DeepEC: An error correction framework for dose prediction and organ segmentation using deep neural networks

Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose pl...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 35; no. 12; pp. 1987 - 2008
Main Authors Wang, Han, Zhang, Haixian, Hu, Junjie, Song, Ying, Bai, Sen, Yi, Zhang
Format Journal Article
LanguageEnglish
Published New York Hindawi Limited 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose planning controls its intensity. However, both tasks are time‐consuming, exhausting, and subjective, and automated methods are desirable. Although automated methods have been studied, the previous studies either focus on organ segmentation or dose prediction, without considering them from a holistic perspective. In this paper, we treat organ segmentation and dose prediction as similar tasks, and propose an error correction framework to improve their performance based on the same mechanism. The proposed error correction framework consists of a prediction network and a calibration network. The biggest difference between our framework and previous studies is that the state‐of‐the‐art networks can be used as a prediction network or calibration network, and then the performance can be improved by the error correction mechanism. To evaluate the framework, we conducted a series of experiments on dose prediction and organ segmentation. These experimental results show that the framework is superior to other state‐of‐the‐art methods in both tasks.
AbstractList Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose planning controls its intensity. However, both tasks are time‐consuming, exhausting, and subjective, and automated methods are desirable. Although automated methods have been studied, the previous studies either focus on organ segmentation or dose prediction, without considering them from a holistic perspective. In this paper, we treat organ segmentation and dose prediction as similar tasks, and propose an error correction framework to improve their performance based on the same mechanism. The proposed error correction framework consists of a prediction network and a calibration network. The biggest difference between our framework and previous studies is that the state‐of‐the‐art networks can be used as a prediction network or calibration network, and then the performance can be improved by the error correction mechanism. To evaluate the framework, we conducted a series of experiments on dose prediction and organ segmentation. These experimental results show that the framework is superior to other state‐of‐the‐art methods in both tasks.
Author Hu, Junjie
Yi, Zhang
Song, Ying
Bai, Sen
Zhang, Haixian
Wang, Han
Author_xml – sequence: 1
  givenname: Han
  surname: Wang
  fullname: Wang, Han
  organization: Sichuan University
– sequence: 2
  givenname: Haixian
  surname: Zhang
  fullname: Zhang, Haixian
  organization: Sichuan University
– sequence: 3
  givenname: Junjie
  surname: Hu
  fullname: Hu, Junjie
  organization: Sichuan University
– sequence: 4
  givenname: Ying
  surname: Song
  fullname: Song, Ying
  organization: Sichuan University
– sequence: 5
  givenname: Sen
  surname: Bai
  fullname: Bai, Sen
  organization: Sichuan University
– sequence: 6
  givenname: Zhang
  surname: Yi
  fullname: Yi, Zhang
  email: zhangyi@scu.edu.cn
  organization: Sichuan University
BookMark eNp1kEtPwzAQhC1UJErhwD-wxIlD2rWdh8OtKgUqVXApErfITTZV-rDDOlHVf0_acOU00s43s9LcsoF1Fhl7EDAWAHJS2WYspdRwxYYCUh0IIb4HbAhah4EWibpht95vAYRIwmjIdi-I9Xz2zKeWI5EjnjsizJvKWV6SOeDR0Y6XnVE4j7wmLKreNbbgjjbGco-bA9rGXM6tr-yGF10tt9iS2XfSnEv8Hbsuzd7j_Z-O2NfrfDV7D5afb4vZdBnkSkkItBKhWq_XQssUQ2kMxEWiI4QUYixSE8daGpWGOlImNiBDI7RSpVQKY5QyUSP22PfW5H5a9E22dS3Z7mUmw0gKEBDpjnrqqZyc94RlVlN1MHTKBGTnLbNuy-yyZcdOevZY7fH0P5gtPlZ94heswndO
CitedBy_id crossref_primary_10_1002_int_22452
crossref_primary_10_1002_int_22344
crossref_primary_10_1109_TMI_2022_3149168
crossref_primary_10_1002_int_23006
crossref_primary_10_1038_s41598_022_08958_8
crossref_primary_10_1007_s42979_024_02995_y
crossref_primary_10_1155_2023_7626478
crossref_primary_10_1155_2023_8589867
crossref_primary_10_1016_j_radonc_2022_08_031
crossref_primary_10_1002_int_22955
crossref_primary_10_1007_s10489_021_02784_7
crossref_primary_10_1002_int_22804
crossref_primary_10_1016_j_ejrs_2024_01_001
Cites_doi 10.1145/3065386
10.1088/1361-6560/aaef74
10.1016/j.media.2018.12.006
10.1016/S0360-3016(96)00601-3
10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9
10.1002/mp.12602
10.1002/int.20440
10.1002/mp.12251
10.1109/CVPR.2016.90
10.1016/j.media.2019.05.002
10.1109/TIP.2003.819861
10.1002/int.4550040203
10.1109/CVPR.2017.549
10.1002/int.10110
10.1109/TMI.2018.2863562
10.1038/s41598-018-37741-x
10.1007/978-3-319-24574-4_28
10.1088/1361-6560/ab039b
10.1016/j.ijrobp.2018.01.114
10.1109/LGRS.2018.2802944
10.1002/mp.13597
10.1002/int.21690
10.1109/CVPR.2009.5206848
10.1007/978-3-030-01234-2_49
10.1007/978-3-319-46475-6_43
10.1109/CVPR.2015.7298636
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.322
10.1002/mp.13296
10.1038/s42256-019-0099-z
ContentType Journal Article
Copyright 2020 Wiley Periodicals LLC
Copyright_xml – notice: 2020 Wiley Periodicals LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.22280
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
EndPage 2008
ExternalDocumentID 10_1002_int_22280
INT22280
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
G8K
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3320-83143bbb1829e42aa06d785e0906ed9a6682a394853a6a024a1833f233e6e2273
IEDL.DBID DR2
ISSN 0884-8173
IngestDate Thu Oct 10 16:52:11 EDT 2024
Fri Aug 23 02:38:18 EDT 2024
Sat Aug 24 01:04:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3320-83143bbb1829e42aa06d785e0906ed9a6682a394853a6a024a1833f233e6e2273
OpenAccessLink https://doi.org/10.1002/int.22280
PQID 2452101058
PQPubID 1026350
PageCount 22
ParticipantIDs proquest_journals_2452101058
crossref_primary_10_1002_int_22280
wiley_primary_10_1002_int_22280_INT22280
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2020
Publisher Hindawi Limited
Publisher_xml – name: Hindawi Limited
References 2019; 9
1989; 4
2017; 60
2019; 52
2011
2019; 55
2019; 1
2017; 44
2018; 101
2015; 30
2009
2019; 38
2000; 90
2018; 63
2003; 18
2010; 25
2019; 64
2019; 46
1997; 37
2004; 13
2019
2018
2017
2016
2015
2018; 15
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Goyal P (e_1_2_7_32_1) 2017
References_xml – start-page: 234
  year: 2015
  end-page: 241
– volume: 25
  start-page: 1081
  issue: 11
  year: 2010
  end-page: 1102
  article-title: On tree types of competitive learning algorithms with their comparisons and applications to MRI segmentation
  publication-title: Int J Intell Syst
– volume: 46
  start-page: 286
  issue: 1
  year: 2019
  end-page: 292
  article-title: More accurate and efficient segmentation of organs‐at‐risk in radiotherapy with convolutional neural networks cascades
  publication-title: Med Phys
– start-page: 315
  year: 2011
  end-page: 323
– volume: 64
  start-page: 065020
  issue: 6
  year: 2019
  article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U‐net deep learning architecture
  publication-title: Phys Med Biology
– year: 2017
  article-title: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
  publication-title: CoRR
– start-page: 770
  year: 2016
  end-page: 778
– volume: 37
  start-page: 731
  issue: 3
  year: 1997
  end-page: 736
  article-title: A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate
  publication-title: Int J Radiat Oncol Biol Phys
– start-page: 5168
  year: 2017
  end-page: 5177
– start-page: 248
  year: 2009
  end-page: 255
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 38
  start-page: 269
  issue: 1
  year: 2019
  end-page: 279
  article-title: Automated analysis for retinopathy of prematurity by deep neural networks
  publication-title: IEEE Trans Med Imaging
– start-page: 390
  year: 2015
  end-page: 399
– volume: 101
  start-page: 468
  issue: 2
  year: 2018
  end-page: 478
  article-title: Deep learning algorithm for auto‐delineation of high‐risk oropharyngeal clinical target volumes with built‐in dice similarity coefficient parameter optimization function
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 9
  start-page: 1076
  issue: 1
  year: 2019
  article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Sci Report
– start-page: 833
  year: 2018
  end-page: 851
– volume: 44
  start-page: 6377
  issue: 12
  year: 2017
  end-page: 6389
  article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks
  publication-title: Med Phys
– start-page: 2980
  year: 2017
  end-page: 2988
– volume: 52
  start-page: 185
  year: 2019
  end-page: 198
  article-title: Automated diagnosis of breast ultrasonography images using deep neural networks
  publication-title: Med Image Anal
– volume: 63
  start-page: 235022
  issue: 23
  year: 2018
  article-title: DoseNet: a volumetric dose prediction algorithm using 3D fully‐convolutional neural networks
  publication-title: Phys Med Biol
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans Image Processing
– volume: 15
  start-page: 749
  issue: 5
  year: 2018
  end-page: 753
  article-title: Road extraction by deep residual U‐net
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 55
  start-page: 216
  year: 2019
  end-page: 227
  article-title: Automated segmentation of macular edema in OCT using deep neural networks
  publication-title: Med Image Anal
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
– volume: 90
  start-page: 92
  issue: 2
  year: 2000
  end-page: 103
  article-title: Intensity‐modulated radiation therapy in head and neck cancers: the Mallinckrodt experience
  publication-title: Int J Cancer
– start-page: 694
  year: 2016
  end-page: 711
– volume: 4
  start-page: 143
  issue: 2
  year: 1989
  end-page: 154
  article-title: Knowledge‐based analysis of satellite oceanographic images
  publication-title: Int J Intell Syst
– volume: 1
  start-page: 480
  issue: 10
  year: 2019
  end-page: 491
  article-title: Clinically applicable deep learning framework for organs at risk delineation in CT images
  publication-title: Nat Mach Intell
– year: 2017
– volume: 46
  start-page: 3679
  issue: 8
  year: 2019
  end-page: 3691
  article-title: Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations
  publication-title: Med Phys
– volume: 44
  start-page: 2556
  issue: 6
  year: 2017
  end-page: 2568
  article-title: Development of the open‐source dose calculation and optimization toolkit matRad
  publication-title: Med Phys
– year: 2019
– start-page: 8024
  year: 2019
  end-page: 8035
– volume: 30
  start-page: 99
  issue: 2
  year: 2015
  end-page: 119
  article-title: Exploring temporal structure of trajectory components for action recognition
  publication-title: Int J Intell Syst
– volume: 18
  start-page: 657
  issue: 6
  year: 2003
  end-page: 678
  article-title: Segmentation and classification of biological cell images by a multifractal approach
  publication-title: Int J Intell Syst
– ident: e_1_2_7_13_1
  doi: 10.1145/3065386
– ident: e_1_2_7_3_1
  doi: 10.1088/1361-6560/aaef74
– ident: e_1_2_7_16_1
  doi: 10.1016/j.media.2018.12.006
– ident: e_1_2_7_35_1
  doi: 10.1016/S0360-3016(96)00601-3
– ident: e_1_2_7_2_1
  doi: 10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9
– ident: e_1_2_7_18_1
  doi: 10.1002/mp.12602
– ident: e_1_2_7_21_1
  doi: 10.1002/int.20440
– ident: e_1_2_7_28_1
  doi: 10.1002/mp.12251
– ident: e_1_2_7_22_1
– ident: e_1_2_7_30_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_9_1
  doi: 10.1016/j.media.2019.05.002
– ident: e_1_2_7_33_1
– ident: e_1_2_7_34_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_7_20_1
  doi: 10.1002/int.4550040203
– ident: e_1_2_7_27_1
  doi: 10.1109/CVPR.2017.549
– ident: e_1_2_7_19_1
  doi: 10.1002/int.10110
– ident: e_1_2_7_17_1
  doi: 10.1109/TMI.2018.2863562
– ident: e_1_2_7_36_1
– ident: e_1_2_7_4_1
  doi: 10.1038/s41598-018-37741-x
– ident: e_1_2_7_11_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_7_5_1
  doi: 10.1088/1361-6560/ab039b
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ijrobp.2018.01.114
– ident: e_1_2_7_25_1
  doi: 10.1109/LGRS.2018.2802944
– ident: e_1_2_7_6_1
  doi: 10.1002/mp.13597
– ident: e_1_2_7_15_1
  doi: 10.1002/int.21690
– ident: e_1_2_7_14_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-030-01234-2_49
– ident: e_1_2_7_29_1
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_7_23_1
  doi: 10.1109/CVPR.2015.7298636
– ident: e_1_2_7_24_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_7_26_1
  doi: 10.1109/ICCV.2017.322
– year: 2017
  ident: e_1_2_7_32_1
  article-title: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
  publication-title: CoRR
  contributor:
    fullname: Goyal P
– ident: e_1_2_7_8_1
  doi: 10.1002/mp.13296
– ident: e_1_2_7_31_1
– ident: e_1_2_7_10_1
  doi: 10.1038/s42256-019-0099-z
SSID ssj0011745
Score 2.3955042
Snippet Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1987
SubjectTerms Artificial neural networks
Automation
Calibration
deep neural networks
Delineation
dose prediction
Error correction
Error correction & detection
Exhausting
Intelligent systems
organ segmentation
Radiation therapy
Segmentation
Title DeepEC: An error correction framework for dose prediction and organ segmentation using deep neural networks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22280
https://www.proquest.com/docview/2452101058
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJy_OT5xOCeLBS7cm6aeexjaZgjvIBjsIJWnfhgy70W4X_3pf0nZTQRBvhTYhTfLyfi_vvd8j5AY1XqISxi3gDCwnVK4V-rFrcSUdBipA0KE9us8jbzhxnqbutEbuq1yYgh9ie-GmJcOc11rApco7O9LQt3Td1tcX2l5nwtfhXP2XLXUUQ6TtFgjSsQLmi4pVyOadbcvvumgHML_CVKNnHhrktRphEV6yaG_Wqh1__CBv_OcvHJD9En_SbrFhDkkN0iPSqGo70FLUj8miD7Aa9O5oN6WQZcuMxrqOh8mCoLMqoosi5KXJMge6yrTHx7yVaUJNsSiaw_y9zG1KqY6wn9MEu6WaRBMHkRYh6PkJmTwMxr2hVRZmsGKhM64DgShLKYW2SQgOl9L2Ej9wwQ5tD5JQel7ApdC8M0J6ElGAxINDzLgQ4AFHwHRK6ukyhTNCUT_GrmIKjXTh-NKRMxEyASCxdwQzqkmuqyWKVgX_RlQwLfMIpy8y09ckrWrxolIE80i7lJmu_xk0ya1Zhd87iB5HY_Nw_vdPL8ge17a3CW1pkfo628AlApS1ujI78RMkQ-EE
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHODCeIrBgAhx4NKxJn0iLhMMjcd2QJvEBVVJ601oopu67cKvx0nbDZCQELdKbaI0iePPsf0Z4Jw0XqISm1vIbbScULlW6MeuxZV0bFQBgQ7t0e10vXbfeXhxX1bgusyFyfkhFhduWjLMea0FXF9IXy5ZQ9_SWV3fX5DBvkbiLnThhtvnBXmUTVjbzTGkYwW2L0peoQa_XDT9ro2WEPMrUDWa5q4Cr-UY8wCTUX0-U_X44wd9439_Ygs2CwjKmvme2YYVTHegUpZ3YIW078LoFnHSurlizZRhlo0zFutSHiYRgg3KoC5GqJcl4ymySaadPuatTBNm6kWxKQ7fi_SmlOkg-yFLqFumeTRpEGkehT7dg_5dq3fTtoraDFYsdNJ1IAhoKaXIPAnR4VI2vMQPXGyEDQ-TUHpewKXQ1DNCepKAgKSzQwy4EOghJ8y0D6vpOMUDYKQiY1fZiux04fjSkQMR2gJRUu-EZ1QVzso1iiY5BUeUky3ziKYvMtNXhVq5elEhhdNIe5VtXQI0qMKFWYbfO4juuz3zcPj3T09hvd3rPEVP993HI9jg2hQ3kS41WJ1lczwmvDJTJ2ZbfgIxduUc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kgvji_MTp1CA--NJtTdqu1aehG34OkQ32IJSkvQ0ZdqPbXvzrvaTt_ABBfCu0CWmSy_0ud_c7gDPSeLGKbW4ht9FyAuVaQTNyLa6kY6PyCXRoj-5j17vpO3cDd7ACl0UuTMYPsbxw05Jhzmst4NN4WP8kDX1N5jV9fUH2-qrjEfLViOh5yR1lE9R2MwjpWL7dFAWtUIPXl02_K6NPhPkVpxpF0ynDSzHELL5kXFvMVS16_8He-M9_2ISNHICyVrZjtmAFk20oF8UdWC7rOzC-Rpy2ry5YK2GYppOURbqQh0mDYMMipIsR5mXxZIZsmmqXj3krk5iZalFshqO3PLkpYTrEfsRi6pZpFk0aRJLFoM92od9p965urLwygxUJnXLtC4JZSikyTgJ0uJQNL276LjaChodxID3P51Jo4hkhPUkwQNLJIYZcCPSQE2Lag1IySXAfGCnIyFW2IitdOE3pyKEIbIEoqXdCM6oCp8UShdOMgCPMqJZ5SNMXmumrQLVYvDCXwVmofcq2LgDqV-DcrMLvHYS33Z55OPj7pyew9nTdCR9uu_eHsM61HW7CXKpQmqcLPCKwMlfHZlN-AJ1O48s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepEC%3A+An+error+correction+framework+for+dose+prediction+and+organ+segmentation+using+deep+neural+networks&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Wang%2C+Han&rft.au=Zhang%2C+Haixian&rft.au=Hu%2C+Junjie&rft.au=Song%2C+Ying&rft.date=2020-12-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=35&rft.issue=12&rft.spage=1987&rft.epage=2008&rft_id=info:doi/10.1002%2Fint.22280&rft.externalDBID=10.1002%252Fint.22280&rft.externalDocID=INT22280
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon