Biological soil crust and disturbance controls on surface hydrology in a semi‐arid ecosystem
Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with soil surface disturbance. In this study, through a simulated rainfall experiment, we examined biocrust hydrologic responses to disturbance (...
Saved in:
Published in | Ecosphere (Washington, D.C) Vol. 8; no. 3 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.03.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with soil surface disturbance. In this study, through a simulated rainfall experiment, we examined biocrust hydrologic responses to disturbance (trampling and scraping) at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance treatments of the early‐successional light cyanobacterial biocrusts reduced runoff after 10 min of cumulative rainfall. Scraped and scraped + trampled treatments also reduced runoff after 30 min in the light biocrust when compared to the intact controls but runoff in the trampling treatments was not significantly reduced. Light biocrust sediment loss trended toward a decrease in total amount of sediment lost in all disturbance treatments but not significantly so. In contrast, trampling well‐developed dark cyano‐lichen biocrusts demonstrated an opposite response than the less‐developed light biocrusts and increased runoff after 30 min of cumulative rainfall and in total sediment loss relative to intact controls. Scraping in dark crusts did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well‐developed, intact dark biocrusts generally had lower runoff and sediment loss and highest aggregate stability, whereas the less‐developed light biocrusts were highest in runoff and sediment loss after disturbance when compared to the controls. These results suggest the importance of maintaining the well‐developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential. |
---|---|
AbstractList | Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with soil surface disturbance. In this study, through a simulated rainfall experiment, we examined biocrust hydrologic responses to disturbance (trampling and scraping) at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance treatments of the early‐successional light cyanobacterial biocrusts reduced runoff after 10 min of cumulative rainfall. Scraped and scraped + trampled treatments also reduced runoff after 30 min in the light biocrust when compared to the intact controls but runoff in the trampling treatments was not significantly reduced. Light biocrust sediment loss trended toward a decrease in total amount of sediment lost in all disturbance treatments but not significantly so. In contrast, trampling well‐developed dark cyano‐lichen biocrusts demonstrated an opposite response than the less‐developed light biocrusts and increased runoff after 30 min of cumulative rainfall and in total sediment loss relative to intact controls. Scraping in dark crusts did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well‐developed, intact dark biocrusts generally had lower runoff and sediment loss and highest aggregate stability, whereas the less‐developed light biocrusts were highest in runoff and sediment loss after disturbance when compared to the controls. These results suggest the importance of maintaining the well‐developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential. Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with soil surface disturbance. In this study, through a simulated rainfall experiment, we examined biocrust hydrologic responses to disturbance (trampling and scraping) at different developmental stages on sandy soils on the Colorado Plateau. Our results showed that all disturbance treatments of the early‐successional light cyanobacterial biocrusts reduced runoff after 10 min of cumulative rainfall. Scraped and scraped + trampled treatments also reduced runoff after 30 min in the light biocrust when compared to the intact controls but runoff in the trampling treatments was not significantly reduced. Light biocrust sediment loss trended toward a decrease in total amount of sediment lost in all disturbance treatments but not significantly so. In contrast, trampling well‐developed dark cyano‐lichen biocrusts demonstrated an opposite response than the less‐developed light biocrusts and increased runoff after 30 min of cumulative rainfall and in total sediment loss relative to intact controls. Scraping in dark crusts did not increase runoff, implying that soil aggregate structure was important to the infiltration process. Well‐developed, intact dark biocrusts generally had lower runoff and sediment loss and highest aggregate stability, whereas the less‐developed light biocrusts were highest in runoff and sediment loss after disturbance when compared to the controls. These results suggest the importance of maintaining the well‐developed dark biocrusts, as they are beneficial for lowering runoff and reducing soil loss and redistribution on the landscape. These data also suggest that upslope patches of light biocrust may either support water transport to downslope vegetation patches or alternatively this runoff may place dark biocrust patches at risk of disruption and loss, given that light patches increase runoff and thus soil erosion potential. |
Author | Herrick, Jeffrey E. Faist, Akasha M. Barger, Nichole N. Van Zee, Justin W. Belnap, Jayne |
Author_xml | – sequence: 1 givenname: Akasha M. surname: Faist fullname: Faist, Akasha M. email: akasha.faist@colorado.edu organization: University of Colorado – sequence: 2 givenname: Jeffrey E. surname: Herrick fullname: Herrick, Jeffrey E. organization: USDA‐ARS Jornada Experimental Range – sequence: 3 givenname: Jayne surname: Belnap fullname: Belnap, Jayne organization: Southwest Biological Science Center – sequence: 4 givenname: Justin W. surname: Van Zee fullname: Van Zee, Justin W. organization: USDA‐ARS Jornada Experimental Range – sequence: 5 givenname: Nichole N. surname: Barger fullname: Barger, Nichole N. organization: University of Colorado |
BookMark | eNp1kL1OwzAQxy1UJErpwBtYYmJI8VccZ4SqfEiVGIAVy3FscJXaxU6EsvEIPCNPQkIZWLjlTqff_076HYOJD94AcIrRAiNELoxOZIF5iQ_AlOAcZaIk-eTPfATmKW3QUDkrBKNT8HzlQhNenFYNTME1UMcutVD5GtYutV2slNcG6uDbGJoEg4epi1YNu9e-jmO2h85DBZPZuq-PTxVdDY0OqU-t2Z6AQ6uaZOa_fQaerlePy9tsfX9zt7xcZ5pSgjNSWcEpKjRnFAldEmNpoSrCayY0R5RYW5eEFoiiiluDC60o06xiwhQoryo6A2f7u7sY3jqTWrkJXfTDS0mIKHPOBCEDdb6ndAwpRWPlLrqtir3ESI4G5WhQjgYH9mLPvrvG9P-DcrV8ID-Jb1McdQg |
CitedBy_id | crossref_primary_10_1111_ejss_13097 crossref_primary_10_1016_j_rama_2020_02_005 crossref_primary_10_1016_j_apsoil_2024_105522 crossref_primary_10_3390_app12041890 crossref_primary_10_1016_j_jaridenv_2019_103996 crossref_primary_10_1007_s11104_019_04102_0 crossref_primary_10_1111_1365_2745_13269 crossref_primary_10_1002_eco_2215 crossref_primary_10_1111_rec_12876 crossref_primary_10_1016_j_baae_2019_06_003 crossref_primary_10_3390_systems7040053 crossref_primary_10_1029_2018JG004726 crossref_primary_10_1111_jvs_12987 crossref_primary_10_1111_rec_13048 crossref_primary_10_1016_j_geoderma_2018_04_009 crossref_primary_10_1111_rec_13201 crossref_primary_10_3389_fmicb_2023_1136322 crossref_primary_10_1016_j_jaridenv_2018_10_007 crossref_primary_10_1111_rec_13087 crossref_primary_10_1016_j_toxcx_2024_100199 crossref_primary_10_1016_j_geoderma_2019_113973 crossref_primary_10_1016_j_soilbio_2018_08_007 crossref_primary_10_3390_land11111983 crossref_primary_10_1002_esp_5189 crossref_primary_10_2478_johh_2021_0026 crossref_primary_10_3389_fmicb_2022_811039 crossref_primary_10_1016_j_soilbio_2018_05_019 crossref_primary_10_3390_microorganisms8030396 crossref_primary_10_1111_rec_13802 crossref_primary_10_1016_j_jhydrol_2024_131427 crossref_primary_10_1016_j_soilbio_2022_108804 crossref_primary_10_1007_s10021_021_00644_6 crossref_primary_10_1016_j_geoderma_2019_114146 crossref_primary_10_1016_j_jenvman_2020_110287 crossref_primary_10_1111_nph_14826 crossref_primary_10_1016_j_geoderma_2021_115658 crossref_primary_10_1016_j_soilbio_2019_107637 crossref_primary_10_3389_fenvs_2022_905045 crossref_primary_10_1002_ecy_3656 crossref_primary_10_1016_j_ecohyd_2023_11_006 crossref_primary_10_1016_j_geoderma_2021_115457 crossref_primary_10_1002_eco_1935 crossref_primary_10_1016_j_soilbio_2022_108841 crossref_primary_10_3389_fevo_2019_00467 crossref_primary_10_1016_j_jaridenv_2021_104514 crossref_primary_10_3390_plants11233225 crossref_primary_10_1016_j_accre_2023_06_002 crossref_primary_10_1111_rec_14067 crossref_primary_10_1007_s40333_023_0064_x crossref_primary_10_1007_s11104_017_3300_3 crossref_primary_10_1016_j_earscirev_2022_104100 crossref_primary_10_3389_fevo_2019_00449 crossref_primary_10_1016_j_aeolia_2021_100697 crossref_primary_10_1080_02723646_2021_1919379 crossref_primary_10_1016_j_geoderma_2021_115329 crossref_primary_10_3389_fmicb_2020_577922 crossref_primary_10_1016_j_catena_2024_108206 crossref_primary_10_3389_fpls_2023_1147390 crossref_primary_10_5194_bg_14_5403_2017 crossref_primary_10_1002_ecs2_2592 crossref_primary_10_1016_j_geoderma_2021_115325 crossref_primary_10_1016_j_geoderma_2021_115369 crossref_primary_10_1002_ldr_3598 crossref_primary_10_1111_gcb_15232 crossref_primary_10_1007_s10333_020_00810_x crossref_primary_10_1016_j_catena_2023_107755 crossref_primary_10_1111_brv_12862 crossref_primary_10_1016_j_apsoil_2021_104160 crossref_primary_10_1016_j_rama_2024_05_003 crossref_primary_10_1007_s11368_023_03585_w crossref_primary_10_1016_j_rama_2019_08_007 crossref_primary_10_1007_s11104_017_3525_1 crossref_primary_10_3389_fmicb_2022_882673 crossref_primary_10_3389_fmicb_2020_01666 crossref_primary_10_1016_j_biosystemseng_2022_08_016 crossref_primary_10_1016_j_envres_2021_112200 crossref_primary_10_3390_w12030720 crossref_primary_10_1016_j_earscirev_2023_104516 crossref_primary_10_1002_eco_1875 crossref_primary_10_1002_eco_2324 crossref_primary_10_1029_2023WR036520 crossref_primary_10_1016_j_geoderma_2021_115633 crossref_primary_10_1016_j_catena_2023_107084 crossref_primary_10_1134_S1064229323603001 crossref_primary_10_1016_j_catena_2021_105782 crossref_primary_10_1016_j_soilbio_2019_107693 crossref_primary_10_1111_rec_13071 crossref_primary_10_1016_j_catena_2023_107202 crossref_primary_10_1002_eco_2089 crossref_primary_10_1016_j_agee_2018_04_012 |
Cites_doi | 10.1016/j.soilbio.2014.12.010 10.1080/089030699263384 10.1007/978-3-642-56475-8_26 10.1300/J064v14n02_08 10.1007/978-3-319-30214-0_14 10.1016/j.catena.2016.06.017 10.1016/S0723-2020(96)80054-3 10.1007/978-3-642-56475-8_27 10.1007/s10021-014-9790-4 10.1007/s10021-013-9644-5 10.1007/s00374-002-0453-9 10.1016/S0341-8162(00)00082-5 10.1002/1099-1085(200011/12)14:16/17<2817::AID-HYP121>3.0.CO;2-B 10.1002/hyp.6325 10.1016/j.geomorph.2011.11.013 10.1016/j.aeolia.2014.04.002 10.2111/REM-D-09-00176.1 10.1006/jare.1994.1025 10.2307/3897307 10.1007/s12665-011-1066-0 10.2307/4004002 10.1016/S0016-7061(03)00012-0 10.1080/15324989309381351 10.1007/s10531-014-0693-7 10.1007/s00254-007-1130-y 10.2136/sssaj2010.0283 10.1111/j.1365-3091.2009.01081.x 10.2307/3899382 10.1016/S0341-8162(00)00173-9 10.1016/j.soilbio.2008.05.008 10.1007/978-3-642-56475-8_1 10.1007/s10533-005-1424-7 10.1002/esp.1372 10.1007/BF00992871 10.1111/j.1365-2435.2011.01835.x 10.1007/978-3-319-30214-0_17 10.1002/wrcr.20360 10.1007/s10021-011-9499-6 10.1016/j.catena.2010.08.007 10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2 10.1002/eco.265 10.1097/00010694-199901000-00004 10.1016/j.jhydrol.2012.05.045 10.1371/journal.pone.0127394 10.2489/jswc.66.2.31A 10.1016/j.catena.2009.08.009 10.2136/sssaj2012.0021 10.2136/sssaj1979.03615995004300050038x 10.1016/S0341-8162(98)00075-7 10.1016/j.soilbio.2010.12.007 10.1016/j.catena.2014.11.011 |
ContentType | Journal Article |
Copyright | 2017 Faist et al. 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2017 Faist et al. – notice: 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION ABUWG AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO HCIFZ PCBAR PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.1002/ecs2.1691 |
DatabaseName | Wiley Open Access Wiley-Blackwell Open Access Backfiles CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 2150-8925 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ecs2_1691 ECS21691 |
Genre | article |
GeographicLocations | United States--US Utah |
GeographicLocations_xml | – name: United States--US – name: Utah |
GrantInformation_xml | – fundername: Canon National Parks Science Scholars Program – fundername: University of Colorado Boulder Libraries Open Access Fund – fundername: USGS Ecosystems program |
GroupedDBID | ..I 0R~ 1OC 24P 5VS 8FE 8FH AAHBH AAHHS ACCFJ ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV BENPR BHPHI BKSAR CCPQU E3Z EBS ECGQY EJD FRP GROUPED_DOAJ HCIFZ IAO IEP KQ8 LK5 M7R M~E OK1 P2P PCBAR PIMPY PROAC RSZ WIN AAYXX CITATION ITC ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c3321-2bf86307c64308c92ef37ab26d48c6032ffd9237030b6fe17ca34c4b48e705bb3 |
IEDL.DBID | BENPR |
ISSN | 2150-8925 |
IngestDate | Thu Oct 10 18:38:04 EDT 2024 Fri Dec 06 03:05:26 EST 2024 Sat Aug 24 01:03:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3321-2bf86307c64308c92ef37ab26d48c6032ffd9237030b6fe17ca34c4b48e705bb3 |
OpenAccessLink | https://www.proquest.com/docview/2289564822?pq-origsite=%requestingapplication% |
PQID | 2289564822 |
PQPubID | 4368365 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2289564822 crossref_primary_10_1002_ecs2_1691 wiley_primary_10_1002_ecs2_1691_ECS21691 |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 20170301 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Ecosphere (Washington, D.C) |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 1993; 7 2010; 57 2006; 77 2002; 55 1999; 164 1999; 45 1994; 26 2003; 115 2001; 44 2007; 32 2010; 63 2014; 23 2006; 20 2013; 16 2001 1997; 11 2000; 14 2015; 82 2012b; 452 1999; 14 1999; 13 2011; 66 1977; 30 2014; 13 2003; 1 2014; 17 2011; 25 2012; 139 2012; 65 2013; 49 1996; 19 2015; 126 2002; 35 2015; 10 2011; 75 2008; 54 2005 2002 1991 2010; 80 2012; 76 2010; 83 2012a; 15 1988; 4 2000; 40 2011; 43 2016 2014 2008; 40 1979; 43 2012; 5 2017; 148 1998; 33 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 R Core Team (e_1_2_7_48_1) 2014 e_1_2_7_17_1 e_1_2_7_15_1 Gee G. W. (e_1_2_7_32_1) 2002 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 Eldridge D. J. (e_1_2_7_27_1) 1997; 11 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 Lammers D. A. (e_1_2_7_41_1) 1991 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_29_1 Chamizo S. (e_1_2_7_18_1) 2012; 452 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 15 start-page: 148 year: 2012a end-page: 161 article-title: Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems publication-title: Ecosystems – volume: 63 start-page: 524 year: 2010 end-page: 536 article-title: Assessing transportation infrastructure impacts on rangelands: test of a standard Rangeland Assessment Protocol publication-title: Rangeland Ecology and Management – year: 2005 – start-page: 321 year: 2016 end-page: 346 – volume: 76 start-page: 1685 year: 2012 end-page: 1695 article-title: Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis publication-title: Soil Science Society of America Journal – volume: 23 start-page: 1687 year: 2014 end-page: 1708 article-title: Soil microstructure as an under‐explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert publication-title: Biodiversity and Conservation – volume: 77 start-page: 247 year: 2006 end-page: 263 article-title: Impacts of biological soil crust disturbance and composition on C and N loss from water erosion publication-title: Biogeochemistry – volume: 1 start-page: 181 year: 2003 end-page: 189 article-title: The world at your feet: desert biological soil crusts publication-title: Frontiers in Ecology and the Environment – volume: 11 start-page: 113 year: 1997 end-page: 126 article-title: Soil hydrology is independent of microphytic crust cover: further evidence from a wooded semiarid Australian rangeland publication-title: Arid Land Research and Management – volume: 25 start-page: 787 year: 2011 end-page: 795 article-title: Functional profiles reveal unique ecological roles of various biological soil crust organisms publication-title: Functional Ecology – volume: 83 start-page: 119 year: 2010 end-page: 126 article-title: Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse‐textured soils with weak cyanobacterial crusts publication-title: Catena – year: 2014 – volume: 43 start-page: 104 year: 1979 end-page: 107 article-title: Particle‐size analysis by hydrometer – simplified method for routine textural analysis and a sensitivity test of measurement parameters publication-title: Soil Science Society of America Journal – volume: 148 start-page: 117 year: 2017 end-page: 125 article-title: Effects of biocrust on soil erosion and organic carbon losses under natural rainfall publication-title: Catena – volume: 33 start-page: 221 year: 1998 end-page: 239 article-title: Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain‐impacted flow publication-title: Catena – volume: 65 start-page: 77 year: 2012 end-page: 88 article-title: Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China) publication-title: Environmental Earth Sciences – volume: 35 start-page: 147 year: 2002 end-page: 154 article-title: Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China publication-title: Biology and Fertility of Soils – volume: 13 start-page: 81 year: 2014 end-page: 89 article-title: Inferring the impact of rainfall gradient on biocrusts' development stage and thus on soil physical structures in sand dunes publication-title: Aeolian Research – volume: 7 start-page: 203 year: 1993 end-page: 217 article-title: Cryptogam cover and soil surface condition: effects on hydrology on a semiarid woodland soil publication-title: Arid Soil Research and Rehabilitation – start-page: 257 year: 2016 end-page: 285 – volume: 57 start-page: 351 year: 2010 end-page: 358 article-title: Biogenic soil crusts and soil depth: a long‐term case study from the Central Negev desert highland publication-title: Sedimentology – start-page: 349 year: 2001 end-page: 360 – volume: 82 start-page: 07 year: 2015 end-page: 111 article-title: Swelling of biocrusts upon wetting induces changes in surface micro‐topography publication-title: Soil Biology and Biochemistry – volume: 45 start-page: 21 year: 1999 end-page: 34 article-title: Nutrient losses in runoff from grassland and shrubland habitats in Southern New Mexico: I. Rainfall simulation experiments publication-title: Biogeochemistry – volume: 40 start-page: 323 year: 2000 end-page: 336 article-title: Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel publication-title: Catena – volume: 139 start-page: 484 year: 2012 end-page: 494 article-title: Contrasting effects of microbiotic crusts on runoff in desert surfaces publication-title: Geomorphology – volume: 80 start-page: 47 year: 2010 end-page: 52 article-title: Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany publication-title: Catena – volume: 13 start-page: 145 year: 1999 end-page: 154 article-title: Microbiotic crust influences on unsaturated hydraulic conductivity publication-title: Arid Soil Research and Rehabilitation – volume: 75 start-page: 1330 year: 2011 end-page: 1342 article-title: Two‐dimensional porosity of crusted silty soils: Indicators of soil quality in semiarid rangelands? publication-title: Soil Science Society of America Journal – volume: 17 start-page: 1242 year: 2014 end-page: 1256 article-title: Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands publication-title: Ecosystems – volume: 14 start-page: 83 year: 1999 end-page: 151 article-title: Soil aggregate stability: a review publication-title: Journal of Sustainable Agriculture – volume: 43 start-page: 857 year: 2011 end-page: 861 article-title: Ethanol outperforms multiple solvents in the extraction of chlorophyll‐a from biological soil crusts publication-title: Soil Biology and Biochemistry – volume: 14 start-page: 2817 year: 2000 end-page: 2829 article-title: The disparity between extreme rainfall events and rare floods – With emphasis on the semi‐arid America West publication-title: Hydrological Processes – volume: 55 start-page: 584 year: 2002 end-page: 597 article-title: Rangeland health attributes and indicators for qualitative assessment publication-title: Journal of Range Management – volume: 115 start-page: 193 year: 2003 end-page: 222 article-title: Soil–geomorphology relations in gypsiferous materials of the Tabernas Desert (Almeria, SE Spain) publication-title: Geoderma – volume: 49 start-page: 5585 year: 2013 end-page: 5599 article-title: The role of soil‐surface sealing, microtopography, and vegetation patches in rainfall‐runoff processes in semiarid areas publication-title: Water Resources Research – volume: 66 start-page: 31A year: 2011 end-page: 36A article-title: Disentangling road network impacts: the need for a holistic approach publication-title: Journal of Soil and Water Conservation – volume: 164 start-page: 18 year: 1999 end-page: 27 article-title: Two causes from runoff initiation on microbiotic crusts: hydrophobicity and pore clogging publication-title: Soil Science – volume: 19 start-page: 285 year: 1996 end-page: 294 article-title: Carotenoids and mycosporine‐like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study publication-title: Systematic and Applied Microbiology – volume: 10 start-page: e0127394 year: 2015 article-title: The combined effects of moss‐dominated biocrusts and vegetation on erosion and soil moisture and implications for disturbance on the Loess Plateau, China publication-title: PLoS One – volume: 452 start-page: 130 year: 2012b end-page: 138 article-title: Runoff at contrasting scales in a semiarid ecosystem: a complex balance between biological soil crust features and rainfall characteristics publication-title: Journal of Hydrology – volume: 32 start-page: 75 year: 2007 end-page: 84 article-title: Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management publication-title: Earth Surface Processes and Landforms – start-page: 3 year: 2001 end-page: 30 – volume: 30 start-page: 286 year: 1977 end-page: 289 article-title: Occurrence of four major perennial grasses in relation to edaphic factors in a pristine community publication-title: Journal of Range Management – volume: 126 start-page: 164 year: 2015 end-page: 172 article-title: Penetration resistance of biological soil crusts and its dynamics after crust removal: relationships with runoff and soil detachment publication-title: Catena – start-page: 363 year: 2001 end-page: 383 – volume: 54 start-page: 653 year: 2008 end-page: 662 article-title: Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia China publication-title: Environmental Geology – volume: 4 start-page: 296 year: 1988 end-page: 302 article-title: Infiltration and interrill erosion responses to selected livestock grazing strategies, Edwards Plateau, Texas publication-title: Journal of Range Management – volume: 20 start-page: 3159 year: 2006 end-page: 3178 article-title: The potential roles of biological soil crusts in dryland hydrologic cycles publication-title: Hydrological Processes – volume: 16 start-page: 923 year: 2013 end-page: 933 article-title: Diversity and patch‐size distributions of biological soil crusts regulate dryland ecosystem multifunctionality publication-title: Ecosystems – volume: 44 start-page: 27 year: 2001 end-page: 35 article-title: Field soil aggregate stability kit for soil quality and rangeland health evaluations publication-title: Catena – volume: 26 start-page: 221 year: 1994 end-page: 232 article-title: Assessment of sediment yield by splash erosion on a semi‐arid soil with varying cryptogam cover publication-title: Journal of Arid Environments – year: 1991 – volume: 40 start-page: 2309 year: 2008 end-page: 2316 article-title: Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts publication-title: Soil Biology and Biochemistry – volume: 5 start-page: 174 year: 2012 end-page: 183 article-title: Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands publication-title: Ecohydrology – start-page: 255 year: 2002 end-page: 293 – ident: e_1_2_7_49_1 doi: 10.1016/j.soilbio.2014.12.010 – ident: e_1_2_7_55_1 doi: 10.1080/089030699263384 – ident: e_1_2_7_53_1 doi: 10.1007/978-3-642-56475-8_26 – ident: e_1_2_7_2_1 doi: 10.1300/J064v14n02_08 – ident: e_1_2_7_4_1 doi: 10.1007/978-3-319-30214-0_14 – ident: e_1_2_7_20_1 doi: 10.1016/j.catena.2016.06.017 – ident: e_1_2_7_37_1 doi: 10.1016/S0723-2020(96)80054-3 – volume-title: R: a language and environment for statistical computing year: 2014 ident: e_1_2_7_48_1 contributor: fullname: R Core Team – ident: e_1_2_7_8_1 doi: 10.1007/978-3-642-56475-8_27 – ident: e_1_2_7_10_1 doi: 10.1007/s10021-014-9790-4 – ident: e_1_2_7_12_1 doi: 10.1007/s10021-013-9644-5 – ident: e_1_2_7_44_1 doi: 10.1007/s00374-002-0453-9 – ident: e_1_2_7_28_1 doi: 10.1016/S0341-8162(00)00082-5 – ident: e_1_2_7_46_1 doi: 10.1002/1099-1085(200011/12)14:16/17<2817::AID-HYP121>3.0.CO;2-B – ident: e_1_2_7_6_1 doi: 10.1002/hyp.6325 – ident: e_1_2_7_38_1 doi: 10.1016/j.geomorph.2011.11.013 – ident: e_1_2_7_56_1 doi: 10.1016/j.aeolia.2014.04.002 – ident: e_1_2_7_35_1 – ident: e_1_2_7_23_1 doi: 10.2111/REM-D-09-00176.1 – ident: e_1_2_7_26_1 doi: 10.1006/jare.1994.1025 – ident: e_1_2_7_40_1 doi: 10.2307/3897307 – ident: e_1_2_7_42_1 doi: 10.1007/s12665-011-1066-0 – ident: e_1_2_7_47_1 doi: 10.2307/4004002 – ident: e_1_2_7_15_1 doi: 10.1016/S0016-7061(03)00012-0 – ident: e_1_2_7_24_1 doi: 10.1080/15324989309381351 – ident: e_1_2_7_29_1 doi: 10.1007/s10531-014-0693-7 – ident: e_1_2_7_33_1 doi: 10.1007/s00254-007-1130-y – ident: e_1_2_7_45_1 doi: 10.2136/sssaj2010.0283 – ident: e_1_2_7_57_1 doi: 10.1111/j.1365-3091.2009.01081.x – ident: e_1_2_7_51_1 doi: 10.2307/3899382 – ident: e_1_2_7_36_1 doi: 10.1016/S0341-8162(00)00173-9 – ident: e_1_2_7_11_1 doi: 10.1016/j.soilbio.2008.05.008 – ident: e_1_2_7_7_1 doi: 10.1007/978-3-642-56475-8_1 – volume-title: Soil surveys of Canyonlands area, Utah, parts of Grand and San Juan counties year: 1991 ident: e_1_2_7_41_1 contributor: fullname: Lammers D. A. – ident: e_1_2_7_3_1 doi: 10.1007/s10533-005-1424-7 – ident: e_1_2_7_9_1 doi: 10.1002/esp.1372 – ident: e_1_2_7_50_1 doi: 10.1007/BF00992871 – ident: e_1_2_7_13_1 doi: 10.1111/j.1365-2435.2011.01835.x – ident: e_1_2_7_16_1 doi: 10.1007/978-3-319-30214-0_17 – ident: e_1_2_7_21_1 doi: 10.1002/wrcr.20360 – ident: e_1_2_7_17_1 doi: 10.1007/s10021-011-9499-6 – ident: e_1_2_7_34_1 doi: 10.1016/j.catena.2010.08.007 – ident: e_1_2_7_5_1 doi: 10.1890/1540-9295(2003)001[0181:TWAYFD]2.0.CO;2 – ident: e_1_2_7_52_1 doi: 10.1002/eco.265 – ident: e_1_2_7_39_1 doi: 10.1097/00010694-199901000-00004 – volume: 452 start-page: 130 year: 2012 ident: e_1_2_7_18_1 article-title: Runoff at contrasting scales in a semiarid ecosystem: a complex balance between biological soil crust features and rainfall characteristics publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.05.045 contributor: fullname: Chamizo S. – ident: e_1_2_7_14_1 doi: 10.1371/journal.pone.0127394 – ident: e_1_2_7_22_1 doi: 10.2489/jswc.66.2.31A – ident: e_1_2_7_30_1 doi: 10.1016/j.catena.2009.08.009 – volume: 11 start-page: 113 year: 1997 ident: e_1_2_7_27_1 article-title: Soil hydrology is independent of microphytic crust cover: further evidence from a wooded semiarid Australian rangeland publication-title: Arid Land Research and Management contributor: fullname: Eldridge D. J. – ident: e_1_2_7_54_1 doi: 10.2136/sssaj2012.0021 – ident: e_1_2_7_31_1 doi: 10.2136/sssaj1979.03615995004300050038x – ident: e_1_2_7_25_1 doi: 10.1016/S0341-8162(98)00075-7 – ident: e_1_2_7_43_1 doi: 10.1016/j.soilbio.2010.12.007 – ident: e_1_2_7_19_1 doi: 10.1016/j.catena.2014.11.011 – start-page: 255 volume-title: Methods of soil analysis. Part 4 year: 2002 ident: e_1_2_7_32_1 contributor: fullname: Gee G. W. |
SSID | ssj0000547843 |
Score | 2.448869 |
Snippet | Biological soil crust communities (biocrusts) play an important role in surface hydrologic processes in dryland ecosystems and can be dramatically altered with... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | biological soil crust Biomass Chlorophyll Cumulative runoff Cyanobacteria Developmental stages Disturbance disturbance event drylands Ecosystems Hydrology Landscape Light Rainfall rainfall simulation Runoff Sandy soils sediment loss Sediments Simulated rainfall Soil erosion soil surface Trampling Water transport |
SummonAdditionalLinks | – databaseName: Wiley Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qRfAiPrFaZREPXtam-0g2eJLSIoIiaKEnwz6xoKkk7aE3f4K_0V_i7qZp9SB4C0syh28yO98ss98AcJ5ypTGTEbJWYUSVSJBgWiAhlUwIt7wanXB3H98M6e2IjRrgqr4LU-lDLA_cfGSE_doHuJBlZyUaalSJL73UyxpYd7Qm9uMLMH1YHrBEXqkqdM25rBYhnmJWKwtFuLP8-nc-WpHMn1Q15JrBNthakER4XXl1BzRMvgs2-kFger4HnqsBkh5eWE7Gr1D5ixNQ5Bpq57VZIb0r4aILvYSTHJazwgq39jLXRbACxzkUsDRv46-PT1cva-jq0ErWeR8MB_2n3g1azElAihDcRVhaHrtYVY5dRFyl2FiSCIljTbmKI4Kt1Y7H-diWsTXdRAlCFZWUmyRiUpID0MwnuTkEkJNIq8TIlFFBtTTS1a-MKMcirKLasBY4q9HK3is5jKwSPsaZhzTzkLZAu8YxW0REmWFX2bGYOkstcBGw_dtA1u89Yv9w9P9Xj8Em9hk3tIe1QXNazMyJ4wtTeRr-i2_vMLy6 priority: 102 providerName: Wiley-Blackwell |
Title | Biological soil crust and disturbance controls on surface hydrology in a semi‐arid ecosystem |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fecs2.1691 https://www.proquest.com/docview/2289564822 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0IxMSL8TOiSDbGg5dK2d22y8kogRATCVFJONnsZyTRghQO3PwJ_kZ_ibttET3ordnDHN50dt5Mp28AzltMKhwI3zNGYo9KHnk8UNzjQoqIMMPy1Ql3_bA3pLejYFQ03NJirHJ1J2YXtZpI1yNvYFsZBCG1-exq-ua5rVHu62qxQqMEFdwkjJWhctPpD-6_uyy-k6uiZCUp5OOGlim-dAoxvxPRml3-5KhZkunuwHbBDtF17s5d2NDJHmx2MmXp5T485ZsjHa4onYxfkHR_TCCeKKSsuxYz4XyIivHzFE0SlC5mhtuz56WaZVbQOEEcpfp1_Pn-YQtlhWwBmus5H8Cw23ls97xiQYInCcFNDwvDQhuk0tIKn8kW1oZEXOBQUSZDn2BjlCVwLqhFaHQzkpxQSQVlOvIDIcghlJNJoo8AMeIrGWnRCiinSmhhC9eASAu3kVTpoApnK7Tiaa6DEeeKxzh2kMYO0irUVjjGRSik8dpxVbjIsP3bQNxpP2D3cPy_pRPYwi69ZrNgNSjPZwt9asnBXNShhOmgXrwH9azE_gIlY74d |
link.rule.ids | 314,780,784,864,11562,21388,27924,27925,33744,43805,46052,46476,50814,50923,74302 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TsNAEB1BIgQN4hSBACtEQWNw9rCdCkFkFK4IcUipsPYUkcAJMSno-AS-kS9h1wdHAZ21xRRvPDtvxuM3ALvtSCrMhO8ZI7FHJQ89zhT3uJAiJJGJitUJl72ge0fP-qxfNtyycqyyuhPzi1oNpeuRH2BbGbCA2nx2OHr23NYo93W1XKExDXWnnM5qUD-Oe1fXX10W38lVUVJJCvn4QMsM7zuFmN-J6Jtd_uSoeZI5WYD5kh2io8KdizCl0yWYiXNl6ddluC82RzpcUTYcPCLp_phAPFVIWXdNxsL5EJXj5xkapiibjA23Zw-vapxbQYMUcZTpp8HH27stlBWyBWih57wCdyfxbafrlQsSPEkIbnlYmCiwQSotrfAj2cbakJALHCgaycAn2BhlCZwLahEY3QolJ1RSQSMd-kwIsgq1dJjqNUAR8ZUMtWgzyqkSWtjClRFp4TaSKs0asFOhlYwKHYykUDzGiYM0cZA2oFnhmJShkCXfjmvAXo7t3waSuHOD3cP6_5a2YbZ7e3mRXJz2zjdgDrtUm8-FNaH2Mp7oTUsUXsRW-TZ8AjoIvzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV25TgMxEB1BIhAN4hThtBAFzZKN7T1SIY5E4YoiIFIqVj5FJNiELCno-AS-kS_B3nUIFNBZW0zxxuN54x2_ATiox0LigPue1gJ7VLDIY4FkHuOCRyTWcTE64aYdtrr0shf0XP9T5toqJ2diflDLgbB35FVsKoMgpCafVbVri-icN4-HL56dIGX_tLpxGrNQNlnRxyUonzbandvvGxffSldRMpEX8nFViQwfWbWY30lpyjR_8tU84TSXYNExRXRSuHYZZlS6AnONXGX6bRUeiimSFmOUDfpPSNjXE4ilEknjuvGIW38i14qeoUGKsvFIM_Pt8U2OciuonyKGMvXc_3z_MEWzRKYYLbSd16DbbNyftTw3LMEThOCah7mOQxOwwlAMPxZ1rDSJGMehpLEIfYK1lobM2QDnoVa1SDBCBeU0VpEfcE7WoZQOUrUBKCa-FJHi9YAyKrnipogNiDDQa0GlCiqwP0ErGRaaGEmhfowTC2liIa3A9gTHxIVFlkydWIHDHNu_DSSNsztsF5v_W9qDebMRkuuL9tUWLGCbdfMWsW0ovY7Gasdwhle-6zbDF9QKw2Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biological+soil+crust+and+disturbance+controls+on+surface+hydrology+in+a+semi%E2%80%90arid+ecosystem&rft.jtitle=Ecosphere+%28Washington%2C+D.C%29&rft.au=Faist%2C+Akasha+M&rft.au=Herrick%2C+Jeffrey+E&rft.au=Belnap%2C+Jayne&rft.au=Van+Zee%2C+Justin+W&rft.date=2017-03-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2150-8925&rft.volume=8&rft.issue=3&rft_id=info:doi/10.1002%2Fecs2.1691&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-8925&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-8925&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-8925&client=summon |