: DeepDTA: deep drug–target binding affinity prediction
  publication-title: Bioinformatics
– volume: 80
  start-page: 2323
  year: 2018
  end-page: 32
  article-title: Junction tree variational autoencoder for molecular graph generation
  publication-title: Proc Mach Learn Res
– volume: 26
  start-page: 1668
  year: 2005
  end-page: 88
  article-title: The Amber biomolecular simulation programs
  publication-title: J Comput Chem
– volume: 31
  start-page: 455
  year: 2010
  end-page: 61
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
– volume: 53
  start-page: 2719
  year: 2010
  end-page: 40
  article-title: New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays
  publication-title: J Med Chem
– volume: 61
  start-page: 3240
  year: 2021
  end-page: 54
  article-title: De novo molecule design through the molecular generative model conditioned by 3D information of protein binding sites
  publication-title: J Chem Inf Model
– start-page: 1
  year: 2013
  end-page: 14
– volume: 16
  start-page: 1401
  year: 2017
  end-page: 9
  article-title: Deep‐learning‐based drug–target interaction prediction
  publication-title: J Proteome Res
– volume: 6
  start-page: 22945
  year: 2021
  end-page: 54
  article-title: A novel scalarized scaffold hopping algorithm with graph‐based variational autoencoder for discovery of JAK1 inhibitors
  publication-title: ACS Omega
– volume: 60
  start-page: 1983
  year: 2020
  end-page: 95
  article-title: Deep Generative Models for 3D Linker Design
  publication-title: J Chem Inf Model
– volume: 10
  start-page: 449
  year: 2015
  end-page: 61
  article-title: The MM/PBSA and MM/GBSA methods to estimate ligand‐binding affinities
  publication-title: Expert Opin Drug Discovery
– volume: 23
  start-page: 6800
  year: 2021
  end-page: 6
  article-title: Reinforcement learning to boost molecular docking upon protein conformational ensemble
  publication-title: Phys Chem Chem Phys
– volume: 2
  start-page: 573
  year: 2020
  end-page: 84
  article-title: Drug discovery with explainable artificial intelligence
  publication-title: Nature Machine Intelligence
– volume: 55
  start-page: 2932
  year: 2012
  end-page: 42
  article-title: Exploring activity cliffs in medicinal chemistry
  publication-title: J Med Chem
– volume: 2
  start-page: 134
  year: 2020
  end-page: 40
  article-title: Predicting drug–protein interaction using quasi‐visual question answering system
  publication-title: Nature Machine Intelligence
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  article-title: Context‐dependent pre‐trained deep neural networks for large‐vocabulary speech recognition
  publication-title: IEEE Trans Audio Speech Lang Process
– volume: 11
  year: 2020
  article-title: Molecular sets (MOSES): a benchmarking platform for molecular generation models
  publication-title: Front Pharmacol
– volume: 18
  start-page: 189
  year: 2004
  end-page: 208
  article-title: Validation of an empirical RNA‐ligand scoring function for fast flexible docking using Ribodock
  publication-title: J Comput Aided Mol Des
– volume: 51
  start-page: 69
  year: 2011
  end-page: 82
  article-title: Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations
  publication-title: J Chem Inf Model
– volume: 4
  start-page: 649
  year: 2005
  end-page: 63
  article-title: Computer‐based de novo design of drug‐like molecules
  publication-title: Nat Rev Drug Discov
– volume: 23
  start-page: 2384
  year: 2018
  article-title: Deep learning in drug discovery and medicine; scratching the surface
  publication-title: Molecules
– volume: 19
  start-page: 3573
  year: 2021
  end-page: 9
  article-title: WADDAICA: a webserver for aiding protein drug design by artificial intelligence and classical algorithm
  publication-title: Comput Struct Biotechnol J
– volume: 6
  start-page: 104
  year: 2020
  article-title: Machine‐learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide
  publication-title: NPJ Comput Mater
– volume: 22
  start-page: 4394
  year: 2021
  article-title: Towards the interpretability of machine learning predictions for medical applications targeting personalised therapies: a cancer case survey
  publication-title: Int J Mol Sci
– volume: 34
  start-page: 207
  year: 1994
  end-page: 17
  article-title: SPROUT: recent developments in the de novo design of molecules
  publication-title: J Chem Inf Comput Sci
– year: 2017
  article-title: Graph attention networks
  publication-title: arXiv
– volume: 32
  start-page: 9240
  year: 2019
  end-page: 51
  article-title: GNNExplainer: generating explanations for graph neural networks
  publication-title: Adv Neural Inf Process Syst
– volume: 4
  start-page: 268
  year: 2018
  end-page: 76
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Central Science
– volume: 57
  start-page: 1007
  year: 2017
  end-page: 12
  article-title: Structural and sequence similarity makes a significant impact on machine‐learning‐based scoring functions for protein‐ligand interactions
  publication-title: J Chem Inf Model
– volume: 240
  start-page: 38
  year: 2019
  end-page: 45
  article-title: sGDML: constructing accurate and data efficient molecular force fields using machine learning
  publication-title: Comput Phys Commun
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  article-title: GROMACS: high performance molecular simulations through multi‐level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 17
  start-page: 2617
  year: 2017
  end-page: 25
  article-title: Drug discovery and molecular dynamics: methods, applications and perspective beyond the second timescale
  publication-title: Curr Top Med Chem
– volume: 125
  start-page: 101
  year: 2021
  end-page: 14
  article-title: Machine learning of allosteric effects: the analysis of ligand‐induced dynamics to predict functional effects in TRAP1
  publication-title: J Phys Chem B
– volume: 36
  year: 2017
  article-title: Energy‐based neural networks as a tool for harmony‐based virtual screening
  publication-title: Mol Inform
– volume: 9
  start-page: 2261
  year: 2018
  end-page: 9
  article-title: The TensorMol‐0.1 model chemistry: a neural network augmented with long‐range physics
  publication-title: Chem Sci
– volume: 22
  start-page: 1676
  year: 2021
  article-title: Advances in de novo drug design: from conventional to machine learning methods
  publication-title: Int J Mol Sci
– volume: 37
  start-page: 1515
  year: 2020
  end-page: 20
  article-title: METADOCK 2: a high‐throughput parallel metaheuristic scheme for molecular docking
  publication-title: Bioinformatics
– volume: 38
  start-page: W615
  year: 2010
  end-page: 21
  article-title: E‐LEA3D: a computational‐aided drug design web server
  publication-title: Nucleic Acids Res
– year: 2016
  article-title: Semi‐supervised classification with graph convolutional networks
  publication-title: arXiv
– volume: 24
  start-page: 2097
  year: 2019
  article-title: A machine learning approach for the discovery of ligand‐specific functional mechanisms of GPCRs
  publication-title: Molecules
– volume: 103
  start-page: 3596
  year: 1999
  end-page: 607
  article-title: The GROMOS biomolecular simulation program package
  publication-title: Chem A Eur J
– volume: 37
  start-page: 1140
  year: 2020
  end-page: 7
  article-title: GraphDTA: predicting drug‐target binding affinity with graph neural networks
  publication-title: Bioinformatics
– volume: 12
  start-page: 3724
  year: 2021
  end-page: 32
  article-title: Machine learning prediction of allosteric drug activity from molecular dynamics
  publication-title: J Phys Chem Lett
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 50
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov Today
– year: 2020
  article-title: Learning a continuous representation of 3D molecular structures with deep generative models
  publication-title: arXiv
– volume: 4
  start-page: 828
  year: 2019
  end-page: 49
  article-title: Deep learning for molecular design—a review of the state of the art
  publication-title: Mol Syst Design Eng
– volume: 60
  start-page: 4216
  year: 2020
  end-page: 30
  article-title: Improving docking‐based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring
  publication-title: J Chem Inf Model
– volume: 22
  year: 2021
  article-title: DeepDTAF: a deep learning method to predict protein‐ligand binding affinity
  publication-title: Brief Bioinform
– volume: 59
  start-page: 4171
  year: 2016
  end-page: 88
  article-title: OpenGrowth: an automated and rational algorithm for finding new protein ligands
  publication-title: J Med Chem
– volume: 49
  start-page: 84
  year: 2009
  end-page: 96
  article-title: Empirical scoring functions for advanced protein‐ligand docking with PLANTS
  publication-title: J Chem Inf Model
– start-page: 1945
  year: 2017
  end-page: 1954
– volume: 26
  start-page: 15
  year: 2012
  end-page: 26
  article-title: The future of molecular dynamics simulations in drug discovery
  publication-title: J Comput Aided Mol Des
– volume: 153
  year: 2020
  article-title: Scalable molecular dynamics on CPU and GPU architectures with NAMD
  publication-title: J Chem Phys
– volume: 48
  start-page: 186
  year: 2008
  end-page: 96
  article-title: Similarity based docking
  publication-title: J Chem Inf Model
– year: 2015
  article-title: Adversarial autoencoders
  publication-title: arXiv, arXiv:1511.05644
– volume: 34
  start-page: 786
  year: 1991
  end-page: 97
  article-title: Structure‐activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity
  publication-title: J Med Chem
– volume: 10
  start-page: 1047
  year: 2015
  end-page: 57
  article-title: Simulation with quantum mechanics/molecular mechanics for drug discovery
  publication-title: Expert Opin Drug Discovery
– volume: 24
  start-page: 2017
  year: 2019
  end-page: 32
  article-title: Deep learning in drug discovery: opportunities, challenges and future prospects
  publication-title: Drug Discov Today
– volume: 61
  start-page: 621
  year: 2021
  end-page: 30
  article-title: Accelerating De novo drug design against novel proteins using deep learning
  publication-title: J Chem Inf Model
– volume: 19
  start-page: 1639
  year: 1998
  end-page: 62
  article-title: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function
  publication-title: J Comput Chem
– volume: 15
  start-page: 911
  year: 2001
  end-page: 33
  article-title: A genetic algorithm for structure‐based de novo design
  publication-title: J Comput Aided Mol Des
– volume: 75
  start-page: 398
  year: 2018
  end-page: 406
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: Am J Health Syst Pharm
– volume: 15
  start-page: 672
  year: 2019
  end-page: 80
  article-title: BAF complex vulnerabilities in cancer demonstrated via structure‐based PROTAC design
  publication-title: Nat Chem Biol
– start-page: 2672
  year: 2014
  end-page: 2680
– volume: 46
  start-page: 3
  year: 2001
  end-page: 26
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv Drug Deliv Rev
– volume: 205
  year: 2020
  article-title: A molecular generative model of ADAM10 inhibitors by using GRU‐based deep neural network and transfer learning
  publication-title: Chemom Intel Lab Syst
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 80
  article-title: Long short‐term memory
  publication-title: Neural Comput
– volume: 153
  year: 2020
  article-title: Coarse graining molecular dynamics with graph neural networks
  publication-title: J Chem Phys
– start-page: 3057
  year: 2014
  end-page: 3070
– volume: 27
  start-page: 543
  year: 2015
  end-page: 52
  article-title: Evolutionary algorithms for de novo drug design—a survey
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 24
  year: 2017
  article-title: SimBoost: a read‐across approach for predicting drug‐target binding affinities using gradient boosting machines
  publication-title: J Chem
– volume: 10
  start-page: 780
  year: 2019
  article-title: Machine learning from molecular dynamics trajectories to predict Caspase‐8 inhibitors against Alzheimer's disease
  publication-title: Front Pharmacol
– year: 2018
  article-title: Graph convolutional policy network for goal‐directed molecular graph generation
  publication-title: arXiv
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  article-title: Fast parallel algorithms for short‐range molecular dynamics
  publication-title: J Comput Phys
– year: 2017
  article-title: Axiomatic attribution for deep networks
  publication-title: arXiv
– year: 2018
  article-title: MolGAN: an implicit generative model for small molecular graphs
  publication-title: arXiv
– volume: 30
  start-page: 2785
  year: 2009
  end-page: 91
  article-title: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility
  publication-title: J Comput Chem
– volume: 2053
  start-page: 125
  year: 2019
  end-page: 48
  article-title: Docking with AutoDock4
  publication-title: Methods Mol Biol
– volume: 61
  start-page: 139
  year: 2020
  end-page: 45
  article-title: Machine learning approaches for analyzing and enhancing molecular dynamics simulations
  publication-title: Curr Opin Struct Biol
– volume: 9
  year: 2019
  article-title: Optimization of molecules via deep reinforcement learning
  publication-title: Sci Rep
– year: 2021
  article-title: Learning to design drug‐like molecules in three‐dimensional space using deep generative models
  publication-title: arXiv
– volume: 38
  start-page: 466
  year: 1995
  end-page: 72
  article-title: De novo design of enzyme inhibitors by Monte Carlo ligand generation
  publication-title: J Med Chem
– volume: 10
  start-page: 1243
  year: 2019
  article-title: GANsDTA: predicting drug‐target binding affinity using GANs
  publication-title: Front Genet
– volume: 11
  start-page: 74
  year: 2019
  article-title: A de novo molecular generation method using latent vector based generative adversarial network
  publication-title: J Cheminform
– volume: 91
  start-page: 1
  year: 2015
  end-page: 3
  article-title: Molecular dynamics: new advances in drug discovery
  publication-title: Eur J Med Chem
– volume: 443
  start-page: 63
  year: 2008
  end-page: 88
  article-title: Comparison of protein force fields for molecular dynamics simulations
  publication-title: Methods Mol Biol
– year: 2018
– volume: 26
  start-page: 3594
  year: 2016
  end-page: 7
  article-title: Enriching screening libraries with bioactive fragment space
  publication-title: Bioorg Med Chem Lett
– volume: 10
  year: 2020
  article-title: Elucidating the constitutive relationship of calcium‐silicate‐hydrate gel using high throughput reactive molecular simulations and machine learning
  publication-title: Sci Rep
– year: 2020
  article-title: Research and development of MolAICal for drug design via deep learning and classical programming
  publication-title: arXiv
– year: 2020
  article-title: Generating 3D molecular structures conditional on a receptor binding site with deep generative models
  publication-title: arXiv
– volume: 4
  start-page: 15956
  year: 2019
  end-page: 65
  article-title: OnionNet: a multiple‐layer intermolecular‐contact‐based convolutional neural network for protein–ligand binding affinity prediction
  publication-title: ACS Omega
– volume: 36
  start-page: 1132
  year: 2015
  end-page: 56
  article-title: DOCK 6: impact of new features and current docking performance
  publication-title: J Comput Chem
– year: 2018
  article-title: Deeply learning molecular structure‐property relationships using attention‐ and gate‐augmented graph convolutional network
  publication-title: arXiv
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– year: 2018
  article-title: Syntax‐directed variational autoencoder for structured data
  publication-title: arXiv
– volume: 15
  start-page: 755
  year: 2020
  end-page: 64
  article-title: The power of deep learning to ligand‐based novel drug discovery
  publication-title: Expert Opin Drug Discovery
– volume: 11
  start-page: 8312
  year: 2020
  end-page: 22
  article-title: SyntaLinker: automatic fragment linking with deep conditional transformer neural networks
  publication-title: Chem Sci
– year: 2018
  article-title: Learning deep generative models of graphs
  publication-title: arXiv
– volume: 37
  start-page: 1038
  year: 2019
  end-page: 40
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat Biotechnol
– volume: 28
  start-page: 1145
  year: 2007
  end-page: 52
  article-title: A semiempirical free energy force field with charge‐based desolvation
  publication-title: J Comput Chem
– volume: 12
  start-page: 53
  year: 2020
  article-title: DeepGraphMolGen, a multi‐objective, computational strategy for generating molecules with desirable properties: a graph convolution and reinforcement learning approach
  publication-title: J Cheminform
– volume: 35
  start-page: 3
  year: 2016
  end-page: 14
  article-title: Deep learning in drug discovery
  publication-title: Molecular Informatics
– volume: 42
  start-page: 724
  year: 2009
  end-page: 33
  article-title: Efficient drug lead discovery and optimization
  publication-title: Acc Chem Res
– year: 2017
  article-title: Objective‐reinforced generative adversarial networks (ORGAN) for sequence generation models
  publication-title: arXiv
– start-page: 64
  year: 2019
  end-page: 69
– volume: 2053
  start-page: 203
  year: 2019
  end-page: 20
  article-title: Molecular docking simulations with ArgusLab
  publication-title: Methods Mol Biol
– volume: 576
  start-page: S49
  year: 2019
  end-page: 53
  article-title: Hunting for new drugs with AI
  publication-title: Nature
– volume: 21
  start-page: 1609
  year: 2020
  end-page: 27
  article-title: Deep learning for drug–drug interaction extraction from the literature: a review
  publication-title: Brief Bioinform
– volume: 2
  start-page: 2224
  year: 2015
  end-page: 2232
– volume: 22
  start-page: 1680
  year: 2017
  end-page: 5
  article-title: From machine learning to deep learning: progress in machine intelligence for rational drug discovery
  publication-title: Drug Discov Today
– volume: 73
  start-page: 168
  year: 2009
  end-page: 78
  article-title: AutoGrow: a novel algorithm for protein inhibitor design
  publication-title: Chem Biol Drug Des
– volume: 26
  start-page: 182
  year: 2021
  article-title: Molecular simulation and statistical learning methods toward predicting drug‐polymer amorphous solid dispersion miscibility, stability, and formulation design
  publication-title: Molecules
– volume: 16
  start-page: 4282
  year: 2019
  end-page: 91
  article-title: From target to drug: generative modeling for the multimodal structure‐based ligand design
  publication-title: Mol Pharm
– volume: 284
  start-page: 12853
  year: 2009
  end-page: 61
  article-title: Structure‐activity relationships and X‐ray structures describing the selectivity of Aminopyrazole inhibitors for c‐Jun N‐terminal kinase 3 (JNK3) over p38
  publication-title: J Biol Chem
– volume: 5
  start-page: 125
  year: 2019
  article-title: Coarse‐graining auto‐encoders for molecular dynamics
  publication-title: NPJ Comput Mater
– volume: 4
  start-page: 120
  year: 2018
  end-page: 31
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Central Sci
– volume: 12
  start-page: 878
  year: 2016
  article-title: Deep learning for computational biology
  publication-title: Mol Syst Biol
– volume: 58
  start-page: 1736
  year: 2018
  end-page: 41
  article-title: Fréchet ChemNet distance: a metric for generativemodels for molecules in drug discovery
  publication-title: J Chem Inf Model
– volume: 9
  start-page: 3887
  year: 2018
  article-title: Towards exact molecular dynamics simulations with machine‐learned force fields
  publication-title: Nat Commun
– volume: 10
  year: 2014
  article-title: rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids
  publication-title: PLoS Comput Biol
– volume: 11
  start-page: 71
  year: 2019
  article-title: Randomized SMILES strings improve the quality of molecular generative models
  publication-title: J Cheminform
– volume: 6
  start-page: 61
  year: 1992
  end-page: 78
  article-title: The computer program LUDI: a new method for the de novo design of enzyme inhibitors
  publication-title: J Comput Aided Mol Des
– volume: 45
  start-page: 2770
  year: 2002
  end-page: 80
  article-title: SMall molecule growth 2001 (SMoG2001): an improved knowledge‐based scoring function for protein‐ligand interactions
  publication-title: J Med Chem
– volume: 17
  start-page: 2355
  year: 2021
  end-page: 63
  article-title: TorchMD: a deep learning framework for molecular simulations
  publication-title: J Chem Theory Comput
– year: 2016
  article-title: Model‐agnostic interpretability of machine learning
  publication-title: arXiv
– volume: 11
  start-page: 12464
  year: 2020
  end-page: 76
  article-title: Fast predictions of liquid‐phase acid‐catalyzed reaction rates using molecular dynamics simulations and convolutional neural networks
  publication-title: Chem Sci
– volume: 11
  year: 2020
  article-title: Current advances in ligand‐based target prediction
  publication-title: WIREs Comput Mol Sci
– volume: 47
  start-page: 1657
  year: 2007
  end-page: 72
  article-title: GlamDock: development and validation of a new docking tool on several thousand protein‐ligand complexes
  publication-title: J Chem Inf Model
– volume: 3
  year: 2017
  article-title: Machine learning of accurate energy‐conserving molecular force fields
  publication-title: Sci Adv
– volume: 228
  start-page: 178
  year: 2018
  end-page: 84
  article-title: DeePMD‐kit: a deep learning package for many‐body potential energy representation and molecular dynamics
  publication-title: Comput Phys Commun
– volume: 11
  start-page: 567
  year: 2019
  end-page: 97
  article-title: Deep learning for molecular generation
  publication-title: Future Med Chem
– volume: 5
  start-page: 185
  year: 1994
  end-page: 97
  article-title: Recurrent neural network training with feedforward complexity
  publication-title: IEEE Trans Neural Netw
– volume: 521
  start-page: 436
  year: 2015
  end-page: 44
  article-title: Deep learning
  publication-title: Nature
– volume: 59
  start-page: 1205
  year: 2019
  end-page: 14
  article-title: Shape‐based generative modeling for de novo drug design
  publication-title: J Chem Inf Model
– volume: 27
  start-page: 675
  year: 2013
  end-page: 9
  article-title: Estimation of the size of drug‐like chemical space based on GDB‐17 data
  publication-title: J Comput Aided Mol Des
– volume: 22
  year: 2020
  article-title: MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm
  publication-title: Brief Bioinform
– volume: 34
  start-page: 3666
  year: 2018
  end-page: 74
  article-title: Development and evaluation of a deep learning model for protein–ligand binding affinity prediction
  publication-title: Bioinformatics
– volume: 40
  start-page: D1100
  year: 2012
  end-page: 7
  article-title: ChEMBL: a large‐scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res
– volume: 55
  start-page: 2324
  year: 2015
  end-page: 37
  article-title: ZINC 15—ligand discovery for everyone
  publication-title: J Chem Inf Model
– year: 2020
– start-page: 303
  year: 2019
  end-page: 310
– volume: 60
  start-page: 4200
  year: 2020
  end-page: 15
  article-title: Three‐dimensional convolutional neural networks and a cross‐docked data set for structure‐based drug design
  publication-title: J Chem Inf Model
– volume: 6
  start-page: 498
  year: 2000
  end-page: 516
  article-title: LigBuilder: a multi‐purpose program for structure‐based drug design
  publication-title: J Mol Model
– volume: 116
  start-page: 22071
  year: 2019
  end-page: 80
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 6924
  year: 2017
  end-page: 35
  article-title: Machine learning molecular dynamics for the simulation of infrared spectra
  publication-title: Chem Sci
SSID ssj0000491231
Score 2.5911453
SecondaryResourceType review_article
Snippet De novo drug design is a stationary way to build novel ligands in the confined pocket of receptor by assembling the atoms or fragments, while molecular...
SourceID wiley
SourceType Publisher
SubjectTerms de novo drug design
deep learning
explainable artificial intelligence
interpretable machine learning
MD simulation
Title Application advances of deep learning methods for de novo drug design and molecular dynamics simulation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1581
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaqMsCCeIq3PDCwhCa2E7tiqiqqCqkICSq6RX6lYmhSNS38fe7yaMWGsiRKspx1_r6zfd9HyL1EUiG9CwBbw0BI7gPj-hEKQSpgIwA6FruRJ6_JeCpeZvGsQ57aXphaH2K74IaZUc3XmODalL2daOiPXZSPUYxt13vYWovn-Zh42y6wAPWFWbkquGTcD1B6rVUWCllv-_dfUlqhyuiIHDZ0kA7q8TsmHZ-fkP1h68J2SuaD3Q4zbTbsS1pk1Hm_pI3nw5zWRtAlBQoKb2hefBfUrTZzeMATGlTnji5aJ1zqahv6kpZfi8a-64xMR88fw3HQmCMElnMWBUaIDEozZbSUmVRe-yiyympgJEIleEkbxhYQ2mnGuRNKGAd4BRVLFkpm-Dnp5kXuLwjtZ5ZrDdnrQyuYtUpxo7jnTjphXZhckocqROmyFsBIa6ljlmIQUwxi-jmcvOPN1f8_vSYHDFsJqsODN6S7Xm38LQD82txVA_kLbWuiTA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwELagDGVBPMUbDyCxhCa2U7sDQ1WoWvoQEq3oFhLbqRiaVE1LxX_iR3LOoxUbS5UlUaIoOtt33zl334fQLTeggmtlQWy1LcaptgJVcwwRpAA0AkFHmm7kXr_aGrKXkTvaQj9FL0zGD7HacDMrI_XXZoGbDenKmjV0KSfJg-MKJy-p7OjvJSRsyWP7CUb3jpDm86DRsnJNAUtSShwrYCyEjEYEPuchF9rXjiOF9CGQM1E1B5e2KyGwKZ9QqphggQI3D0A_tDkJKLx3G-2wKuFGL4Gw19WODmBtCANphsfdmmW43goqI5tUVl_7FwWnYay5j_Zy_Inr2YQ5QFs6OkTlRiH7doTG9fUvbZxXCCQ4DrHSeopzkYkxzpSnEwyYF-7gKP6KsZotxnBhSkKwHyk8KaR3scp07xOcfE5yvbBjNNyI5U5QKYojfYpwLZTU98FdaFsyIqUQNBBUU8UVk8qunqH71ETeNGPc8DJuZeIZI3rGiN57o_dmTs7__-gNKrcGva7Xbfc7F2iXmD6GtHLxEpXms4W-AnQxD67TQcXoY9Oz6BdGn92M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8QE_Vi_Izf9qCJl8nWdrQcPBCQgAghUSK3ubUd8cBGGEj8m_wnfd0HxpsXssuWLsvy2r73a_ve74fQDTeggmtlQWy1LcaptgJVcwwRpAA0AkFHmmrkXr_aHrKnkTsqoe-iFibjh1htuJmZkfprM8GnKqz8koYu5SS5d1zh5BmVXf21hPVa8tBpQufeEtJ6fG20rVxSwJKUEscKGAthQSMCn_OQC-1rx5FC-hDHmaiai0vblRDXlE8oVUywQIGXB5wf2pwEFL67gTbN4aLJHyNssNrQAagNUSBd4HG3Zhmqt4LJyCaV1d_-BcFpFGvtod0cfuJ6Nl72UUlHB2i7Uai-HaJx_fdEG-cJAgmOQ6y0nuJcY2KMM-HpBAPkhRYcxZ8xVrPFGB5MRgj2I4UnhfIuVpnsfYKTj0kuF3aEhmux3DEqR3GkTxCuhZL6PngLbUtGpBSCBoJqqrhiUtnVU3SXmsibZoQbXkatTDxjRM8Y0Xtr9F7Mzdn_X71GW4Nmy3vu9LvnaIeYKoY0b_ECleezhb4EbDEPrtI-xeh93YPoB_rN3L4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+advances+of+deep+learning+methods+for+de+novo+drug+design+and+molecular+dynamics+simulation&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Bai%2C+Qifeng&rft.au=Liu%2C+Shuo&rft.au=Tian%2C+Yanan&rft.au=Xu%2C+Tingyang&rft.date=2022-05-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1581&rft.externalDBID=10.1002%252Fwcms.1581&rft.externalDocID=WCMS1581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon