Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient
The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of n...
Saved in:
Published in | Heat transfer (Hoboken, N.J. Print) Vol. 51; no. 4; pp. 2956 - 2976 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of natural convection boundary layer of a Prandtl number larger than 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient. It is found that the developed scaling laws are in good agreement with the direct numerical simulation results over wide ranges of Prandtl number, stratification parameter, and frequency of the sinusoidal heat flux. |
---|---|
AbstractList | The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications. In this study, scaling analysis is performed to derive the scaling laws for the major parameters that characterize the transient behavior of natural convection boundary layer of a Prandtl number larger than 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient. It is found that the developed scaling laws are in good agreement with the direct numerical simulation results over wide ranges of Prandtl number, stratification parameter, and frequency of the sinusoidal heat flux. |
Author | Khatamifar, Mehdi Armfield, S. W. Lin, Wenxian |
Author_xml | – sequence: 1 givenname: Wenxian orcidid: 0000-0001-5264-2097 surname: Lin fullname: Lin, Wenxian email: wenxian.lin@jcu.edu.au organization: James Cook University – sequence: 2 givenname: S. W. surname: Armfield fullname: Armfield, S. W. organization: The University of Sydney – sequence: 3 givenname: Mehdi orcidid: 0000-0001-6273-7655 surname: Khatamifar fullname: Khatamifar, Mehdi organization: James Cook University |
BookMark | eNp1kc1KAzEQx4NU8KsH3yDgyUPbfGx3txdBxE8KCtbzks0mmhITTbLW3rz6Kj6WT-KsLR5ED2HCzG_-M_xnB_WcdwqhfUqGlBA2ekjzIWMZpxtom-VlOcjGGev9_Hm2hfoxzgmwY0oLlm-jj1sprHH32IpFxNoH7ERqg7BYeveiZDLe4dq3rhFhCdBSBew1FvgmfL69H8GjWNvWNBg4gV9USAYUcfQWcrENWkgFsZ6DFk4emGhcG71pgHpQInXDQeEVm04AdlEi2CWOKUBNG9Vg8Vgb5dIe2tTCRtVfx110d3Y6O7kYTK_PL0-OpwPJOaMDmtOyloxowslEFlyznBZZqQrIcUoZo7zJNS-bSTkuZEaJLGuV1aQuRV5MGOO76GCl-xT8c6tiqua-DQ5GVrxzNyvGJAdqtKJk8DEGpStpkujsgsWNrSipuptUcJPq-ybQcfir4ymYR7D1T3atvjBWLf8Hq4vZ1arjC6mioBo |
CitedBy_id | crossref_primary_10_1103_PhysRevFluids_8_084101 crossref_primary_10_1063_5_0191550 |
Cites_doi | 10.1017/S0022112080001012 10.1016/j.ijheatfluidflow.2009.08.003 10.1016/j.ijthermalsci.2021.106973 10.1016/j.ijheatmasstransfer.2020.119767 10.1080/10407782.2019.1615787 10.1103/PhysRevE.79.066313 10.1016/j.tsep.2021.101036 10.1002/htj.21907 10.1080/10407782.2019.1642054 10.1016/j.rser.2020.109947 10.1080/01457630903425908 10.1016/j.rser.2016.12.003 10.1039/D1GC02597J 10.1063/1.4792709 10.1016/j.ijheatmasstransfer.2020.120386 10.1016/j.ijheatmasstransfer.2019.118951 10.1103/PhysRevE.72.066309 10.1016/j.ijheatfluidflow.2013.11.002 10.1021/acsomega.9b00176 10.1103/PhysRevE.86.066312 10.1039/C6RA28333K 10.1016/j.rser.2018.12.032 10.1063/5.0060202 10.1017/S0022112006003703 10.1016/j.icheatmasstransfer.2019.02.018 10.1016/j.enbuild.2013.05.007 10.1016/j.enconman.2019.112380 10.1016/j.ijthermalsci.2016.08.008 10.1103/PhysRevE.100.043112 10.1016/j.ijheatmasstransfer.2007.03.040 10.1063/1.5083671 10.1103/PhysRevE.88.063013 10.1016/j.ijheatmasstransfer.2012.07.017 10.1063/1.5115073 10.1016/j.rser.2017.06.078 10.1016/j.csite.2021.101351 10.1016/j.csite.2021.100952 10.1080/10407782.2020.1713639 10.1016/j.ijheatmasstransfer.2019.119234 10.1017/S0022112008005077 10.1063/1.5087907 10.1016/j.ijheatmasstransfer.2006.08.020 10.1002/9781118671603 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/htj.22431 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2688-4542 |
EndPage | 2976 |
ExternalDocumentID | 10_1002_htj_22431 HTJ22431 |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AASGY AAXRX ABJNI ACAHQ ACCFJ ACCZN ACXBN ADOZA ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB DCZOG DRFUL DRSTM EBS HGLYW LATKE LEEKS MEWTI SUPJJ TUS WXSBR AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION ROL 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c3321-1618bc20f0309c73f261748e7c203112213d6f38d9857c410c8be4b0b8a679223 |
ISSN | 2688-4534 |
IngestDate | Tue Jul 22 18:41:06 EDT 2025 Tue Jul 01 03:38:23 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Wed Jan 22 16:25:10 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3321-1618bc20f0309c73f261748e7c203112213d6f38d9857c410c8be4b0b8a679223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6273-7655 0000-0001-5264-2097 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/htj.22431 |
PQID | 3224347506 |
PQPubID | 996354 |
PageCount | 21 |
ParticipantIDs | proquest_journals_3224347506 crossref_citationtrail_10_1002_htj_22431 crossref_primary_10_1002_htj_22431 wiley_primary_10_1002_htj_22431_HTJ22431 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Heat transfer (Hoboken, N.J. Print) |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 25 2021; 27 2017; 7 2010; 31 2019; 4 2013; 25 2021; 23 2013; 88 2019; 31 2018; 128 2020; 162 2010 2019; 76 2019; 1 2013; 64 2018; 81 2019; 104 2019; 102 2020; 205 2007; 50 2020; 77 2021; 166 2020; 147 2017; 111 2021; 50 2008; 51 2012; 55 2014; 45 2019; 100 2007; 36 2007; 574 2009; 79 2009; 30 2021; 33 2017; 70 2020; 130 2020; 154 2020; 150 2016 2013 2005; 72 1980; 100 2012; 86 2009; 622 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_5_1 e_1_2_10_17_1 Bhowmick S (e_1_2_10_21_1) 2018; 128 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_15_1 e_1_2_10_36_1 Mohamed MKA (e_1_2_10_43_1) 2019; 1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 Kreith F (e_1_2_10_48_1) 2016 e_1_2_10_31_1 e_1_2_10_30_1 Faghri A (e_1_2_10_7_1) 2010 Younis O (e_1_2_10_44_1) 2007; 36 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_25_1 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 162 year: 2020 article-title: Improved scaling analysis of the transient buoyancy‐driven flow induced by a linear temperature gradient publication-title: Int J Heat Mass Transfer – volume: 33 year: 2021 article-title: Scale law analysis of the curved boundary layer evolving around a horizontal cylinder at Pr 1 publication-title: Phys Fluids – volume: 574 start-page: 85 year: 2007 end-page: 108 article-title: Armfield SW, Patterson JC. Cooling of a fluid in a rectangular container publication-title: J Fluid Mech – volume: 166 issue: 1 year: 2021 article-title: Effect of time‐dependent wall temperature on natural convection of a non‐Newtonian fluid in an enclosure publication-title: Int J Thermal Sci – volume: 76 start-page: 51 issue: 2 year: 2019 end-page: 72 article-title: A segregated spectral element method for thermomagnetic convection of paramagnetic fluid in rectangular enclosures with sinusoidal temperature distribution on one side wall publication-title: Numer Heat Transfer A: Applications – volume: 64 start-page: 218 year: 2013 end-page: 223 article-title: Investigation on the influencing factors of energy consumption and thermal comfort for a passive solar house with water thermal storage wall publication-title: Energy Build – volume: 31 year: 2019 article-title: Scales of natural convection on a convectively heated vertical wall publication-title: Phys Fluids – volume: 25 year: 2013 article-title: Three‐dimensional simulation of natural convection in a reservoir sidearm publication-title: Phys Fluids – volume: 154 year: 2020 article-title: Dynamics and scale analysis of the transient convective flow induced by cooling a fluid with linear thermal forcing publication-title: Int J Heat Mass Transfer – volume: 51 start-page: 327 year: 2008 end-page: 343 article-title: Unsteady natural convection boundary‐layer flow of a linearly‐stratified fluid with on an evenly heated semi‐infinite vertical plate publication-title: Int J Heat Mass Transfer – volume: 147 year: 2020 article-title: Effect of three modes of linear thermal forcing on convective flow and heat transfer in rectangular cavities publication-title: Int J Heat Mass Transfer – volume: 7 start-page: 17519 year: 2017 end-page: 17530 article-title: Numerical simulation of natural convection in an inclined porous cavity under time‐periodic boundary conditions with a partially active thermal side wall publication-title: RPC Adv – volume: 25 year: 2021 article-title: Transient conjugate natural convection heat transfer in a differentially‐heated square cavity with a partition of finite thickness and thermal conductivity publication-title: Case Studies Thermal Eng – volume: 81 start-page: 2714 year: 2018 end-page: 2730 article-title: A review of solar chimney integrated systems for space heating and cooling application publication-title: Renew Sustain Energy Rev – volume: 55 start-page: 7046 year: 2012 end-page: 7055 article-title: Prandtl number scaling of the unsteady natural convection boundary layer adjacent to a vertical flat plate for subject to ramp surface heat flux publication-title: Int J Heat Mass Transfer – volume: 100 year: 2019 article-title: Scaling of convective boundary layer flow induced by linear thermal forcing at and publication-title: Phys Rev E – volume: 88 year: 2013 article-title: Scalings for unsteady natural convection boundary layers on an evenly heated plate with time‐dependent heat flux publication-title: Phys Rev E – volume: 130 year: 2020 article-title: A review of the current work potential of a trombe wall publication-title: Renew Sustain Energy Rev – volume: 76 start-page: 393 issue: 6 year: 2019 end-page: 419 article-title: Natural convection boundary‐layer flow on an evenly heated vertical plate with time‐varying heating flux in a stratified Pr 1 fluid publication-title: Num Heat Transfer A Appl – volume: 150 year: 2020 article-title: Natural convection in a cavity with time‐varying thermal forcing on a sidewall publication-title: Int J Heat Mass Transfer – year: 2016 – volume: 50 start-page: 1592 year: 2007 end-page: 1602 article-title: Scaling investigation of the natural convection boundary layers on an even heated plate publication-title: Int J Heat Mass Transfer – volume: 23 start-page: 7865 year: 2021 end-page: 7889 article-title: Glycerol in energy transportation: a state‐of‐the‐art review publication-title: Green Chem – volume: 100 start-page: 65 year: 1980 end-page: 86 article-title: Unsteady natural convection in a rectangular cavity publication-title: J Fluid Mech – volume: 77 start-page: 619 issue: 6 year: 2020 end-page: 631 article-title: Prandtl number scalings for unsteady natural convection boundary‐layer flow on an evenly heated vertical plate in a homogeneous Pr 1 fluid publication-title: Num Heat Transfer A Appl – year: 2010 – volume: 27 year: 2021 article-title: Scalings for unsteady natural convection boundary layer under time‐varying heating flux in a small Prandtl number fluid publication-title: Case Studies Thermal Eng – volume: 31 year: 2019 article-title: Scaling laws for the transient convective flow in a differentially and linearly heated rectangular cavity at Pr 1 publication-title: Phys Fluids – volume: 4 start-page: 7038 year: 2019 end-page: 7046 article-title: Natural convection from the outside surface of an inclined cylinder in pure liquids at low flux publication-title: ACS Omega – volume: 31 start-page: 608 issue: 7 year: 2010 end-page: 616 article-title: An analytic investigation of the steady‐state natural convection boundary layer flow on a vertical plate for a wide range of Prandtl numbers publication-title: Heat Transfer Eng – volume: 70 start-page: 976 year: 2017 end-page: 987 article-title: A review on the application of Trombe wall system in buildings publication-title: Renew Sustain Energy Rev – volume: 111 start-page: 78 year: 2017 end-page: 99 article-title: Scalings for unsteady natural convection boundary layers on a vertical plate at time‐dependent temperature publication-title: Int J Thermal Sci – volume: 102 start-page: 333 year: 2019 end-page: 345 article-title: A review of solar air flat plate collector for drying application publication-title: Renew Sustain Energy Rev – volume: 25 year: 2021 article-title: Conjugate natural convection in a vertically divided square enclosure by a corrugated solid partition into air and water regions publication-title: Therm Sci Eng Prog – volume: 1 start-page: 29 year: 2019 end-page: 38 article-title: Mixed convection boundary layer flow of engine oil nanofluid on a vertical flat plate with viscous dissipation publication-title: ASEAN J Automot Technol – volume: 50 start-page: 818 year: 2021 end-page: 848 article-title: Influence of undulating wall heat and mass flux on MHD natural convection boundary layer flow from a vertical wall publication-title: Heat Transfer – volume: 79 year: 2009 article-title: Prandtl number scaling of unsteady natural convection boundary layers for Pr 1 fluids under isothermal heating publication-title: Phys Rev E – volume: 622 start-page: 75 year: 2009 end-page: 102 article-title: Unsteady natural convection in a triangular enclosure induced by absorption of radiation—a revisit by improved scaling analysis publication-title: J Fluid Mech – volume: 86 year: 2012 article-title: Unified Prandtl number scaling for start‐up and fully developed natural‐convection boundary layers for both and fluids with isothermal heating publication-title: Phys Rev E – volume: 30 start-page: 1157 issue: 6 year: 2009 end-page: 1170 article-title: Scaling for unsteady thermo‐magnetic convection boundary layer of paramagnetic fluids of in micro‐gravity conditions publication-title: Int J Heat Fluid Flow – volume: 205 year: 2020 article-title: An experimental and numerical analysis of a novel water blind‐Trombe wall system publication-title: Energy Convers Manag – volume: 36 start-page: 116 year: 2007 end-page: 121 article-title: Numerical study of transient laminar natural convection cooling of high Prandtl number fluids in a cubical cavity: influence of the Prandtl number publication-title: World Acad Sci Eng Technol – volume: 72 year: 2005 article-title: Unsteady natural convection on an evenly heated vertical plate for Prandtl number publication-title: Phys Rev E – volume: 104 start-page: 127 year: 2019 end-page: 135 article-title: Natural convection heat transfer utilizing nanofluid in a cavity with a periodic side‐wall temperature in the presence of a magnetic field. Int Communi publication-title: Heat Mass Transfer – volume: 128 start-page: 59 year: 2018 end-page: 64 article-title: Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water publication-title: Int J Heat Mass Transfer – volume: 31 year: 2019 article-title: On the selection of perturbations for thermal boundary layer control publication-title: Phys Fluids – volume: 45 start-page: 98 year: 2014 end-page: 108 article-title: A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation publication-title: Int J Heat Fluid Flow – year: 2013 – ident: e_1_2_10_20_1 doi: 10.1017/S0022112080001012 – ident: e_1_2_10_10_1 doi: 10.1016/j.ijheatfluidflow.2009.08.003 – ident: e_1_2_10_33_1 doi: 10.1016/j.ijthermalsci.2021.106973 – ident: e_1_2_10_15_1 doi: 10.1016/j.ijheatmasstransfer.2020.119767 – ident: e_1_2_10_36_1 doi: 10.1080/10407782.2019.1615787 – ident: e_1_2_10_9_1 doi: 10.1103/PhysRevE.79.066313 – ident: e_1_2_10_13_1 doi: 10.1016/j.tsep.2021.101036 – ident: e_1_2_10_27_1 doi: 10.1002/htj.21907 – ident: e_1_2_10_29_1 doi: 10.1080/10407782.2019.1642054 – ident: e_1_2_10_3_1 doi: 10.1016/j.rser.2020.109947 – ident: e_1_2_10_16_1 doi: 10.1080/01457630903425908 – ident: e_1_2_10_39_1 doi: 10.1016/j.rser.2016.12.003 – ident: e_1_2_10_46_1 doi: 10.1039/D1GC02597J – ident: e_1_2_10_42_1 doi: 10.1063/1.4792709 – volume: 1 start-page: 29 year: 2019 ident: e_1_2_10_43_1 article-title: Mixed convection boundary layer flow of engine oil nanofluid on a vertical flat plate with viscous dissipation publication-title: ASEAN J Automot Technol – ident: e_1_2_10_28_1 doi: 10.1016/j.ijheatmasstransfer.2020.120386 – volume-title: Advanced Heat and Mass Transfer year: 2010 ident: e_1_2_10_7_1 – ident: e_1_2_10_23_1 doi: 10.1016/j.ijheatmasstransfer.2019.118951 – ident: e_1_2_10_47_1 doi: 10.1103/PhysRevE.72.066309 – volume-title: Principles of Heat Transfer year: 2016 ident: e_1_2_10_48_1 – volume: 36 start-page: 116 year: 2007 ident: e_1_2_10_44_1 article-title: Numerical study of transient laminar natural convection cooling of high Prandtl number fluids in a cubical cavity: influence of the Prandtl number publication-title: World Acad Sci Eng Technol – ident: e_1_2_10_5_1 doi: 10.1016/j.ijheatfluidflow.2013.11.002 – ident: e_1_2_10_45_1 doi: 10.1021/acsomega.9b00176 – ident: e_1_2_10_11_1 doi: 10.1103/PhysRevE.86.066312 – volume: 128 start-page: 59 year: 2018 ident: e_1_2_10_21_1 article-title: Natural convection and heat transfer in a valley shaped cavity filled with initially stratified water publication-title: Int J Heat Mass Transfer – ident: e_1_2_10_35_1 doi: 10.1039/C6RA28333K – ident: e_1_2_10_4_1 doi: 10.1016/j.rser.2018.12.032 – ident: e_1_2_10_24_1 doi: 10.1063/5.0060202 – ident: e_1_2_10_49_1 doi: 10.1017/S0022112006003703 – ident: e_1_2_10_34_1 doi: 10.1016/j.icheatmasstransfer.2019.02.018 – ident: e_1_2_10_38_1 doi: 10.1016/j.enbuild.2013.05.007 – ident: e_1_2_10_40_1 doi: 10.1016/j.enconman.2019.112380 – ident: e_1_2_10_17_1 doi: 10.1016/j.ijthermalsci.2016.08.008 – ident: e_1_2_10_14_1 doi: 10.1103/PhysRevE.100.043112 – ident: e_1_2_10_8_1 doi: 10.1016/j.ijheatmasstransfer.2007.03.040 – ident: e_1_2_10_25_1 doi: 10.1063/1.5083671 – ident: e_1_2_10_12_1 doi: 10.1103/PhysRevE.88.063013 – ident: e_1_2_10_19_1 doi: 10.1016/j.ijheatmasstransfer.2012.07.017 – ident: e_1_2_10_18_1 doi: 10.1063/1.5115073 – ident: e_1_2_10_6_1 doi: 10.1016/j.rser.2017.06.078 – ident: e_1_2_10_31_1 doi: 10.1016/j.csite.2021.101351 – ident: e_1_2_10_26_1 doi: 10.1016/j.csite.2021.100952 – ident: e_1_2_10_30_1 doi: 10.1080/10407782.2020.1713639 – ident: e_1_2_10_32_1 doi: 10.1016/j.ijheatmasstransfer.2019.119234 – ident: e_1_2_10_41_1 doi: 10.1017/S0022112008005077 – ident: e_1_2_10_22_1 doi: 10.1063/1.5087907 – ident: e_1_2_10_37_1 doi: 10.1016/j.ijheatmasstransfer.2006.08.020 – ident: e_1_2_10_2_1 doi: 10.1002/9781118671603 |
SSID | ssj0002511726 |
Score | 2.1992216 |
Snippet | The understanding of the transient behavior of the natural convection boundary layer on a heated vertical solid surface is crucial for numerous applications.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2956 |
SubjectTerms | Boundary layers Direct numerical simulation Free convection Heat flux Heating natural convection boundary layer Parameters Prandtl number scaling Scaling laws Simulation Sine waves Solid surfaces stratification time‐dependent heat flux |
Title | Scaling laws for natural convection boundary layer of a Pr > 1 fluid on a vertical solid surface subject to a sinusoidal heating flux in a linearly stratified ambient |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhtj.22431 https://www.proquest.com/docview/3224347506 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVKJyReEJ9iMJCFQEKKWhrb-XpBmmCoqlY0qZ22t8hObDXQJahNoPDEK3-FX8Qzv4Rrx0kzNqTBQ6PIdZ0299Q-9-b6XISesYh6SrreALiHGLDQpYMo0dp4lHtAZwOSptpRnL7zx8dscuqd9no_O1lLVSmGyddL95X8j1WhDeyqd8n-g2XbQaEBzsG-cAQLw_FKNp7BDdau_pJ_NrIKjpHpNIof-SdZFwEXpm7S6gt0AnZdb4c8WtkchzB6Tg_ac9dRyypL9fMD7pg6zWbLZLGEtnW1UlzL0VZCR240ZeXOOsurdZGl9X5Kk0ANI2x0DIU7mr8a9eRamVdprsvPRNZk2lhGPNYhitLQZ61qQcJxIYoP0m4Dmwzhy2ZaG6ENWBzWqgcnMt90oA2Abattz4bOybBdSRa85GeZqhPJp3KRZt1IBzjJbUZWPSESH-zPPBv8lN02dm5G99wOcll3eo48v7PUk6iuPXNhGallaRfl-yEwHLtKnZPq_mMJbRMbaxFoEsNHY_PRa2iHgAND-mhn_830cNbG_7RrF5hqgO3PaoSvRuRle-nzdGnrA3U9KUOF5rfQTevD4P0akLdRT-Z30HWTS5ys76IfFpZYwxIDLLGFJd7CEjewxAaWuFCY46PVr2_fX8HLxQaIGPpx3AARGyBiC0RsgYjLAvpsgYgtEPUIG5zpARog4i0QsQXiPXT89mD-ejywJUEGCaVElzR3Q5GQkdJPBpOAKl1QgIUygDYKrgNxaeorGqZR6AUJc0dJKCQTIxFyP4iACt9H_bzI5QOE6SiJGOeRFIowTwqhkihKpQiVFoDy1S560dz5OLF6-bpsyzK-YORd9LTt-rEWibms015jvtjOIeuY6rcYsHYfLmdM-vcB4vF8Yk4eXuVyj9CN7X9oD_XLVSUfA38uxRMLxd-9pseT |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scaling+laws+for+natural+convection+boundary+layer+of+a+Pr%E2%80%89%3E%E2%80%891+fluid+on+a+vertical+solid+surface+subject+to+a+sinusoidal+heating+flux+in+a+linearly+stratified+ambient&rft.jtitle=Heat+transfer+%28Hoboken%2C+N.J.+Print%29&rft.au=Lin%2C+Wenxian&rft.au=Armfield%2C+S.+W.&rft.au=Khatamifar%2C+Mehdi&rft.date=2022-06-01&rft.issn=2688-4534&rft.eissn=2688-4542&rft.volume=51&rft.issue=4&rft.spage=2956&rft.epage=2976&rft_id=info:doi/10.1002%2Fhtj.22431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_htj_22431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4534&client=summon |