Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient

The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of n...

Full description

Saved in:
Bibliographic Details
Published inHeat transfer (Hoboken, N.J. Print) Vol. 51; no. 4; pp. 2956 - 2976
Main Authors Lin, Wenxian, Armfield, S. W., Khatamifar, Mehdi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of natural convection boundary layer of a Prandtl number larger than 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient. It is found that the developed scaling laws are in good agreement with the direct numerical simulation results over wide ranges of Prandtl number, stratification parameter, and frequency of the sinusoidal heat flux.
AbstractList The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of natural convection boundary layer of a Prandtl number larger than 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient. It is found that the developed scaling laws are in good agreement with the direct numerical simulation results over wide ranges of Prandtl number, stratification parameter, and frequency of the sinusoidal heat flux.
Author Khatamifar, Mehdi
Armfield, S. W.
Lin, Wenxian
Author_xml – sequence: 1
  givenname: Wenxian
  orcidid: 0000-0001-5264-2097
  surname: Lin
  fullname: Lin, Wenxian
  email: wenxian.lin@jcu.edu.au
  organization: James Cook University
– sequence: 2
  givenname: S. W.
  surname: Armfield
  fullname: Armfield, S. W.
  organization: The University of Sydney
– sequence: 3
  givenname: Mehdi
  orcidid: 0000-0001-6273-7655
  surname: Khatamifar
  fullname: Khatamifar, Mehdi
  organization: James Cook University
BookMark eNp1kc1KAzEQx4NU8KsH3yDgyUPbfGx3txdBxE8KCtbzks0mmhITTbLW3rz6Kj6WT-KsLR5ED2HCzG_-M_xnB_WcdwqhfUqGlBA2ekjzIWMZpxtom-VlOcjGGev9_Hm2hfoxzgmwY0oLlm-jj1sprHH32IpFxNoH7ERqg7BYeveiZDLe4dq3rhFhCdBSBew1FvgmfL69H8GjWNvWNBg4gV9USAYUcfQWcrENWkgFsZ6DFk4emGhcG71pgHpQInXDQeEVm04AdlEi2CWOKUBNG9Vg8Vgb5dIe2tTCRtVfx110d3Y6O7kYTK_PL0-OpwPJOaMDmtOyloxowslEFlyznBZZqQrIcUoZo7zJNS-bSTkuZEaJLGuV1aQuRV5MGOO76GCl-xT8c6tiqua-DQ5GVrxzNyvGJAdqtKJk8DEGpStpkujsgsWNrSipuptUcJPq-ybQcfir4ymYR7D1T3atvjBWLf8Hq4vZ1arjC6mioBo
CitedBy_id crossref_primary_10_1103_PhysRevFluids_8_084101
crossref_primary_10_1063_5_0191550
Cites_doi 10.1017/S0022112080001012
10.1016/j.ijheatfluidflow.2009.08.003
10.1016/j.ijthermalsci.2021.106973
10.1016/j.ijheatmasstransfer.2020.119767
10.1080/10407782.2019.1615787
10.1103/PhysRevE.79.066313
10.1016/j.tsep.2021.101036
10.1002/htj.21907
10.1080/10407782.2019.1642054
10.1016/j.rser.2020.109947
10.1080/01457630903425908
10.1016/j.rser.2016.12.003
10.1039/D1GC02597J
10.1063/1.4792709
10.1016/j.ijheatmasstransfer.2020.120386
10.1016/j.ijheatmasstransfer.2019.118951
10.1103/PhysRevE.72.066309
10.1016/j.ijheatfluidflow.2013.11.002
10.1021/acsomega.9b00176
10.1103/PhysRevE.86.066312
10.1039/C6RA28333K
10.1016/j.rser.2018.12.032
10.1063/5.0060202
10.1017/S0022112006003703
10.1016/j.icheatmasstransfer.2019.02.018
10.1016/j.enbuild.2013.05.007
10.1016/j.enconman.2019.112380
10.1016/j.ijthermalsci.2016.08.008
10.1103/PhysRevE.100.043112
10.1016/j.ijheatmasstransfer.2007.03.040
10.1063/1.5083671
10.1103/PhysRevE.88.063013
10.1016/j.ijheatmasstransfer.2012.07.017
10.1063/1.5115073
10.1016/j.rser.2017.06.078
10.1016/j.csite.2021.101351
10.1016/j.csite.2021.100952
10.1080/10407782.2020.1713639
10.1016/j.ijheatmasstransfer.2019.119234
10.1017/S0022112008005077
10.1063/1.5087907
10.1016/j.ijheatmasstransfer.2006.08.020
10.1002/9781118671603
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/htj.22431
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2688-4542
EndPage 2976
ExternalDocumentID 10_1002_htj_22431
HTJ22431
Genre article
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
ABJNI
ACAHQ
ACCFJ
ACCZN
ACXBN
ADOZA
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AHBTC
AITYG
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
DCZOG
DRFUL
DRSTM
EBS
HGLYW
LATKE
LEEKS
MEWTI
SUPJJ
TUS
WXSBR
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ROL
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3321-1618bc20f0309c73f261748e7c203112213d6f38d9857c410c8be4b0b8a679223
ISSN 2688-4534
IngestDate Tue Jul 22 18:41:06 EDT 2025
Tue Jul 01 03:38:23 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Wed Jan 22 16:25:10 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3321-1618bc20f0309c73f261748e7c203112213d6f38d9857c410c8be4b0b8a679223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6273-7655
0000-0001-5264-2097
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/htj.22431
PQID 3224347506
PQPubID 996354
PageCount 21
ParticipantIDs proquest_journals_3224347506
crossref_citationtrail_10_1002_htj_22431
crossref_primary_10_1002_htj_22431
wiley_primary_10_1002_htj_22431_HTJ22431
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Heat transfer (Hoboken, N.J. Print)
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 25
2021; 27
2017; 7
2010; 31
2019; 4
2013; 25
2021; 23
2013; 88
2019; 31
2018; 128
2020; 162
2010
2019; 76
2019; 1
2013; 64
2018; 81
2019; 104
2019; 102
2020; 205
2007; 50
2020; 77
2021; 166
2020; 147
2017; 111
2021; 50
2008; 51
2012; 55
2014; 45
2019; 100
2007; 36
2007; 574
2009; 79
2009; 30
2021; 33
2017; 70
2020; 130
2020; 154
2020; 150
2016
2013
2005; 72
1980; 100
2012; 86
2009; 622
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
Bhowmick S (e_1_2_10_21_1) 2018; 128
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_15_1
e_1_2_10_36_1
Mohamed MKA (e_1_2_10_43_1) 2019; 1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
Kreith F (e_1_2_10_48_1) 2016
e_1_2_10_31_1
e_1_2_10_30_1
Faghri A (e_1_2_10_7_1) 2010
Younis O (e_1_2_10_44_1) 2007; 36
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_25_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 162
  year: 2020
  article-title: Improved scaling analysis of the transient buoyancy‐driven flow induced by a linear temperature gradient
  publication-title: Int J Heat Mass Transfer
– volume: 33
  year: 2021
  article-title: Scale law analysis of the curved boundary layer evolving around a horizontal cylinder at Pr 1
  publication-title: Phys Fluids
– volume: 574
  start-page: 85
  year: 2007
  end-page: 108
  article-title: Armfield SW, Patterson JC. Cooling of a fluid in a rectangular container
  publication-title: J Fluid Mech
– volume: 166
  issue: 1
  year: 2021
  article-title: Effect of time‐dependent wall temperature on natural convection of a non‐Newtonian fluid in an enclosure
  publication-title: Int J Thermal Sci
– volume: 76
  start-page: 51
  issue: 2
  year: 2019
  end-page: 72
  article-title: A segregated spectral element method for thermomagnetic convection of paramagnetic fluid in rectangular enclosures with sinusoidal temperature distribution on one side wall
  publication-title: Numer Heat Transfer A: Applications
– volume: 64
  start-page: 218
  year: 2013
  end-page: 223
  article-title: Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall
  publication-title: Energy Build
– volume: 31
  year: 2019
  article-title: Scales of natural convection on a convectively heated vertical wall
  publication-title: Phys Fluids
– volume: 25
  year: 2013
  article-title: Three‐dimensional simulation of natural convection in a reservoir sidearm
  publication-title: Phys Fluids
– volume: 154
  year: 2020
  article-title: Dynamics and scale analysis of the transient convective flow induced by cooling a fluid with linear thermal forcing
  publication-title: Int J Heat Mass Transfer
– volume: 51
  start-page: 327
  year: 2008
  end-page: 343
  article-title: Unsteady natural convection boundary‐layer flow of a linearly‐stratified fluid with on an evenly heated semi‐infinite vertical plate
  publication-title: Int J Heat Mass Transfer
– volume: 147
  year: 2020
  article-title: Effect of three modes of linear thermal forcing on convective flow and heat transfer in rectangular cavities
  publication-title: Int J Heat Mass Transfer
– volume: 7
  start-page: 17519
  year: 2017
  end-page: 17530
  article-title: Numerical simulation of natural convection in an inclined porous cavity under time‐periodic boundary conditions with a partially active thermal side wall
  publication-title: RPC Adv
– volume: 25
  year: 2021
  article-title: Transient conjugate natural convection heat transfer in a differentially‐heated square cavity with a partition of finite thickness and thermal conductivity
  publication-title: Case Studies Thermal Eng
– volume: 81
  start-page: 2714
  year: 2018
  end-page: 2730
  article-title: A review of solar chimney integrated systems for space heating and cooling application
  publication-title: Renew Sustain Energy Rev
– volume: 55
  start-page: 7046
  year: 2012
  end-page: 7055
  article-title: Prandtl number scaling of the unsteady natural convection boundary layer adjacent to a vertical flat plate for subject to ramp surface heat flux
  publication-title: Int J Heat Mass Transfer
– volume: 100
  year: 2019
  article-title: Scaling of convective boundary layer flow induced by linear thermal forcing at and
  publication-title: Phys Rev E
– volume: 88
  year: 2013
  article-title: Scalings for unsteady natural convection boundary layers on an evenly heated plate with time‐dependent heat flux
  publication-title: Phys Rev E
– volume: 130
  year: 2020
  article-title: A review of the current work potential of a trombe wall
  publication-title: Renew Sustain Energy Rev
– volume: 76
  start-page: 393
  issue: 6
  year: 2019
  end-page: 419
  article-title: Natural convection boundary‐layer flow on an evenly heated vertical plate with time‐varying heating flux in a stratified Pr 1 fluid
  publication-title: Num Heat Transfer A Appl
– volume: 150
  year: 2020
  article-title: Natural convection in a cavity with time‐varying thermal forcing on a sidewall
  publication-title: Int J Heat Mass Transfer
– year: 2016
– volume: 50
  start-page: 1592
  year: 2007
  end-page: 1602
  article-title: Scaling investigation of the natural convection boundary layers on an even heated plate
  publication-title: Int J Heat Mass Transfer
– volume: 23
  start-page: 7865
  year: 2021
  end-page: 7889
  article-title: Glycerol in energy transportation: a state‐of‐the‐art review
  publication-title: Green Chem
– volume: 100
  start-page: 65
  year: 1980
  end-page: 86
  article-title: Unsteady natural convection in a rectangular cavity
  publication-title: J Fluid Mech
– volume: 77
  start-page: 619
  issue: 6
  year: 2020
  end-page: 631
  article-title: Prandtl number scalings for unsteady natural convection boundary‐layer flow on an evenly heated vertical plate in a homogeneous Pr 1 fluid
  publication-title: Num Heat Transfer A Appl
– year: 2010
– volume: 27
  year: 2021
  article-title: Scalings for unsteady natural convection boundary layer under time‐varying heating flux in a small Prandtl number fluid
  publication-title: Case Studies Thermal Eng
– volume: 31
  year: 2019
  article-title: Scaling laws for the transient convective flow in a differentially and linearly heated rectangular cavity at Pr 1
  publication-title: Phys Fluids
– volume: 4
  start-page: 7038
  year: 2019
  end-page: 7046
  article-title: Natural convection from the outside surface of an inclined cylinder in pure liquids at low flux
  publication-title: ACS Omega
– volume: 31
  start-page: 608
  issue: 7
  year: 2010
  end-page: 616
  article-title: An analytic investigation of the steady‐state natural convection boundary layer flow on a vertical plate for a wide range of Prandtl numbers
  publication-title: Heat Transfer Eng
– volume: 70
  start-page: 976
  year: 2017
  end-page: 987
  article-title: A review on the application of Trombe wall system in buildings
  publication-title: Renew Sustain Energy Rev
– volume: 111
  start-page: 78
  year: 2017
  end-page: 99
  article-title: Scalings for unsteady natural convection boundary layers on a vertical plate at time‐dependent temperature
  publication-title: Int J Thermal Sci
– volume: 102
  start-page: 333
  year: 2019
  end-page: 345
  article-title: A review of solar air flat plate collector for drying application
  publication-title: Renew Sustain Energy Rev
– volume: 25
  year: 2021
  article-title: Conjugate natural convection in a vertically divided square enclosure by a corrugated solid partition into air and water regions
  publication-title: Therm Sci Eng Prog
– volume: 1
  start-page: 29
  year: 2019
  end-page: 38
  article-title: Mixed convection boundary layer flow of engine oil nanofluid on a vertical flat plate with viscous dissipation
  publication-title: ASEAN J Automot Technol
– volume: 50
  start-page: 818
  year: 2021
  end-page: 848
  article-title: Influence of undulating wall heat and mass flux on MHD natural convection boundary layer flow from a vertical wall
  publication-title: Heat Transfer
– volume: 79
  year: 2009
  article-title: Prandtl number scaling of unsteady natural convection boundary layers for Pr 1 fluids under isothermal heating
  publication-title: Phys Rev E
– volume: 622
  start-page: 75
  year: 2009
  end-page: 102
  article-title: Unsteady natural convection in a triangular enclosure induced by absorption of radiation—a revisit by improved scaling analysis
  publication-title: J Fluid Mech
– volume: 86
  year: 2012
  article-title: Unified Prandtl number scaling for start‐up and fully developed natural‐convection boundary layers for both and fluids with isothermal heating
  publication-title: Phys Rev E
– volume: 30
  start-page: 1157
  issue: 6
  year: 2009
  end-page: 1170
  article-title: Scaling for unsteady thermo‐magnetic convection boundary layer of paramagnetic fluids of in micro‐gravity conditions
  publication-title: Int J Heat Fluid Flow
– volume: 205
  year: 2020
  article-title: An experimental and numerical analysis of a novel water blind‐Trombe wall system
  publication-title: Energy Convers Manag
– volume: 36
  start-page: 116
  year: 2007
  end-page: 121
  article-title: Numerical study of transient laminar natural convection cooling of high Prandtl number fluids in a cubical cavity: influence of the Prandtl number
  publication-title: World Acad Sci Eng Technol
– volume: 72
  year: 2005
  article-title: Unsteady natural convection on an evenly heated vertical plate for Prandtl number
  publication-title: Phys Rev E
– volume: 104
  start-page: 127
  year: 2019
  end-page: 135
  article-title: Natural convection heat transfer utilizing nanofluid in a cavity with a periodic side‐wall temperature in the presence of a magnetic field. Int Communi
  publication-title: Heat Mass Transfer
– volume: 128
  start-page: 59
  year: 2018
  end-page: 64
  article-title: Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water
  publication-title: Int J Heat Mass Transfer
– volume: 31
  year: 2019
  article-title: On the selection of perturbations for thermal boundary layer control
  publication-title: Phys Fluids
– volume: 45
  start-page: 98
  year: 2014
  end-page: 108
  article-title: A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation
  publication-title: Int J Heat Fluid Flow
– year: 2013
– ident: e_1_2_10_20_1
  doi: 10.1017/S0022112080001012
– ident: e_1_2_10_10_1
  doi: 10.1016/j.ijheatfluidflow.2009.08.003
– ident: e_1_2_10_33_1
  doi: 10.1016/j.ijthermalsci.2021.106973
– ident: e_1_2_10_15_1
  doi: 10.1016/j.ijheatmasstransfer.2020.119767
– ident: e_1_2_10_36_1
  doi: 10.1080/10407782.2019.1615787
– ident: e_1_2_10_9_1
  doi: 10.1103/PhysRevE.79.066313
– ident: e_1_2_10_13_1
  doi: 10.1016/j.tsep.2021.101036
– ident: e_1_2_10_27_1
  doi: 10.1002/htj.21907
– ident: e_1_2_10_29_1
  doi: 10.1080/10407782.2019.1642054
– ident: e_1_2_10_3_1
  doi: 10.1016/j.rser.2020.109947
– ident: e_1_2_10_16_1
  doi: 10.1080/01457630903425908
– ident: e_1_2_10_39_1
  doi: 10.1016/j.rser.2016.12.003
– ident: e_1_2_10_46_1
  doi: 10.1039/D1GC02597J
– ident: e_1_2_10_42_1
  doi: 10.1063/1.4792709
– volume: 1
  start-page: 29
  year: 2019
  ident: e_1_2_10_43_1
  article-title: Mixed convection boundary layer flow of engine oil nanofluid on a vertical flat plate with viscous dissipation
  publication-title: ASEAN J Automot Technol
– ident: e_1_2_10_28_1
  doi: 10.1016/j.ijheatmasstransfer.2020.120386
– volume-title: Advanced Heat and Mass Transfer
  year: 2010
  ident: e_1_2_10_7_1
– ident: e_1_2_10_23_1
  doi: 10.1016/j.ijheatmasstransfer.2019.118951
– ident: e_1_2_10_47_1
  doi: 10.1103/PhysRevE.72.066309
– volume-title: Principles of Heat Transfer
  year: 2016
  ident: e_1_2_10_48_1
– volume: 36
  start-page: 116
  year: 2007
  ident: e_1_2_10_44_1
  article-title: Numerical study of transient laminar natural convection cooling of high Prandtl number fluids in a cubical cavity: influence of the Prandtl number
  publication-title: World Acad Sci Eng Technol
– ident: e_1_2_10_5_1
  doi: 10.1016/j.ijheatfluidflow.2013.11.002
– ident: e_1_2_10_45_1
  doi: 10.1021/acsomega.9b00176
– ident: e_1_2_10_11_1
  doi: 10.1103/PhysRevE.86.066312
– volume: 128
  start-page: 59
  year: 2018
  ident: e_1_2_10_21_1
  article-title: Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water
  publication-title: Int J Heat Mass Transfer
– ident: e_1_2_10_35_1
  doi: 10.1039/C6RA28333K
– ident: e_1_2_10_4_1
  doi: 10.1016/j.rser.2018.12.032
– ident: e_1_2_10_24_1
  doi: 10.1063/5.0060202
– ident: e_1_2_10_49_1
  doi: 10.1017/S0022112006003703
– ident: e_1_2_10_34_1
  doi: 10.1016/j.icheatmasstransfer.2019.02.018
– ident: e_1_2_10_38_1
  doi: 10.1016/j.enbuild.2013.05.007
– ident: e_1_2_10_40_1
  doi: 10.1016/j.enconman.2019.112380
– ident: e_1_2_10_17_1
  doi: 10.1016/j.ijthermalsci.2016.08.008
– ident: e_1_2_10_14_1
  doi: 10.1103/PhysRevE.100.043112
– ident: e_1_2_10_8_1
  doi: 10.1016/j.ijheatmasstransfer.2007.03.040
– ident: e_1_2_10_25_1
  doi: 10.1063/1.5083671
– ident: e_1_2_10_12_1
  doi: 10.1103/PhysRevE.88.063013
– ident: e_1_2_10_19_1
  doi: 10.1016/j.ijheatmasstransfer.2012.07.017
– ident: e_1_2_10_18_1
  doi: 10.1063/1.5115073
– ident: e_1_2_10_6_1
  doi: 10.1016/j.rser.2017.06.078
– ident: e_1_2_10_31_1
  doi: 10.1016/j.csite.2021.101351
– ident: e_1_2_10_26_1
  doi: 10.1016/j.csite.2021.100952
– ident: e_1_2_10_30_1
  doi: 10.1080/10407782.2020.1713639
– ident: e_1_2_10_32_1
  doi: 10.1016/j.ijheatmasstransfer.2019.119234
– ident: e_1_2_10_41_1
  doi: 10.1017/S0022112008005077
– ident: e_1_2_10_22_1
  doi: 10.1063/1.5087907
– ident: e_1_2_10_37_1
  doi: 10.1016/j.ijheatmasstransfer.2006.08.020
– ident: e_1_2_10_2_1
  doi: 10.1002/9781118671603
SSID ssj0002511726
Score 2.1992216
Snippet The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2956
SubjectTerms Boundary layers
Direct numerical simulation
Free convection
Heat flux
Heating
natural convection boundary layer
Parameters
Prandtl number
scaling
Scaling laws
Simulation
Sine waves
Solid surfaces
stratification
time‐dependent heat flux
Title Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22431
https://www.proquest.com/docview/3224347506
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEJ9iMJCFQEKKWhrb-XpBmmCoqlY0qZ22t8hObDXQJahNoPDEK3-FX8Qzv4Rrx0kzNqTBQ6PIdZ0299Q-9-b6XISesYh6SrreALiHGLDQpYMo0dp4lHtAZwOSptpRnL7zx8dscuqd9no_O1lLVSmGyddL95X8j1WhDeyqd8n-g2XbQaEBzsG-cAQLw_FKNp7BDdau_pJ_NrIKjpHpNIof-SdZFwEXpm7S6gt0AnZdb4c8WtkchzB6Tg_ac9dRyypL9fMD7pg6zWbLZLGEtnW1UlzL0VZCR240ZeXOOsurdZGl9X5Kk0ANI2x0DIU7mr8a9eRamVdprsvPRNZk2lhGPNYhitLQZ61qQcJxIYoP0m4Dmwzhy2ZaG6ENWBzWqgcnMt90oA2Abattz4bOybBdSRa85GeZqhPJp3KRZt1IBzjJbUZWPSESH-zPPBv8lN02dm5G99wOcll3eo48v7PUk6iuPXNhGallaRfl-yEwHLtKnZPq_mMJbRMbaxFoEsNHY_PRa2iHgAND-mhn_830cNbG_7RrF5hqgO3PaoSvRuRle-nzdGnrA3U9KUOF5rfQTevD4P0akLdRT-Z30HWTS5ys76IfFpZYwxIDLLGFJd7CEjewxAaWuFCY46PVr2_fX8HLxQaIGPpx3AARGyBiC0RsgYjLAvpsgYgtEPUIG5zpARog4i0QsQXiPXT89mD-ejywJUEGCaVElzR3Q5GQkdJPBpOAKl1QgIUygDYKrgNxaeorGqZR6AUJc0dJKCQTIxFyP4iACt9H_bzI5QOE6SiJGOeRFIowTwqhkihKpQiVFoDy1S560dz5OLF6-bpsyzK-YORd9LTt-rEWibms015jvtjOIeuY6rcYsHYfLmdM-vcB4vF8Yk4eXuVyj9CN7X9oD_XLVSUfA38uxRMLxd-9pseT
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+laws+for+natural+convection+boundary+layer+of+a+Pr%E2%80%89%3E%E2%80%891+fluid+on+a+vertical+solid+surface+subject+to+a+sinusoidal+heating+flux+in+a+linearly+stratified+ambient&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Lin%2C+Wenxian&rft.au=Armfield%2C+S.+W.&rft.au=Khatamifar%2C+Mehdi&rft.date=2022-06-01&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=51&rft.issue=4&rft.spage=2956&rft.epage=2976&rft_id=info:doi/10.1002%2Fhtj.22431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_htj_22431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon