Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces

Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The hete...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 34; no. 15; pp. 3183 - 3199
Main Authors Nouri, Hamideh, Nagler, Pamela, Chavoshi Borujeni, Sattar, Barreto Munez, Armando, Alaghmand, Sina, Noori, Behnaz, Galindo, Alejandro, Didan, Kamel
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.07.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high‐, medium‐ and coarse‐spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI‐based ET, over a 780‐ha urban park in Adelaide, Australia. We validated ET with the ground‐based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long‐term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET‐MODIS and ET‐Landsat (R2 > 0.99 for all VIs). Landsat‐VIs captured the seasonal changes of greenness better than MODIS‐VIs. We used artificial neural network (ANN) to relate the RS‐ET and ground data, and ET‐MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS‐ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water‐limited cities. This is the first research to investigate the capability of free‐access images in estimating the ET of oversized urban green spaces. We compared different Vegetation Indices (VIs) from satellites with different spatial resolutions (WorldView2, Landsat and MODIS) and estimated the ET. We assessed the long‐term intra and inter‐annual variations of VIs and ETs and then compared them against the in situ ET method, and explored how local climate impacts the greenness and water demand of a large urban green space (780 ha) on a seasonal scale.
AbstractList Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high‐, medium‐ and coarse‐spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI‐based ET, over a 780‐ha urban park in Adelaide, Australia. We validated ET with the ground‐based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long‐term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET‐MODIS and ET‐Landsat (R2 > 0.99 for all VIs). Landsat‐VIs captured the seasonal changes of greenness better than MODIS‐VIs. We used artificial neural network (ANN) to relate the RS‐ET and ground data, and ET‐MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS‐ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water‐limited cities.
Abstract Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high‐, medium‐ and coarse‐spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI‐based ET, over a 780‐ha urban park in Adelaide, Australia. We validated ET with the ground‐based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long‐term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET‐MODIS and ET‐Landsat (R 2 > 0.99 for all VIs). Landsat‐VIs captured the seasonal changes of greenness better than MODIS‐VIs. We used artificial neural network (ANN) to relate the RS‐ET and ground data, and ET‐MODIS (EVI2) showed the highest correlation (R 2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS‐ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water‐limited cities.
Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding UGS require sustainable management of green and blue water resources to fulfil evapotranspiration (ET) demand for green plant cover. The heterogeneity of UGS with high variation in their microclimates and irrigation practices builds up the complexity of ET estimation. In oversized UGS, areas too large to be measured with in situ ET methods, remote sensing (RS) approaches of ET measurement have the potential to estimate the actual ET. Often in situ approaches are not feasible or too expensive. We studied the effects of spatial resolution using different satellite images, with high‐, medium‐ and coarse‐spatial resolutions, on the greenness and ET of UGS using Vegetation Indices (VIs) and VI‐based ET, over a 780‐ha urban park in Adelaide, Australia. We validated ET with the ground‐based ET method of Soil Water Balance. Three sets of imagery from WorldView2, Landsat and MODIS, and three VIs including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI) and Enhanced Vegetation Index 2 (EVI2), were used to assess long‐term changes of VIs and ET calculated from the different imagery acquired for this study (2011–2018). We found high correspondence between ET‐MODIS and ET‐Landsat (R2 > 0.99 for all VIs). Landsat‐VIs captured the seasonal changes of greenness better than MODIS‐VIs. We used artificial neural network (ANN) to relate the RS‐ET and ground data, and ET‐MODIS (EVI2) showed the highest correlation (R2 = 0.95 and MSE =0.01 for validation). We found a strong relationship between RS‐ET and in situ measurements, even though it was not explicable by simple regressions; black box models helped us to explore their correlation. The methodology used in this research makes a strong case for the value of remote sensing in estimating and managing ET of green spaces in water‐limited cities. This is the first research to investigate the capability of free‐access images in estimating the ET of oversized urban green spaces. We compared different Vegetation Indices (VIs) from satellites with different spatial resolutions (WorldView2, Landsat and MODIS) and estimated the ET. We assessed the long‐term intra and inter‐annual variations of VIs and ETs and then compared them against the in situ ET method, and explored how local climate impacts the greenness and water demand of a large urban green space (780 ha) on a seasonal scale.
Author Galindo, Alejandro
Chavoshi Borujeni, Sattar
Noori, Behnaz
Didan, Kamel
Nouri, Hamideh
Barreto Munez, Armando
Nagler, Pamela
Alaghmand, Sina
Author_xml – sequence: 1
  givenname: Hamideh
  orcidid: 0000-0002-7424-5030
  surname: Nouri
  fullname: Nouri, Hamideh
  email: hamideh.nouri@uni-goettingen.de
  organization: University of Göttingen
– sequence: 2
  givenname: Pamela
  surname: Nagler
  fullname: Nagler, Pamela
  organization: Southwest Biological Science Center, University of Arizona
– sequence: 3
  givenname: Sattar
  surname: Chavoshi Borujeni
  fullname: Chavoshi Borujeni, Sattar
  organization: Isfahan Agricultural and Natural Resources Research and Education Centre, AREEO
– sequence: 4
  givenname: Armando
  surname: Barreto Munez
  fullname: Barreto Munez, Armando
  organization: The University of Arizona
– sequence: 5
  givenname: Sina
  orcidid: 0000-0002-5568-4732
  surname: Alaghmand
  fullname: Alaghmand, Sina
  organization: Monash University
– sequence: 6
  givenname: Behnaz
  surname: Noori
  fullname: Noori, Behnaz
  organization: University of Tehran
– sequence: 7
  givenname: Alejandro
  orcidid: 0000-0002-3724-2586
  surname: Galindo
  fullname: Galindo, Alejandro
  organization: University of Twente
– sequence: 8
  givenname: Kamel
  surname: Didan
  fullname: Didan, Kamel
  organization: The University of Arizona
BookMark eNp1kDFPwzAQhS1UJNrCwD-wxMSQcrbTxBlRVShSJRhgYIqc-NymCk6wHVD-PWkDI9PpTt-9d_dmZGIbi4RcM1gwAH6379sFE2kGZ2TKIMsiBnI5IVOQchklINMLMvP-AAAxSJiSfm0MloE2hvpWhUrV1KFv6i5UjT1NVcC6rgLS6kPt0NNhjD4MTajsjoY90p1DtBa9p8pqil-qbYJT1reVU38ynSuUHcmjUYn-kpwbVXu8-q1z8vawfl1tou3z49PqfhuVQnCIUAooQGCRcRUbwWPNlJSQaJZpngITRiRJGnOd6DLTRiYaUl5ApoGlBZZGzMnNqNu65rMbTs8PTefsYJnzmPOMC0iTgbodqdI13js0eeuGH12fM8iPyeZDsvkp2YG9G9nvqsb-fzDfvL-MGz_c6n4x
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2023_09_024
crossref_primary_10_3390_rs15041017
crossref_primary_10_3390_rs13245167
crossref_primary_10_1002_hyp_13911
crossref_primary_10_1111_1752_1688_13036
crossref_primary_10_1590_s1982_21702021000300023
crossref_primary_10_3390_rs12182949
crossref_primary_10_3390_w14040565
crossref_primary_10_1029_2023WR036313
crossref_primary_10_1007_s11430_020_9834_y
crossref_primary_10_1016_j_buildenv_2022_109389
crossref_primary_10_1371_journal_pone_0276962
crossref_primary_10_1016_j_rse_2023_113487
crossref_primary_10_1016_j_scitotenv_2023_165563
crossref_primary_10_1016_j_ufug_2022_127495
crossref_primary_10_1007_s10668_023_03226_9
crossref_primary_10_1016_j_ufug_2023_127972
crossref_primary_10_1016_j_ufug_2024_128389
crossref_primary_10_1007_s00271_023_00899_y
crossref_primary_10_1016_j_envc_2021_100376
crossref_primary_10_1016_j_landurbplan_2021_104069
crossref_primary_10_3390_land11040508
crossref_primary_10_1016_j_hydres_2024_05_001
crossref_primary_10_3390_rs16101801
crossref_primary_10_2478_jlecol_2021_0016
crossref_primary_10_1080_22797254_2023_2259244
crossref_primary_10_3390_rs13071332
crossref_primary_10_1111_1752_1688_13106
crossref_primary_10_3390_f14061193
crossref_primary_10_1016_j_agrformet_2022_108853
crossref_primary_10_1016_j_scs_2022_104062
crossref_primary_10_1016_j_teadva_2024_200107
crossref_primary_10_1371_journal_pone_0285510
crossref_primary_10_1002_hyp_14172
crossref_primary_10_1016_j_ecohyd_2023_03_006
crossref_primary_10_1016_j_ecolind_2024_112108
Cites_doi 10.1016/j.ejrs.2011.06.001
10.1080/1573062X.2014.900092
10.1016/j.isprsjprs.2016.03.008
10.3390/s18051546
10.1016/j.ecoleng.2012.06.043
10.1111/rec.12575
10.1016/j.jhydrol.2007.07.002
10.1016/j.rse.2008.06.006
10.5194/hess-17-4339-2013
10.1016/j.jag.2012.07.003
10.1016/j.scitotenv.2017.01.130
10.1016/j.landurbplan.2014.04.007
10.1002/hyp.10734
10.1016/j.landurbplan.2019.103613
10.1117/1.3400635
10.1016/S0022-1694(98)00253-4
10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2
10.11648/j.urp.20180302.13
10.1080/1573062X.2012.726360
10.5194/piahs-380-45-2018
10.1016/j.agrformet.2011.07.004
10.1007/s11157-009-9169-8
10.1007/s11252-018-0741-2
10.1016/j.ecoleng.2018.08.021
10.1016/j.rsase.2019.100246
10.1002/2016JD025139
10.1007/s10712-010-9102-2
10.3390/atmos10030151
10.1016/j.rse.2004.08.009
10.1016/j.rse.2007.09.007
10.1016/j.ecoleng.2013.04.025
10.5194/hess-6-85-2002
10.3390/rs8060492
10.1002/eco.1458
10.1016/j.heliyon.2019.e01339
10.3390/rs6010580
10.1111/jawr.12133
10.1016/j.uclim.2017.02.010
10.1080/01431161.2015.1093195
10.1080/07293682.2017.1345962
10.1016/S0034-4257(02)00096-2
10.1038/s41598-017-06359-w
10.1002/2016WR020254
10.21273/HORTSCI.43.7.2081
10.1016/j.rse.2012.11.004
10.1029/2007WR006200
10.1080/014311698215333
10.1002/app5.16
10.1016/j.habitatint.2017.07.009
10.1016/j.jaridenv.2015.02.010
10.1002/hyp.8392
10.1002/eco.1529
10.3390/rs5083849
10.1016/j.rse.2012.12.016
10.1016/j.jaridenv.2016.06.016
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/hyp.13790
DatabaseName Wiley Online Library Open Access
Wiley Online Library
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 3199
ExternalDocumentID 10_1002_hyp_13790
HYP13790
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3320-e830b03eb92a4f324d1a8806d19d27013f366742d6dc9df86d072b09d017becf3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Fri Sep 13 10:04:04 EDT 2024
Fri Aug 23 01:53:27 EDT 2024
Sat Aug 24 01:06:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3320-e830b03eb92a4f324d1a8806d19d27013f366742d6dc9df86d072b09d017becf3
ORCID 0000-0002-3724-2586
0000-0002-7424-5030
0000-0002-5568-4732
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.13790
PQID 2422923076
PQPubID 2034139
PageCount 17
ParticipantIDs proquest_journals_2422923076
crossref_primary_10_1002_hyp_13790
wiley_primary_10_1002_hyp_13790_HYP13790
PublicationCentury 2000
PublicationDate 15 July 2020
PublicationDateYYYYMMDD 2020-07-15
PublicationDate_xml – month: 07
  year: 2020
  text: 15 July 2020
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Hydrological processes
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 7
2015; 36
2007; 344
2017; 584‐585
2013; 21
2019; 10
2018; 123
2019; 15
2013; 129
2016; 30
2011; 14
2011; 151
2013; 5
2014; 1
2014; 127
2013; 59
2018; 3
1998; 19
2013; 17
2013; 10
2002; 83
2013; 57
2016; 116
2011; 25
1998; 212‐213
2008; 112
2014; 7
2014; 50
2010; 4
2014; 6
2015; 12
2010; 31
2018; 380
2019; 5
2019; 190
2011
2002; 6
2017; 68
2016; 121
2005
2020; 34
2003
2018; 23
2015; 8
2018; 21
2018; 26
2018; 18
2017; 53
2000; 39
2017; 54
2016; 134
2018
2017
2009; 8
2008; 43
2008; 44
2014
2015; 117
2013; 131
2013
2005; 94
2016; 8
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Huete A. (e_1_2_9_23_1) 2011
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Irmak S. (e_1_2_9_24_1) 2003
Jarchow C. J. (e_1_2_9_26_1) 2020; 34
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_65_1
Cindrić H. (e_1_2_9_6_1) 2018
e_1_2_9_7_1
e_1_2_9_5_1
Guan H. (e_1_2_9_18_1) 2013
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 8
  start-page: 610
  issue: 4
  year: 2015
  end-page: 625
  article-title: Long‐term decrease in satellite vegetation indices in response to environmental variables in an iconic desert riparian ecosystem: The Upper San Pedro, Arizona, United States
  publication-title: Ecohydrology
– volume: 53
  start-page: 4236
  issue: 5
  year: 2017
  end-page: 4252
  article-title: Evapotranspiration of urban landscapes in Los Angeles, California at the municipal scale
  publication-title: Water Resources Research
– volume: 117
  start-page: 84
  year: 2015
  end-page: 95
  article-title: Wide‐area ratios of evapotranspiration to precipitation in monsoon‐dependent semiarid vegetation communities
  publication-title: Journal of Arid Environments
– volume: 6
  start-page: 85
  issue: 1
  year: 2002
  end-page: 100
  article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrology and Earth System Sciences
– volume: 17
  start-page: 4339
  year: 2013
  end-page: 4347
  article-title: Variability of drainage and solute leaching in heterogeneous urban vegetation environs
  publication-title: Hydrology and Earth System Sciences
– volume: 57
  start-page: 276
  year: 2013
  end-page: 284
  article-title: Water requirements of urban landscape plants: A comparison of three factor‐based approaches
  publication-title: Ecological Engineering
– year: 2005
– volume: 190
  year: 2019
  article-title: The blue water footprint of UGS: An example for Adelaide, Australia
  publication-title: Landscape and Urban Planning
– volume: 129
  start-page: 250
  year: 2013
  end-page: 261
  article-title: Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance
  publication-title: Remote Sensing of Environment
– volume: 94
  start-page: 17
  issue: 1
  year: 2005
  end-page: 30
  article-title: Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 1314
  issue: 5
  year: 2014
  end-page: 1330
  article-title: Adding trees to irrigated turfgrass lawns may be a water‐saving measure in semi‐arid environments
  publication-title: Ecohydrology
– volume: 15
  year: 2019
  article-title: Performances of WorldView 3, Sentinel 2, and Landsat 8 data in mapping impervious surface
  publication-title: Remote Sensing Applications: Society and Environment
– volume: 112
  start-page: 1835
  issue: 4
  year: 2008
  end-page: 1845
  article-title: The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI
  publication-title: Remote Sensing of Environment
– volume: 380
  start-page: 45
  year: 2018
  end-page: 54
  article-title: Remote sensing vegetation index methods to evaluate changes in greenness and evapotranspiration in riparian vegetation in response to the Minute 319 environmental pulse flow to Mexico
  publication-title: Proc. IAHS
– volume: 7
  start-page: 6191
  issue: 1
  year: 2017
  article-title: Partitioning evapotranspiration into green and blue water sources in the conterminous United States
  publication-title: Scientific Reports
– year: 2018
– volume: 83
  start-page: 195
  issue: 1
  year: 2002
  end-page: 213
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sensing of Environment
– year: 2014
– volume: 21
  start-page: 489
  issue: 3
  year: 2018
  end-page: 504
  article-title: Ecohydrological model for the quantification of ecosystem services provided by urban street trees
  publication-title: Urban Ecosystem
– volume: 18
  start-page: 1546
  issue: 5
  year: 2018
  article-title: Application and comparison of the MODIS‐derived enhanced vegetation index to VIIRS, Landsat 5 TM and Landsat 8 OLI platforms: A case study in the arid Colorado River Delta, Mexico
  publication-title: Sensors
– volume: 8
  start-page: 209
  issue: 3
  year: 2009
  end-page: 217
  article-title: Ecohydrology as a basis for the sustainable city strategic planning: Focus on Lodz, Poland
  publication-title: Reviews in Environmental Science and Bio/Technology
– volume: 39
  start-page: 826
  issue: 6
  year: 2000
  end-page: 839
  article-title: Derivation and evaluation of global 1‐km fractional vegetation cover data for land modeling
  publication-title: Journal of Applied Meteorology
– volume: 43
  start-page: 2081
  issue: 7
  year: 2008
  end-page: 2092
  article-title: Efficient water use in residential urban landscapes
  publication-title: HortScience
– volume: 151
  start-page: 1698
  issue: 12
  year: 2011
  end-page: 1710
  article-title: A comparison of methods for estimating fractional vegetation cover in arid regions
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  start-page: 380
  issue: 5
  year: 2015
  end-page: 393
  article-title: Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces
  publication-title: Urban Water Journal
– volume: 59
  start-page: 176
  year: 2013
  end-page: 184
  article-title: Evapotranspiration and water balance of an anthropogenic coastal desert wetland: Responses to fire, inflows and salinities
  publication-title: Ecological Engineering
– volume: 14
  start-page: 49
  issue: 1
  year: 2011
  end-page: 56
  article-title: Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas
  publication-title: The Egyptian Journal of Remote Sensing and Space Science
– volume: 5
  issue: 4
  year: 2019
  article-title: Urban green space cooling effect in cities
  publication-title: Heliyon
– volume: 344
  start-page: 146
  issue: 1
  year: 2007
  end-page: 156
  article-title: Annual groundwater evapotranspiration mapped from single satellite scenes
  publication-title: Journal of Hydrology
– volume: 584‐585
  start-page: 11
  year: 2017
  end-page: 18
  article-title: NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands
  publication-title: Science of the Total Environment
– volume: 6
  start-page: 580
  issue: 1
  year: 2014
  end-page: 602
  article-title: High spatial resolution WorldView‐2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors
  publication-title: Remote Sensing
– volume: 30
  start-page: 1376
  issue: 9
  year: 2016
  end-page: 1387
  article-title: Wide‐area estimates of evapotranspiration by red gum ( ) and associated vegetation in the Murray–Darling River Basin, Australia
  publication-title: Hydrological Processes
– volume: 31
  start-page: 531
  issue: 6
  year: 2010
  end-page: 555
  article-title: Vegetation index methods for estimating evapotranspiration by remote sensing
  publication-title: Surveys in Geophysics
– volume: 112
  start-page: 3833
  issue: 10
  year: 2008
  end-page: 3845
  article-title: Development of a two‐band enhanced vegetation index without a blue band
  publication-title: Remote Sensing of Environment
– volume: 4
  year: 2010
  article-title: Spectral compatibility of vegetation indices across sensors: Band decomposition analysis with Hyperion data
  publication-title: Journal of Applied Remote Sensing
– volume: 54
  start-page: 126
  issue: 2
  year: 2017
  end-page: 133
  article-title: Planning green space in Adelaide city: Enlightenment from green space system planning of Fuzhou city (2015–2020)
  publication-title: Australian Planner
– volume: 50
  start-page: 448
  issue: 2
  year: 2014
  end-page: 467
  article-title: A multi‐scale analysis of single‐family residential water use in the Phoenix metropolitan area
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 44
  issue: 7
  year: 2008
  article-title: Methods and technologies to improve efficiency of water use
  publication-title: Water Resources Research
– volume: 23
  start-page: 173
  year: 2018
  end-page: 187
  article-title: Urban greening and the UHI: Seasonal trade‐offs in heating and cooling energy consumption in Manchester, UK
  publication-title: Urban Climate
– year: 2003
– volume: 131
  start-page: 103
  year: 2013
  end-page: 118
  article-title: Actual evapotranspiration in drylands derived from in‐situ and satellite data: Assessing biophysical constraints
  publication-title: Remote Sensing of Environment
– volume: 116
  start-page: 55
  year: 2016
  end-page: 72
  article-title: Optical remotely sensed time series data for land cover classification: A review
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 68
  start-page: 30
  year: 2017
  end-page: 42
  article-title: Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China
  publication-title: Habitat International
– volume: 123
  start-page: 43
  year: 2018
  end-page: 53
  article-title: Water requirements of urban landscape plants in an arid environment: The example of a botanic garden and a forest park
  publication-title: Ecological Engineering
– volume: 26
  start-page: 348
  issue: 2
  year: 2018
  end-page: 359
  article-title: Northern tamarisk beetle (Diorhabda carinulata) and tamarisk (Tamarix spp.) interactions in the Colorado River basin
  publication-title: Restoration Ecology
– volume: 5
  start-page: 3849
  year: 2013
  end-page: 3871
  article-title: Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS enhanced vegetation index
  publication-title: Remote Sensing
– volume: 10
  start-page: 151
  issue: 3
  year: 2019
  article-title: The sensitivity of urban heat island to urban green space—A model‐based study of City of Colombo, Sri Lanka
  publication-title: Atmosphere
– volume: 121
  start-page: 5336
  issue: 10
  year: 2016
  end-page: 5355
  article-title: Temporal and spatial patterns of air temperature in a coastal city with a slope base setting
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 1
  start-page: 160
  issue: 1
  year: 2014
  end-page: 170
  article-title: Ecosystem services and environmental governance: Comparing China and the U.S
  publication-title: Asia & the Pacific Policy Studies
– volume: 8
  start-page: 492
  issue: 6
  year: 2016
  article-title: Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: Field‐based, remote sensing‐based and observational‐based methods
  publication-title: Remote Sensing
– volume: 25
  start-page: 4050
  issue: 26
  year: 2011
  end-page: 4062
  article-title: Vegetation index‐based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems
  publication-title: Hydrological Processes
– volume: 134
  start-page: 87
  year: 2016
  end-page: 96
  article-title: Evapotranspiration of urban lawns in a semi‐arid environment: An in situ evaluation of microclimatic conditions and watering recommendations
  publication-title: Journal of Arid Environments
– start-page: 579
  year: 2011
  end-page: 602
– volume: 212‐213
  start-page: 198
  year: 1998
  end-page: 212
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation
  publication-title: Journal of Hydrology
– volume: 34
  issue: 8
  year: 2020
  article-title: Vegetation‐groundwater dynamics at a former uranium mill site following invasion of a biocontrol agent: A time series analysis of landsat normalized difference vegetation index (NDVI) data
  publication-title: Hydrological Processes
– volume: 127
  start-page: 124
  year: 2014
  end-page: 135
  article-title: Estimation of residential outdoor water use in Los Angeles, California
  publication-title: Landscape and Urban Planning
– volume: 36
  start-page: 5309
  issue: 21
  year: 2015
  end-page: 5335
  article-title: An overview of 21 global and 43 regional land‐cover mapping products
  publication-title: International Journal of Remote Sensing
– year: 2017
– volume: 3
  start-page: 55
  issue: 2
  year: 2018
  end-page: 63
  article-title: Planning green space for climate change adaptation and mitigation: A review of green space in the Central City of Beijing
  publication-title: Urban and Regional Planning
– volume: 10
  start-page: 247
  issue: 4
  year: 2013
  end-page: 259
  article-title: A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation
  publication-title: Urban Water Journal
– volume: 21
  start-page: 506
  year: 2013
  end-page: 512
  article-title: Fractional vegetation cover estimation in arid and semi‐arid environments using HJ‐1 satellite hyperspectral data
  publication-title: International Journal of Applied Earth Observation and Geoinformation
– volume: 19
  start-page: 1533
  issue: 8
  year: 1998
  end-page: 1543
  article-title: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models
  publication-title: International Journal of Remote Sensing
– year: 2013
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ejrs.2011.06.001
– ident: e_1_2_9_45_1
  doi: 10.1080/1573062X.2014.900092
– ident: e_1_2_9_15_1
  doi: 10.1016/j.isprsjprs.2016.03.008
– ident: e_1_2_9_25_1
  doi: 10.3390/s18051546
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ecoleng.2012.06.043
– ident: e_1_2_9_42_1
  doi: 10.1111/rec.12575
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jhydrol.2007.07.002
– ident: e_1_2_9_27_1
  doi: 10.1016/j.rse.2008.06.006
– ident: e_1_2_9_47_1
  doi: 10.5194/hess-17-4339-2013
– ident: e_1_2_9_65_1
  doi: 10.1016/j.jag.2012.07.003
– ident: e_1_2_9_44_1
  doi: 10.1016/j.scitotenv.2017.01.130
– ident: e_1_2_9_36_1
  doi: 10.1016/j.landurbplan.2014.04.007
– ident: e_1_2_9_39_1
  doi: 10.1002/hyp.10734
– ident: e_1_2_9_50_1
  doi: 10.1016/j.landurbplan.2019.103613
– start-page: 579
  volume-title: Land remote sensing and global environmental change: NASA's earth observing system and the science of ASTER and MODIS
  year: 2011
  ident: e_1_2_9_23_1
  contributor:
    fullname: Huete A.
– ident: e_1_2_9_29_1
  doi: 10.1117/1.3400635
– ident: e_1_2_9_4_1
  doi: 10.1016/S0022-1694(98)00253-4
– ident: e_1_2_9_64_1
  doi: 10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2
– ident: e_1_2_9_5_1
– volume: 34
  issue: 8
  year: 2020
  ident: e_1_2_9_26_1
  article-title: Vegetation‐groundwater dynamics at a former uranium mill site following invasion of a biocontrol agent: A time series analysis of landsat normalized difference vegetation index (NDVI) data
  publication-title: Hydrological Processes
  contributor:
    fullname: Jarchow C. J.
– ident: e_1_2_9_30_1
  doi: 10.11648/j.urp.20180302.13
– ident: e_1_2_9_49_1
  doi: 10.1080/1573062X.2012.726360
– ident: e_1_2_9_41_1
  doi: 10.5194/piahs-380-45-2018
– ident: e_1_2_9_55_1
– ident: e_1_2_9_28_1
  doi: 10.1016/j.agrformet.2011.07.004
– ident: e_1_2_9_8_1
– ident: e_1_2_9_61_1
  doi: 10.1007/s11157-009-9169-8
– ident: e_1_2_9_54_1
  doi: 10.1007/s11252-018-0741-2
– ident: e_1_2_9_56_1
  doi: 10.1016/j.ecoleng.2018.08.021
– ident: e_1_2_9_62_1
  doi: 10.1016/j.rsase.2019.100246
– ident: e_1_2_9_19_1
  doi: 10.1002/2016JD025139
– ident: e_1_2_9_12_1
  doi: 10.1007/s10712-010-9102-2
– ident: e_1_2_9_35_1
  doi: 10.3390/atmos10030151
– ident: e_1_2_9_38_1
  doi: 10.1016/j.rse.2004.08.009
– volume-title: Evapotranspiration: Potential or Reference?
  year: 2003
  ident: e_1_2_9_24_1
  contributor:
    fullname: Irmak S.
– volume-title: Cities alive; rethinking cities in arid environments
  year: 2018
  ident: e_1_2_9_6_1
  contributor:
    fullname: Cindrić H.
– ident: e_1_2_9_37_1
  doi: 10.1016/j.rse.2007.09.007
– ident: e_1_2_9_48_1
  doi: 10.1016/j.ecoleng.2013.04.025
– ident: e_1_2_9_59_1
  doi: 10.5194/hess-6-85-2002
– ident: e_1_2_9_58_1
– ident: e_1_2_9_51_1
  doi: 10.3390/rs8060492
– ident: e_1_2_9_32_1
  doi: 10.1002/eco.1458
– ident: e_1_2_9_2_1
  doi: 10.1016/j.heliyon.2019.e01339
– ident: e_1_2_9_46_1
  doi: 10.3390/rs6010580
– ident: e_1_2_9_52_1
  doi: 10.1111/jawr.12133
– ident: e_1_2_9_57_1
  doi: 10.1016/j.uclim.2017.02.010
– ident: e_1_2_9_16_1
  doi: 10.1080/01431161.2015.1093195
– ident: e_1_2_9_31_1
  doi: 10.1080/07293682.2017.1345962
– ident: e_1_2_9_22_1
  doi: 10.1016/S0034-4257(02)00096-2
– ident: e_1_2_9_60_1
  doi: 10.1038/s41598-017-06359-w
– ident: e_1_2_9_33_1
  doi: 10.1002/2016WR020254
– ident: e_1_2_9_21_1
  doi: 10.21273/HORTSCI.43.7.2081
– ident: e_1_2_9_63_1
  doi: 10.1016/j.rse.2012.11.004
– ident: e_1_2_9_9_1
  doi: 10.1029/2007WR006200
– ident: e_1_2_9_20_1
  doi: 10.1080/014311698215333
– ident: e_1_2_9_7_1
  doi: 10.1002/app5.16
– ident: e_1_2_9_53_1
  doi: 10.1016/j.habitatint.2017.07.009
– ident: e_1_2_9_14_1
  doi: 10.1016/j.jaridenv.2015.02.010
– ident: e_1_2_9_13_1
  doi: 10.1002/hyp.8392
– ident: e_1_2_9_43_1
  doi: 10.1002/eco.1529
– ident: e_1_2_9_40_1
  doi: 10.3390/rs5083849
– ident: e_1_2_9_10_1
  doi: 10.1016/j.rse.2012.12.016
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jaridenv.2016.06.016
– volume-title: Characterisation, interpretation and implications of the Adelaide Urban Heat Island
  year: 2013
  ident: e_1_2_9_18_1
  contributor:
    fullname: Guan H.
SSID ssj0004080
Score 2.503501
Snippet Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and expanding...
Abstract Urban green spaces (UGS), like most managed land covers, are getting progressively affected by water scarcity and drought. Preserving, restoring and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 3183
SubjectTerms Artificial neural networks
Correlation
Drought
Estimation
Evapotranspiration
Evapotranspiration estimates
Evapotranspiration measurements
EVI2
Green infrastructure
Heterogeneity
Image acquisition
Imagery
In situ measurement
Irrigation practices
Landsat
Landsat satellites
Microclimate
MODIS
Moisture content
Neural networks
Normalized difference vegetative index
Open spaces
Remote sensing
Resolution
Resource management
Satellite imagery
Satellites
Seasonal variation
Seasonal variations
Soil
Soil water
Spaceborne remote sensing
Spatial discrimination
Spatial resolution
Urban planning
Vegetation
Vegetation index
Water balance
water consumption
Water resources
Water scarcity
WorldView
Title Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.13790
https://www.proquest.com/docview/2422923076/abstract/
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED7UF33xtzh_jCA--NKtTdu0xScRZQjKEIUJQkmaVEXshuuE-dd7l7ZOBUF8KyFN2-Tuy3fp5QvAYR5xmYWIfp5vcicIY-XESioHgyETKOEZk9Ef3csr0bsNLgbhYA6Om70wlT7E54IbeYbFa3JwqcbdmWjo43TU8fwooXidhPSIEF3PpKMC156ahk4UOsKNo0ZVyOXdzzu_z0UzgvmVptp55nwF7ps3rNJLnjuTUnWy9x_ijf_8hFVYrvknO6kMZg3mTLEOi_VR6I_TDZhWesZsmLMxZVtjZYzIawO1pdKKeJaGPb0gGI0ZFpNUB1Hf4oEhoWQPlMxDGMpkoZl5k6NhaUXUnyp7o2Ymr0oWVU16EMLVJtyen92c9pz6fAYn82njtYl9V7m-UQmXQY7MTHsS4UBoL9E8Qm6Z-0Jg6K2FzhKdx0K7EVduohEF0HRyfwsWimFhtoFpVyNPiChjJMOIk6swyk0gfS8LuYyE14KDZqTSUSXDkVaCyzzFXkxtL7ZgrxnDtPbEcYoUhCeU7S5acGQH4_cG0t5d317s_L3qLixxCsFJazPcg4XydWL2kaeUqg3zPOi3rVl-AC6Z5oU
link.rule.ids 315,786,790,1382,11589,27957,27958,46087,46329,46511,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH6IHvTib3E6NYgHL51t2qYteBFxzB8bIgp6kJI06TbEbmydMP96X9LWqSCItxLStE3e-_K99OULwFEaUJ74iH6Oq1LL80NhhYILC4Mh5QnmKJXoP7rtDms9eFeP_uMcnFZ7YQp9iM8FN-0ZBq-1g-sF6ZOZamhvOmw4bhBhwL6A7u6bgOpuJh7l2ebcNHQj32J2GFS6QjY9-bz1-2w0o5hfiaqZaZor8Fy9Y5Fg8tKY5KKRvP-Qb_zvR6zCcklByVlhM2swp7J1WCxPQ-9NN2BaSBqTQUrGOuEaK2NQXtqoKeVGxzNXpP-KeDQmWKzVOjT7zboEOSXp6nweDaOEZ5KoNz4c5EZHvV-YnG5mMhI8K2rqByFibcJD8-L-vGWVRzRYiav3XqvQtYXtKhFR7qVIzqTDERGYdCJJA6SXqcsYRt-SySSSacikHVBhRxKBAK0ndbdgPhtkahuItCVShUAnjSQYdFLhB6nyuOskPuUBc2pwWA1VPCyUOOJCc5nG2Iux6cUa1KtBjEtnHMfIQmikE95ZDY7NaPzeQNx6ujUXO3-vegCLrfv2TXxz2bnehSWqI3ItvenXYT4fTdQe0pZc7Bvr_AAzz-nQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9swED5KC-1e1q1dadp0E2MPfXFqS7Zss6fRLKTbGsJooYWBkSypCaNOSJxC-ut7ku2kGwzK3oyQZVu6-_SdfPoE8MnEVOQRol_AtPHCKJFeIoX0MBjSoeSB1rn9o3s54P3r8NtNdLMBn5u9MJU-xGrBzXqGw2vr4FNlztaioaPltBOwOMV4fSvkjFqT7v5ca0eFvjs2Db0o8rifxI2skE_PVrf-ORmtGeZznuommt4u_Gpescov-d1ZlLKTP_6l3vif3_AGXtcElHypLOYtbOhiD3bqs9BHy31YVoLGZGLI3KZbY2UMyWsLdaXCqXiWmozvEY3mBIutVoflvsUdQUZJ7mw2jwVRIgpF9IOYTkqnoj6uDM42s5hJUVQ17YMQr97Bde_r1Xnfqw9o8HJmd17rhPnSZ1qmVIQGqZkKBOIBV0GqaIzk0jDOMfZWXOWpMglXfkylnyqEAbQdww5gs5gU-hCI8hUShdimjOQYclIZxUaHggV5REXMgxZ8bEYqm1Y6HFmluEwz7MXM9WIL2s0YZrUrzjPkIDS16e68BaduMP7dQNa_HbqLo5dX_QDbw24v-3Ex-H4Mr6gNx63uZtSGzXK20CfIWUr53tnmE5MV6H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+spatial+resolution+of+satellite+images+on+estimating+the+greenness+and+evapotranspiration+of+urban+green+spaces&rft.jtitle=Hydrological+processes&rft.au=Nouri%2C+Hamideh&rft.au=Nagler%2C+Pamela&rft.au=Sattar+Chavoshi+Borujeni&rft.au=Armando+Barreto+Munez&rft.date=2020-07-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1099-1085&rft.volume=34&rft.issue=15&rft.spage=3183&rft.epage=3199&rft_id=info:doi/10.1002%2Fhyp.13790&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon