DeepEC: An error correction framework for dose prediction and organ segmentation using deep neural networks
Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose pl...
Saved in:
Published in | International journal of intelligent systems Vol. 35; no. 12; pp. 1987 - 2008 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Hindawi Limited
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose planning controls its intensity. However, both tasks are time‐consuming, exhausting, and subjective, and automated methods are desirable. Although automated methods have been studied, the previous studies either focus on organ segmentation or dose prediction, without considering them from a holistic perspective. In this paper, we treat organ segmentation and dose prediction as similar tasks, and propose an error correction framework to improve their performance based on the same mechanism. The proposed error correction framework consists of a prediction network and a calibration network. The biggest difference between our framework and previous studies is that the state‐of‐the‐art networks can be used as a prediction network or calibration network, and then the performance can be improved by the error correction mechanism. To evaluate the framework, we conducted a series of experiments on dose prediction and organ segmentation. These experimental results show that the framework is superior to other state‐of‐the‐art methods in both tasks. |
---|---|
AbstractList | Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of life. Organ delineation and dose plan design are the key steps in the treatment. Organ delineation controls the area of radiotherapy and dose planning controls its intensity. However, both tasks are time‐consuming, exhausting, and subjective, and automated methods are desirable. Although automated methods have been studied, the previous studies either focus on organ segmentation or dose prediction, without considering them from a holistic perspective. In this paper, we treat organ segmentation and dose prediction as similar tasks, and propose an error correction framework to improve their performance based on the same mechanism. The proposed error correction framework consists of a prediction network and a calibration network. The biggest difference between our framework and previous studies is that the state‐of‐the‐art networks can be used as a prediction network or calibration network, and then the performance can be improved by the error correction mechanism. To evaluate the framework, we conducted a series of experiments on dose prediction and organ segmentation. These experimental results show that the framework is superior to other state‐of‐the‐art methods in both tasks. |
Author | Hu, Junjie Yi, Zhang Song, Ying Bai, Sen Zhang, Haixian Wang, Han |
Author_xml | – sequence: 1 givenname: Han surname: Wang fullname: Wang, Han organization: Sichuan University – sequence: 2 givenname: Haixian surname: Zhang fullname: Zhang, Haixian organization: Sichuan University – sequence: 3 givenname: Junjie surname: Hu fullname: Hu, Junjie organization: Sichuan University – sequence: 4 givenname: Ying surname: Song fullname: Song, Ying organization: Sichuan University – sequence: 5 givenname: Sen surname: Bai fullname: Bai, Sen organization: Sichuan University – sequence: 6 givenname: Zhang surname: Yi fullname: Yi, Zhang email: zhangyi@scu.edu.cn organization: Sichuan University |
BookMark | eNp1kEtPwzAQhC1UJErhwD-wxIlD2rWdh8OtKgUqVXApErfITTZV-rDDOlHVf0_acOU00s43s9LcsoF1Fhl7EDAWAHJS2WYspdRwxYYCUh0IIb4HbAhah4EWibpht95vAYRIwmjIdi-I9Xz2zKeWI5EjnjsizJvKWV6SOeDR0Y6XnVE4j7wmLKreNbbgjjbGco-bA9rGXM6tr-yGF10tt9iS2XfSnEv8Hbsuzd7j_Z-O2NfrfDV7D5afb4vZdBnkSkkItBKhWq_XQssUQ2kMxEWiI4QUYixSE8daGpWGOlImNiBDI7RSpVQKY5QyUSP22PfW5H5a9E22dS3Z7mUmw0gKEBDpjnrqqZyc94RlVlN1MHTKBGTnLbNuy-yyZcdOevZY7fH0P5gtPlZ94heswndO |
CitedBy_id | crossref_primary_10_1002_int_22452 crossref_primary_10_1002_int_22344 crossref_primary_10_1109_TMI_2022_3149168 crossref_primary_10_1002_int_23006 crossref_primary_10_1038_s41598_022_08958_8 crossref_primary_10_1007_s42979_024_02995_y crossref_primary_10_1155_2023_7626478 crossref_primary_10_1155_2023_8589867 crossref_primary_10_1016_j_radonc_2022_08_031 crossref_primary_10_1002_int_22955 crossref_primary_10_1007_s10489_021_02784_7 crossref_primary_10_1002_int_22804 crossref_primary_10_1016_j_ejrs_2024_01_001 |
Cites_doi | 10.1145/3065386 10.1088/1361-6560/aaef74 10.1016/j.media.2018.12.006 10.1016/S0360-3016(96)00601-3 10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9 10.1002/mp.12602 10.1002/int.20440 10.1002/mp.12251 10.1109/CVPR.2016.90 10.1016/j.media.2019.05.002 10.1109/TIP.2003.819861 10.1002/int.4550040203 10.1109/CVPR.2017.549 10.1002/int.10110 10.1109/TMI.2018.2863562 10.1038/s41598-018-37741-x 10.1007/978-3-319-24574-4_28 10.1088/1361-6560/ab039b 10.1016/j.ijrobp.2018.01.114 10.1109/LGRS.2018.2802944 10.1002/mp.13597 10.1002/int.21690 10.1109/CVPR.2009.5206848 10.1007/978-3-030-01234-2_49 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2015.7298636 10.1109/CVPR.2015.7298965 10.1109/ICCV.2017.322 10.1002/mp.13296 10.1038/s42256-019-0099-z |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/int.22280 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1098-111X |
EndPage | 2008 |
ExternalDocumentID | 10_1002_int_22280 INT22280 |
Genre | article |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AASGY AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJCF ABJNI ABPVW ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N G8K GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c3320-83143bbb1829e42aa06d785e0906ed9a6682a394853a6a024a1833f233e6e2273 |
IEDL.DBID | DR2 |
ISSN | 0884-8173 |
IngestDate | Thu Oct 10 16:52:11 EDT 2024 Fri Aug 23 02:38:18 EDT 2024 Sat Aug 24 01:04:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3320-83143bbb1829e42aa06d785e0906ed9a6682a394853a6a024a1833f233e6e2273 |
OpenAccessLink | https://doi.org/10.1002/int.22280 |
PQID | 2452101058 |
PQPubID | 1026350 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2452101058 crossref_primary_10_1002_int_22280 wiley_primary_10_1002_int_22280_INT22280 |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of intelligent systems |
PublicationYear | 2020 |
Publisher | Hindawi Limited |
Publisher_xml | – name: Hindawi Limited |
References | 2019; 9 1989; 4 2017; 60 2019; 52 2011 2019; 55 2019; 1 2017; 44 2018; 101 2015; 30 2009 2019; 38 2000; 90 2018; 63 2003; 18 2010; 25 2019; 64 2019; 46 1997; 37 2004; 13 2019 2018 2017 2016 2015 2018; 15 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Goyal P (e_1_2_7_32_1) 2017 |
References_xml | – start-page: 234 year: 2015 end-page: 241 – volume: 25 start-page: 1081 issue: 11 year: 2010 end-page: 1102 article-title: On tree types of competitive learning algorithms with their comparisons and applications to MRI segmentation publication-title: Int J Intell Syst – volume: 46 start-page: 286 issue: 1 year: 2019 end-page: 292 article-title: More accurate and efficient segmentation of organs‐at‐risk in radiotherapy with convolutional neural networks cascades publication-title: Med Phys – start-page: 315 year: 2011 end-page: 323 – volume: 64 start-page: 065020 issue: 6 year: 2019 article-title: 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U‐net deep learning architecture publication-title: Phys Med Biology – year: 2017 article-title: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour publication-title: CoRR – start-page: 770 year: 2016 end-page: 778 – volume: 37 start-page: 731 issue: 3 year: 1997 end-page: 736 article-title: A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate publication-title: Int J Radiat Oncol Biol Phys – start-page: 5168 year: 2017 end-page: 5177 – start-page: 248 year: 2009 end-page: 255 – start-page: 3431 year: 2015 end-page: 3440 – volume: 38 start-page: 269 issue: 1 year: 2019 end-page: 279 article-title: Automated analysis for retinopathy of prematurity by deep neural networks publication-title: IEEE Trans Med Imaging – start-page: 390 year: 2015 end-page: 399 – volume: 101 start-page: 468 issue: 2 year: 2018 end-page: 478 article-title: Deep learning algorithm for auto‐delineation of high‐risk oropharyngeal clinical target volumes with built‐in dice similarity coefficient parameter optimization function publication-title: Int J Radiat Oncol Biol Phys – volume: 9 start-page: 1076 issue: 1 year: 2019 article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Sci Report – start-page: 833 year: 2018 end-page: 851 – volume: 44 start-page: 6377 issue: 12 year: 2017 end-page: 6389 article-title: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks publication-title: Med Phys – start-page: 2980 year: 2017 end-page: 2988 – volume: 52 start-page: 185 year: 2019 end-page: 198 article-title: Automated diagnosis of breast ultrasonography images using deep neural networks publication-title: Med Image Anal – volume: 63 start-page: 235022 issue: 23 year: 2018 article-title: DoseNet: a volumetric dose prediction algorithm using 3D fully‐convolutional neural networks publication-title: Phys Med Biol – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans Image Processing – volume: 15 start-page: 749 issue: 5 year: 2018 end-page: 753 article-title: Road extraction by deep residual U‐net publication-title: IEEE Geosci Remote Sens Lett – volume: 55 start-page: 216 year: 2019 end-page: 227 article-title: Automated segmentation of macular edema in OCT using deep neural networks publication-title: Med Image Anal – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun ACM – volume: 90 start-page: 92 issue: 2 year: 2000 end-page: 103 article-title: Intensity‐modulated radiation therapy in head and neck cancers: the Mallinckrodt experience publication-title: Int J Cancer – start-page: 694 year: 2016 end-page: 711 – volume: 4 start-page: 143 issue: 2 year: 1989 end-page: 154 article-title: Knowledge‐based analysis of satellite oceanographic images publication-title: Int J Intell Syst – volume: 1 start-page: 480 issue: 10 year: 2019 end-page: 491 article-title: Clinically applicable deep learning framework for organs at risk delineation in CT images publication-title: Nat Mach Intell – year: 2017 – volume: 46 start-page: 3679 issue: 8 year: 2019 end-page: 3691 article-title: Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations publication-title: Med Phys – volume: 44 start-page: 2556 issue: 6 year: 2017 end-page: 2568 article-title: Development of the open‐source dose calculation and optimization toolkit matRad publication-title: Med Phys – year: 2019 – start-page: 8024 year: 2019 end-page: 8035 – volume: 30 start-page: 99 issue: 2 year: 2015 end-page: 119 article-title: Exploring temporal structure of trajectory components for action recognition publication-title: Int J Intell Syst – volume: 18 start-page: 657 issue: 6 year: 2003 end-page: 678 article-title: Segmentation and classification of biological cell images by a multifractal approach publication-title: Int J Intell Syst – ident: e_1_2_7_13_1 doi: 10.1145/3065386 – ident: e_1_2_7_3_1 doi: 10.1088/1361-6560/aaef74 – ident: e_1_2_7_16_1 doi: 10.1016/j.media.2018.12.006 – ident: e_1_2_7_35_1 doi: 10.1016/S0360-3016(96)00601-3 – ident: e_1_2_7_2_1 doi: 10.1002/(SICI)1097-0215(20000420)90:2<92::AID-IJC5>3.0.CO;2-9 – ident: e_1_2_7_18_1 doi: 10.1002/mp.12602 – ident: e_1_2_7_21_1 doi: 10.1002/int.20440 – ident: e_1_2_7_28_1 doi: 10.1002/mp.12251 – ident: e_1_2_7_22_1 – ident: e_1_2_7_30_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_9_1 doi: 10.1016/j.media.2019.05.002 – ident: e_1_2_7_33_1 – ident: e_1_2_7_34_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_7_20_1 doi: 10.1002/int.4550040203 – ident: e_1_2_7_27_1 doi: 10.1109/CVPR.2017.549 – ident: e_1_2_7_19_1 doi: 10.1002/int.10110 – ident: e_1_2_7_17_1 doi: 10.1109/TMI.2018.2863562 – ident: e_1_2_7_36_1 – ident: e_1_2_7_4_1 doi: 10.1038/s41598-018-37741-x – ident: e_1_2_7_11_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_7_5_1 doi: 10.1088/1361-6560/ab039b – ident: e_1_2_7_7_1 doi: 10.1016/j.ijrobp.2018.01.114 – ident: e_1_2_7_25_1 doi: 10.1109/LGRS.2018.2802944 – ident: e_1_2_7_6_1 doi: 10.1002/mp.13597 – ident: e_1_2_7_15_1 doi: 10.1002/int.21690 – ident: e_1_2_7_14_1 doi: 10.1109/CVPR.2009.5206848 – ident: e_1_2_7_12_1 doi: 10.1007/978-3-030-01234-2_49 – ident: e_1_2_7_29_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_7_23_1 doi: 10.1109/CVPR.2015.7298636 – ident: e_1_2_7_24_1 doi: 10.1109/CVPR.2015.7298965 – ident: e_1_2_7_26_1 doi: 10.1109/ICCV.2017.322 – year: 2017 ident: e_1_2_7_32_1 article-title: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour publication-title: CoRR contributor: fullname: Goyal P – ident: e_1_2_7_8_1 doi: 10.1002/mp.13296 – ident: e_1_2_7_31_1 – ident: e_1_2_7_10_1 doi: 10.1038/s42256-019-0099-z |
SSID | ssj0011745 |
Score | 2.3955042 |
Snippet | Radiotherapy is an indispensable part of adjuvant therapy for cancer that improves local control, overall survival, and the opportunity for good quality of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1987 |
SubjectTerms | Artificial neural networks Automation Calibration deep neural networks Delineation dose prediction Error correction Error correction & detection Exhausting Intelligent systems organ segmentation Radiation therapy Segmentation |
Title | DeepEC: An error correction framework for dose prediction and organ segmentation using deep neural networks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.22280 https://www.proquest.com/docview/2452101058 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jJy_OT5xOCeLBS7cm6aeexjaZgjvIBjsIJWnfhgy70W4X_3pf0nZTQRBvhTYhTfLyfi_vvd8j5AY1XqISxi3gDCwnVK4V-rFrcSUdBipA0KE9us8jbzhxnqbutEbuq1yYgh9ie-GmJcOc11rApco7O9LQt3Td1tcX2l5nwtfhXP2XLXUUQ6TtFgjSsQLmi4pVyOadbcvvumgHML_CVKNnHhrktRphEV6yaG_Wqh1__CBv_OcvHJD9En_SbrFhDkkN0iPSqGo70FLUj8miD7Aa9O5oN6WQZcuMxrqOh8mCoLMqoosi5KXJMge6yrTHx7yVaUJNsSiaw_y9zG1KqY6wn9MEu6WaRBMHkRYh6PkJmTwMxr2hVRZmsGKhM64DgShLKYW2SQgOl9L2Ej9wwQ5tD5JQel7ApdC8M0J6ElGAxINDzLgQ4AFHwHRK6ukyhTNCUT_GrmIKjXTh-NKRMxEyASCxdwQzqkmuqyWKVgX_RlQwLfMIpy8y09ckrWrxolIE80i7lJmu_xk0ya1Zhd87iB5HY_Nw_vdPL8ge17a3CW1pkfo628AlApS1ujI78RMkQ-EE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYQHODCeIrBgAhx4NKxJn0iLhMMjcd2QJvEBVVJ601oopu67cKvx0nbDZCQELdKbaI0iePPsf0Z4Jw0XqISm1vIbbScULlW6MeuxZV0bFQBgQ7t0e10vXbfeXhxX1bgusyFyfkhFhduWjLMea0FXF9IXy5ZQ9_SWV3fX5DBvkbiLnThhtvnBXmUTVjbzTGkYwW2L0peoQa_XDT9ro2WEPMrUDWa5q4Cr-UY8wCTUX0-U_X44wd9439_Ygs2CwjKmvme2YYVTHegUpZ3YIW078LoFnHSurlizZRhlo0zFutSHiYRgg3KoC5GqJcl4ymySaadPuatTBNm6kWxKQ7fi_SmlOkg-yFLqFumeTRpEGkehT7dg_5dq3fTtoraDFYsdNJ1IAhoKaXIPAnR4VI2vMQPXGyEDQ-TUHpewKXQ1DNCepKAgKSzQwy4EOghJ8y0D6vpOMUDYKQiY1fZiux04fjSkQMR2gJRUu-EZ1QVzso1iiY5BUeUky3ziKYvMtNXhVq5elEhhdNIe5VtXQI0qMKFWYbfO4juuz3zcPj3T09hvd3rPEVP993HI9jg2hQ3kS41WJ1lczwmvDJTJ2ZbfgIxduUc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED9kgvji_MTp1CA--NJtTdqu1aehG34OkQ32IJSkvQ0ZdqPbXvzrvaTt_ABBfCu0CWmSy_0ud_c7gDPSeLGKbW4ht9FyAuVaQTNyLa6kY6PyCXRoj-5j17vpO3cDd7ACl0UuTMYPsbxw05Jhzmst4NN4WP8kDX1N5jV9fUH2-qrjEfLViOh5yR1lE9R2MwjpWL7dFAWtUIPXl02_K6NPhPkVpxpF0ynDSzHELL5kXFvMVS16_8He-M9_2ISNHICyVrZjtmAFk20oF8UdWC7rOzC-Rpy2ry5YK2GYppOURbqQh0mDYMMipIsR5mXxZIZsmmqXj3krk5iZalFshqO3PLkpYTrEfsRi6pZpFk0aRJLFoM92od9p965urLwygxUJnXLtC4JZSikyTgJ0uJQNL276LjaChodxID3P51Jo4hkhPUkwQNLJIYZcCPSQE2Lag1IySXAfGCnIyFW2IitdOE3pyKEIbIEoqXdCM6oCp8UShdOMgCPMqJZ5SNMXmumrQLVYvDCXwVmofcq2LgDqV-DcrMLvHYS33Z55OPj7pyew9nTdCR9uu_eHsM61HW7CXKpQmqcLPCKwMlfHZlN-AJ1O48s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepEC%3A+An+error+correction+framework+for+dose+prediction+and+organ+segmentation+using+deep+neural+networks&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Wang%2C+Han&rft.au=Zhang%2C+Haixian&rft.au=Hu%2C+Junjie&rft.au=Song%2C+Ying&rft.date=2020-12-01&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=35&rft.issue=12&rft.spage=1987&rft.epage=2008&rft_id=info:doi/10.1002%2Fint.22280&rft.externalDBID=10.1002%252Fint.22280&rft.externalDocID=INT22280 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |