Green infrastructure: The future of urban flood risk management?
Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastruc...
Saved in:
Published in | Wiley interdisciplinary reviews. Water Vol. 8; no. 6; pp. e1560 - n/a |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.11.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastructure (GI) solutions to reverse the legacy of hard engineering flood management approaches. The aim of GI is to attenuate, restore, and recreate a more natural flood response, bringing hydrological responses closer to pre‐urbanized conditions. However, GI effectiveness is often difficult to determine, and depends on both the magnitude of storm events and the spatial scale of GI infrastructure. Monitoring of the successes and failures of GI schemes is not routinely conducted. Thus, it can be difficult to determine whether GI provides a sustainable solution to manage urban flooding. This article provides an international perspective on the current use of GI for urban flood mitigation and the solutions it offers in light of current and future challenges. An increasing body of literature further suggests that GI can be optimized alongside gray infrastructure to provide a holistic solution that delivers multiple co‐benefits to the environment and society, while increasing flood resilience. GI will have to work synergistically with existing and upgraded gray infrastructure if urban flood risk is to be managed in a futureproof manner. Here, we discuss a series of priorities and challenges that must be overcome to enable integration of GI into existing stormwater management frameworks that effectively manage flood risk.
This article is categorized under:
Engineering Water > Sustainable Engineering of Water
Engineering Water > Planning Water
Science of Water > Water Extremes
Global distribution of notable urban stormwater management GI schemes and examples of different GI systems. |
---|---|
AbstractList | Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastructure (GI) solutions to reverse the legacy of hard engineering flood management approaches. The aim of GI is to attenuate, restore, and recreate a more natural flood response, bringing hydrological responses closer to pre‐urbanized conditions. However, GI effectiveness is often difficult to determine, and depends on both the magnitude of storm events and the spatial scale of GI infrastructure. Monitoring of the successes and failures of GI schemes is not routinely conducted. Thus, it can be difficult to determine whether GI provides a sustainable solution to manage urban flooding. This article provides an international perspective on the current use of GI for urban flood mitigation and the solutions it offers in light of current and future challenges. An increasing body of literature further suggests that GI can be optimized alongside gray infrastructure to provide a holistic solution that delivers multiple co‐benefits to the environment and society, while increasing flood resilience. GI will have to work synergistically with existing and upgraded gray infrastructure if urban flood risk is to be managed in a futureproof manner. Here, we discuss a series of priorities and challenges that must be overcome to enable integration of GI into existing stormwater management frameworks that effectively manage flood risk.
This article is categorized under:
Engineering Water > Sustainable Engineering of Water
Engineering Water > Planning Water
Science of Water > Water Extremes
Global distribution of notable urban stormwater management GI schemes and examples of different GI systems. Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastructure (GI) solutions to reverse the legacy of hard engineering flood management approaches. The aim of GI is to attenuate, restore, and recreate a more natural flood response, bringing hydrological responses closer to pre‐urbanized conditions. However, GI effectiveness is often difficult to determine, and depends on both the magnitude of storm events and the spatial scale of GI infrastructure. Monitoring of the successes and failures of GI schemes is not routinely conducted. Thus, it can be difficult to determine whether GI provides a sustainable solution to manage urban flooding. This article provides an international perspective on the current use of GI for urban flood mitigation and the solutions it offers in light of current and future challenges. An increasing body of literature further suggests that GI can be optimized alongside gray infrastructure to provide a holistic solution that delivers multiple co‐benefits to the environment and society, while increasing flood resilience. GI will have to work synergistically with existing and upgraded gray infrastructure if urban flood risk is to be managed in a futureproof manner. Here, we discuss a series of priorities and challenges that must be overcome to enable integration of GI into existing stormwater management frameworks that effectively manage flood risk.This article is categorized under:Engineering Water > Sustainable Engineering of WaterEngineering Water > Planning WaterScience of Water > Water Extremes Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes over increasingly urban landscapes. Consequently, many cities are rethinking their approach to flood risk management by using green infrastructure (GI) solutions to reverse the legacy of hard engineering flood management approaches. The aim of GI is to attenuate, restore, and recreate a more natural flood response, bringing hydrological responses closer to pre‐urbanized conditions. However, GI effectiveness is often difficult to determine, and depends on both the magnitude of storm events and the spatial scale of GI infrastructure. Monitoring of the successes and failures of GI schemes is not routinely conducted. Thus, it can be difficult to determine whether GI provides a sustainable solution to manage urban flooding. This article provides an international perspective on the current use of GI for urban flood mitigation and the solutions it offers in light of current and future challenges. An increasing body of literature further suggests that GI can be optimized alongside gray infrastructure to provide a holistic solution that delivers multiple co‐benefits to the environment and society, while increasing flood resilience. GI will have to work synergistically with existing and upgraded gray infrastructure if urban flood risk is to be managed in a futureproof manner. Here, we discuss a series of priorities and challenges that must be overcome to enable integration of GI into existing stormwater management frameworks that effectively manage flood risk. This article is categorized under: Engineering Water > Sustainable Engineering of Water Engineering Water > Planning Water Science of Water > Water Extremes |
Author | O'Donnell, Emily Thorne, Colin Chan, Faith K. S. Slater, Louise Zheng, Shan Stirling, Ross Green, Daniel Johnson, Matthew Li, Lei Boothroyd, Richard J. |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0001-5181-6075 surname: Green fullname: Green, Daniel email: daniel.green@newcastle.ac.uk organization: Newcastle University – sequence: 2 givenname: Emily orcidid: 0000-0003-4303-4705 surname: O'Donnell fullname: O'Donnell, Emily organization: University of Nottingham – sequence: 3 givenname: Matthew orcidid: 0000-0003-1336-5490 surname: Johnson fullname: Johnson, Matthew organization: University of Nottingham – sequence: 4 givenname: Louise orcidid: 0000-0001-9416-488X surname: Slater fullname: Slater, Louise organization: University of Oxford – sequence: 5 givenname: Colin orcidid: 0000-0002-2450-9624 surname: Thorne fullname: Thorne, Colin organization: University of Nottingham – sequence: 6 givenname: Shan orcidid: 0000-0003-4595-9496 surname: Zheng fullname: Zheng, Shan organization: Wuhan University – sequence: 7 givenname: Ross orcidid: 0000-0002-0069-6621 surname: Stirling fullname: Stirling, Ross organization: Newcastle University – sequence: 8 givenname: Faith K. S. orcidid: 0000-0001-6091-6596 surname: Chan fullname: Chan, Faith K. S. organization: University of Nottingham Ningbo China – sequence: 9 givenname: Lei orcidid: 0000-0002-8743-9993 surname: Li fullname: Li, Lei organization: University of Nottingham Ningbo China – sequence: 10 givenname: Richard J. orcidid: 0000-0001-9742-4229 surname: Boothroyd fullname: Boothroyd, Richard J. organization: University of Glasgow |
BookMark | eNp9kE1LAzEURYNUsNYu_AcBVy7a5mOmk7hRKVqFgpuKy5DJvOjUaVKTDKX_3o51IYKu3l2cex-cU9Rz3gFC55SMKSFsstWJjWk-JUeoz0gmR1Rmovcjn6BhjCtCCKUk5zLvo5t5AHC4djbomEJrUhvgCi_fANu2y9hb3IZSO2wb7ysc6viO19rpV1iDS9dn6NjqJsLw-w7Q8_3dcvYwWjzNH2e3i5HhnJFRoaEUBQgwGVRSG84sCGYqKUtpmZEAGc2F5sC4rorMFjKHkhUGskqUHCgfoIvD7ib4jxZiUivfBrd_qVgu6FRknHXU5YEywccYwKpNqNc67BQlqnOkOkeqc7RnJ79YUyedau9S0HXzX2NbN7D7e1q93C7ZV-MTUK56Uw |
CitedBy_id | crossref_primary_10_1016_j_landurbplan_2022_104607 crossref_primary_10_1016_j_mex_2024_102905 crossref_primary_10_3390_ijerph192416687 crossref_primary_10_1016_j_ijdrr_2025_105429 crossref_primary_10_1016_j_marpolbul_2024_117446 crossref_primary_10_1061_JSWBAY_SWENG_513 crossref_primary_10_1007_s11356_023_28841_x crossref_primary_10_1002_wat2_1625 crossref_primary_10_1016_j_scs_2023_105141 crossref_primary_10_1016_j_ecoleng_2023_107148 crossref_primary_10_2166_bgs_2024_007 crossref_primary_10_3390_w16202908 crossref_primary_10_1080_19475705_2024_2429735 crossref_primary_10_1038_s41598_025_91147_0 crossref_primary_10_1016_j_jhydrol_2023_129538 crossref_primary_10_1007_s11269_024_03950_5 crossref_primary_10_1007_s11252_024_01660_9 crossref_primary_10_1088_1755_1315_1462_1_012087 crossref_primary_10_1002_wat2_1677 crossref_primary_10_22630_ASPA_2024_23_29 crossref_primary_10_1016_S0140_6736_23_01859_7 crossref_primary_10_1080_09640568_2024_2325041 crossref_primary_10_1002_wat2_1750 crossref_primary_10_1007_s11269_025_04125_6 crossref_primary_10_1142_S2382624X25500018 crossref_primary_10_1016_j_jhydrol_2024_130656 crossref_primary_10_1002_wat2_1637 crossref_primary_10_3389_frsc_2023_1186885 crossref_primary_10_1007_s11269_024_03841_9 crossref_primary_10_2166_wcc_2023_424 crossref_primary_10_1016_j_scs_2024_105851 crossref_primary_10_2166_wst_2024_032 crossref_primary_10_1002_eco_70002 crossref_primary_10_1002_wat2_70006 crossref_primary_10_1038_s41598_024_53611_1 crossref_primary_10_1016_j_geosus_2024_06_002 crossref_primary_10_1016_j_ijdrr_2025_105207 crossref_primary_10_1109_ACCESS_2024_3498893 crossref_primary_10_3390_w15030523 crossref_primary_10_1016_j_ijdrr_2023_104075 crossref_primary_10_3390_rs17010090 crossref_primary_10_1016_j_isci_2023_105926 crossref_primary_10_5194_nhess_24_3907_2024 crossref_primary_10_1002_hyp_15333 crossref_primary_10_1016_j_geoforum_2025_104212 crossref_primary_10_3390_urbansci9030085 crossref_primary_10_3390_atmos16030305 crossref_primary_10_1002_wat2_1680 crossref_primary_10_1007_s11625_024_01475_9 crossref_primary_10_1002_wat2_1733 crossref_primary_10_1002_wat2_70016 crossref_primary_10_1080_19475705_2024_2445631 crossref_primary_10_3390_su151310233 crossref_primary_10_1016_j_jhydrol_2025_132915 crossref_primary_10_3390_environments11010008 crossref_primary_10_3390_w14162521 crossref_primary_10_17645_up_v8i1_6129 crossref_primary_10_3390_w17010076 crossref_primary_10_15531_KSCCR_2024_15_6_1023 crossref_primary_10_1016_j_wasec_2023_100136 crossref_primary_10_3390_geosciences13050134 crossref_primary_10_1016_j_jhydrol_2024_131248 crossref_primary_10_1038_s41598_024_61878_7 crossref_primary_10_1002_wcc_889 crossref_primary_10_1007_s44268_023_00002_6 crossref_primary_10_1016_j_jhydrol_2024_131481 crossref_primary_10_3390_w16192802 crossref_primary_10_1007_s11069_024_06791_y crossref_primary_10_1007_s11069_024_06868_8 crossref_primary_10_1016_j_ufug_2024_128534 crossref_primary_10_1111_jfr3_12974 crossref_primary_10_1007_s43545_024_00909_6 |
Cites_doi | 10.1016/j.cities.2018.01.022 10.1007/s11252-016-0578-5 10.1007/s13762-016-1177-y 10.1061/41099(367)94 10.3390/w8070272 10.1016/j.jhydrol.2019.124038 10.1680/bgc.64195.001 10.1016/j.cosust.2020.05.001 10.1029/2020GL091824 10.1088/1748-9326/ab502c 10.1016/j.ufug.2020.126770 10.1016/j.jhydrol.2014.07.007 10.1016/j.geoforum.2006.10.005 10.1016/j.landurbplan.2014.11.012 10.1098/rsta.2019.0204 10.1098/rsta.2019.0216 10.1080/07900627.2017.1369866 10.1016/j.watres.2017.07.038 10.1080/09640568.2017.1355777 10.1016/j.cities.2017.11.013 10.1098/rspa.2016.0706 10.1007/s00267-008-9119-1 10.1061/(ASCE)0733-9496(2003)129:3(234) 10.3390/w13040544 10.1016/j.proeng.2016.08.822 10.1016/j.jeem.2019.102274 10.2166/bgs.2019.199 10.1098/rsta.2019.0389 10.1016/j.landusepol.2018.03.005 10.1111/j.1753-318X.2010.01072.x 10.1016/j.jclepro.2020.125146 10.3390/w12113122 10.1016/j.envres.2019.108799 10.1002/hyp.13641 10.1016/j.ecoser.2016.12.004 10.1596/25112 10.1016/j.cities.2019.02.018 10.1016/j.envsoft.2018.12.004 10.1002/wat2.1406 10.2166/wh.2006.031 10.1016/j.jenvman.2021.112766 10.1080/13574809.2014.944113 10.1016/j.scs.2016.10.002 10.1061/(ASCE)WR.1943-5452.0000643 10.1016/j.jenvman.2013.09.026 10.1111/jfr3.12269 10.1007/s11783-017-0973-z 10.2166/wst.2009.436 10.1111/jfr3.12535 10.1177/0309133312438908 10.3390/w9120953 10.2166/wst.2010.806 10.1061/(ASCE)0733-9488(2009)135:4(150) 10.1061/(ASCE)EE.1943-7870.0000861 10.1061/(ASCE)WR.1943-5452.0001037 10.1016/j.jenvman.2019.03.036 10.1016/j.scitotenv.2015.11.159 10.1016/j.jhydrol.2011.11.031 10.1061/JSWBAY.0000848 10.1016/j.jhydrol.2016.03.037 10.1002/9781119233015 10.1016/j.jhydrol.2019.02.002 10.1088/1755-1315/323/1/012080 10.3390/w7031046 10.1007/s11069-011-9745-4 10.1080/15730620701737470 10.1080/1573062X.2019.1700286 10.1016/j.advwatres.2017.07.009 10.1111/jfr3.12267 10.1111/jfr3.12218 10.2166/wst.2008.262 10.1111/j.1747-6593.2010.00236.x 10.1080/1573062X.2017.1279190 10.1002/wat2.1500 10.13044/j.sdewes.d7.0279 10.5194/nhess-17-1-2017 10.1016/j.ecolmodel.2014.07.012 10.1016/j.jhydrol.2004.06.023 10.1038/ngeo629 10.5194/hess-23-2939-2019 10.5751/ES-08373-210239 10.1080/09613218.2014.858203 10.1002/rra.3529 10.2495/SDP-V13-N2-226-236 10.1061/JSWBAY.0000878 10.1002/wat2.1254 10.2175/193864708790894836 10.1038/s41598-019-43716-3 10.1002/2017EF000587 10.1016/j.agee.2017.03.026 10.1016/j.scitotenv.2016.05.101 10.1080/1573062X.2014.916314 |
ContentType | Journal Article |
Copyright | 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2021 Wiley Periodicals LLC. |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1002/wat2.1560 |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2049-1948 |
EndPage | n/a |
ExternalDocumentID | 10_1002_wat2_1560 WAT21560 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: British Council Newton Fund/National Natural Science Foundation of China (Reference: 51981330057) under the Research Links grant Scheme funderid: 2018‐RLWK10‐10399 |
GroupedDBID | 0R~ 1OC 1VH 31~ 33P 8-1 AAESR AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACPOU ACUHS ACXBN ACXQS ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AUFTA AZVAB BFHJK BMNLL BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- P2W R.K ROL SUPJJ WBKPD WIH WIK WMRSR WOHZO WSUWO WXSBR WYJ AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION HGLYW 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c3320-7aeb87e8ec4ed9ac32fe82cd99b9f2c9ee4158a3e23ad74f795eb27ce4d8b3e13 |
ISSN | 2049-1948 |
IngestDate | Sat Jul 26 02:57:55 EDT 2025 Tue Jul 01 02:10:11 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Wed Jan 22 16:27:19 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3320-7aeb87e8ec4ed9ac32fe82cd99b9f2c9ee4158a3e23ad74f795eb27ce4d8b3e13 |
Notes | Funding information British Council Newton Fund/National Natural Science Foundation of China (Reference: 51981330057) under the Research Links grant Scheme, Grant/Award Number: 2018‐RLWK10‐10399 Edited by Stuart Lane, Editor‐in‐Chief ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0069-6621 0000-0001-6091-6596 0000-0002-2450-9624 0000-0003-4595-9496 0000-0001-9416-488X 0000-0003-4303-4705 0000-0002-8743-9993 0000-0003-1336-5490 0000-0001-5181-6075 0000-0001-9742-4229 |
OpenAccessLink | https://nottingham-repository.worktribe.com/output/7354116 |
PQID | 2581684321 |
PQPubID | 2034617 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2581684321 crossref_primary_10_1002_wat2_1560 crossref_citationtrail_10_1002_wat2_1560 wiley_primary_10_1002_wat2_1560_WAT21560 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November/December 2021 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November/December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Wiley interdisciplinary reviews. Water |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | Roca M. (e_1_2_11_2_84_1) 2017 e_1_2_11_2_117_1 Barker A. (e_1_2_11_2_10_1) 2019 e_1_2_11_2_74_1 e_1_2_11_2_97_1 e_1_2_11_2_51_1 e_1_2_11_2_70_1 e_1_2_11_2_93_1 e_1_2_11_2_13_1 e_1_2_11_2_59_1 e_1_2_11_2_32_1 e_1_2_11_2_17_1 e_1_2_11_2_78_1 e_1_2_11_2_36_1 e_1_2_11_2_113_1 e_1_2_11_2_6_1 e_1_2_11_2_106_1 Blecken G. (e_1_2_11_2_18_1) 2015; 3 e_1_2_11_2_62_1 e_1_2_11_2_85_1 McCutheon M. (e_1_2_11_2_71_1) 2013; 15 e_1_2_11_2_20_1 e_1_2_11_2_81_1 e_1_2_11_2_24_1 e_1_2_11_2_121_1 e_1_2_11_2_43_1 e_1_2_11_2_2_1 e_1_2_11_2_28_1 e_1_2_11_2_66_1 e_1_2_11_2_47_1 e_1_2_11_2_89_1 e_1_2_11_2_102_1 e_1_2_11_2_116_1 Hoyer J. (e_1_2_11_2_54_1) 2011 e_1_2_11_2_73_1 e_1_2_11_2_96_1 e_1_2_11_2_92_1 e_1_2_11_2_12_1 e_1_2_11_2_35_1 e_1_2_11_2_58_1 De Neufville R. (e_1_2_11_2_31_1) 2011 e_1_2_11_2_16_1 e_1_2_11_2_39_1 e_1_2_11_2_112_1 e_1_2_11_2_77_1 e_1_2_11_2_105_1 e_1_2_11_2_7_1 e_1_2_11_2_109_1 Green D. (e_1_2_11_2_50_1) 2021; 2021 e_1_2_11_2_61_1 e_1_2_11_2_80_1 e_1_2_11_2_23_1 e_1_2_11_2_46_1 e_1_2_11_2_69_1 e_1_2_11_2_120_1 e_1_2_11_2_27_1 e_1_2_11_2_65_1 e_1_2_11_2_88_1 e_1_2_11_2_101_1 e_1_2_11_2_3_1 e_1_2_11_2_115_1 e_1_2_11_2_19_1 e_1_2_11_2_119_1 e_1_2_11_2_72_1 e_1_2_11_2_95_1 e_1_2_11_2_53_1 e_1_2_11_2_91_1 e_1_2_11_2_30_1 e_1_2_11_2_34_1 e_1_2_11_2_11_1 e_1_2_11_2_76_1 e_1_2_11_2_99_1 e_1_2_11_2_38_1 e_1_2_11_2_111_1 Jayasooriys V. (e_1_2_11_2_55_1) 2014; 225 e_1_2_11_2_15_1 European Commission (e_1_2_11_2_41_1) 2013 e_1_2_11_2_57_1 Green D. (e_1_2_11_2_49_1) 2014 e_1_2_11_2_104_1 e_1_2_11_2_8_1 e_1_2_11_2_108_1 e_1_2_11_1_2_1 e_1_2_11_2_64_1 Burgess‐Gamble L. (e_1_2_11_2_21_1) 2017 e_1_2_11_2_60_1 e_1_2_11_2_45_1 e_1_2_11_2_22_1 e_1_2_11_2_87_1 e_1_2_11_2_100_1 e_1_2_11_2_4_1 e_1_2_11_2_26_1 e_1_2_11_2_68_1 e_1_2_11_2_123_1 e_1_2_11_2_118_1 e_1_2_11_2_94_1 e_1_2_11_2_75_1 e_1_2_11_2_52_1 e_1_2_11_2_90_1 e_1_2_11_2_33_1 e_1_2_11_2_110_1 Evans E. (e_1_2_11_2_42_1) 2004 e_1_2_11_2_98_1 e_1_2_11_2_14_1 e_1_2_11_2_37_1 e_1_2_11_2_56_1 Riel W. V. (e_1_2_11_2_83_1) 2011 e_1_2_11_2_114_1 e_1_2_11_2_79_1 e_1_2_11_2_5_1 e_1_2_11_2_29_1 e_1_2_11_2_107_1 e_1_2_11_2_9_1 Taleb N. (e_1_2_11_2_103_1) 2012 e_1_2_11_2_63_1 e_1_2_11_2_86_1 e_1_2_11_2_40_1 e_1_2_11_2_82_1 e_1_2_11_2_44_1 e_1_2_11_2_25_1 e_1_2_11_2_48_1 e_1_2_11_2_67_1 e_1_2_11_2_122_1 |
References_xml | – ident: e_1_2_11_2_82_1 doi: 10.1016/j.cities.2018.01.022 – ident: e_1_2_11_2_12_1 doi: 10.1007/s11252-016-0578-5 – ident: e_1_2_11_2_3_1 doi: 10.1007/s13762-016-1177-y – ident: e_1_2_11_2_48_1 – ident: e_1_2_11_2_52_1 doi: 10.1061/41099(367)94 – ident: e_1_2_11_2_89_1 doi: 10.3390/w8070272 – ident: e_1_2_11_2_110_1 doi: 10.1016/j.jhydrol.2019.124038 – ident: e_1_2_11_2_77_1 doi: 10.1680/bgc.64195.001 – volume-title: Building a green infrastructure for Europe year: 2013 ident: e_1_2_11_2_41_1 – ident: e_1_2_11_2_123_1 doi: 10.1016/j.cosust.2020.05.001 – ident: e_1_2_11_2_92_1 doi: 10.1029/2020GL091824 – ident: e_1_2_11_2_72_1 doi: 10.1088/1748-9326/ab502c – volume: 225 start-page: 1 year: 2014 ident: e_1_2_11_2_55_1 article-title: Tools for modelling of storm‐water management and economics of green infrastructure practices: A review publication-title: Water, Air, & Soil Pollution – ident: e_1_2_11_2_65_1 – ident: e_1_2_11_2_66_1 doi: 10.1016/j.ufug.2020.126770 – ident: e_1_2_11_2_69_1 doi: 10.1016/j.jhydrol.2014.07.007 – ident: e_1_2_11_2_16_1 – ident: e_1_2_11_2_57_1 doi: 10.1016/j.geoforum.2006.10.005 – ident: e_1_2_11_2_9_1 doi: 10.1016/j.landurbplan.2014.11.012 – ident: e_1_2_11_2_59_1 doi: 10.1098/rsta.2019.0204 – ident: e_1_2_11_2_75_1 doi: 10.1098/rsta.2019.0216 – ident: e_1_2_11_2_8_1 doi: 10.1080/07900627.2017.1369866 – ident: e_1_2_11_2_32_1 – ident: e_1_2_11_2_37_1 doi: 10.1016/j.watres.2017.07.038 – start-page: 1 volume-title: Geomorphological techniques (online edition) year: 2014 ident: e_1_2_11_2_49_1 – ident: e_1_2_11_2_24_1 doi: 10.1080/09640568.2017.1355777 – ident: e_1_2_11_2_67_1 doi: 10.1016/j.cities.2017.11.013 – ident: e_1_2_11_2_29_1 doi: 10.1098/rspa.2016.0706 – ident: e_1_2_11_2_85_1 doi: 10.1007/s00267-008-9119-1 – ident: e_1_2_11_2_11_1 doi: 10.1061/(ASCE)0733-9496(2003)129:3(234) – ident: e_1_2_11_2_76_1 doi: 10.3390/w13040544 – ident: e_1_2_11_2_109_1 – ident: e_1_2_11_2_122_1 doi: 10.1016/j.proeng.2016.08.822 – ident: e_1_2_11_2_6_1 doi: 10.1016/j.jeem.2019.102274 – ident: e_1_2_11_2_79_1 doi: 10.2166/bgs.2019.199 – ident: e_1_2_11_2_61_1 doi: 10.1098/rsta.2019.0389 – ident: e_1_2_11_2_25_1 doi: 10.1016/j.landusepol.2018.03.005 – ident: e_1_2_11_2_108_1 – ident: e_1_2_11_2_28_1 doi: 10.1111/j.1753-318X.2010.01072.x – ident: e_1_2_11_2_15_1 – ident: e_1_2_11_2_45_1 doi: 10.1016/j.jclepro.2020.125146 – ident: e_1_2_11_2_95_1 doi: 10.3390/w12113122 – volume: 2021 start-page: 12457 year: 2021 ident: e_1_2_11_2_50_1 article-title: National green infrastructure facility: A specialized “living laboratory” to assess the value of urban green infrastructure publication-title: EGU General Assembly – ident: e_1_2_11_2_33_1 doi: 10.1016/j.envres.2019.108799 – ident: e_1_2_11_2_39_1 doi: 10.1002/hyp.13641 – ident: e_1_2_11_2_22_1 doi: 10.1016/j.ecoser.2016.12.004 – ident: e_1_2_11_2_94_1 doi: 10.1596/25112 – ident: e_1_2_11_2_23_1 doi: 10.1016/j.cities.2019.02.018 – ident: e_1_2_11_2_63_1 – ident: e_1_2_11_2_70_1 doi: 10.1016/j.envsoft.2018.12.004 – ident: e_1_2_11_2_104_1 doi: 10.1002/wat2.1406 – ident: e_1_2_11_2_107_1 doi: 10.2166/wh.2006.031 – ident: e_1_2_11_2_112_1 doi: 10.1016/j.jenvman.2021.112766 – ident: e_1_2_11_2_64_1 doi: 10.1080/13574809.2014.944113 – ident: e_1_2_11_2_80_1 doi: 10.1016/j.scs.2016.10.002 – ident: e_1_2_11_2_87_1 doi: 10.1061/(ASCE)WR.1943-5452.0000643 – start-page: 239 year: 2011 ident: e_1_2_11_2_31_1 article-title: Flexibility in engineering design publication-title: MIT Press – ident: e_1_2_11_2_97_1 doi: 10.1016/j.jenvman.2013.09.026 – ident: e_1_2_11_2_118_1 – ident: e_1_2_11_2_27_1 doi: 10.1111/jfr3.12269 – volume-title: Water sensitive urban design: Principles and inspiration for sustainable stormwater management in the city of the future year: 2011 ident: e_1_2_11_2_54_1 – ident: e_1_2_11_2_106_1 doi: 10.1007/s11783-017-0973-z – volume-title: Foresight future flooding, volume I and volume II year: 2004 ident: e_1_2_11_2_42_1 – ident: e_1_2_11_2_117_1 doi: 10.2166/wst.2009.436 – ident: e_1_2_11_2_111_1 doi: 10.1111/jfr3.12535 – ident: e_1_2_11_2_115_1 doi: 10.1177/0309133312438908 – ident: e_1_2_11_2_26_1 – ident: e_1_2_11_2_43_1 doi: 10.3390/w9120953 – ident: e_1_2_11_2_13_1 doi: 10.2166/wst.2010.806 – ident: e_1_2_11_2_113_1 doi: 10.1061/(ASCE)0733-9488(2009)135:4(150) – ident: e_1_2_11_2_73_1 doi: 10.1061/(ASCE)EE.1943-7870.0000861 – ident: e_1_2_11_2_93_1 doi: 10.1061/(ASCE)WR.1943-5452.0001037 – ident: e_1_2_11_2_5_1 doi: 10.1016/j.jenvman.2019.03.036 – ident: e_1_2_11_2_119_1 doi: 10.1016/j.scitotenv.2015.11.159 – ident: e_1_2_11_2_121_1 doi: 10.1016/j.jhydrol.2011.11.031 – ident: e_1_2_11_2_7_1 doi: 10.1061/JSWBAY.0000848 – ident: e_1_2_11_2_120_1 doi: 10.1016/j.jhydrol.2016.03.037 – ident: e_1_2_11_1_2_1 doi: 10.1002/9781119233015 – ident: e_1_2_11_2_2_1 doi: 10.1016/j.jhydrol.2019.02.002 – ident: e_1_2_11_2_96_1 doi: 10.1088/1755-1315/323/1/012080 – volume: 15 start-page: 289 year: 2013 ident: e_1_2_11_2_71_1 article-title: Shades of green: Using SWMM LID controls to simulate green infrastructure publication-title: Journal of Water Management Modelling – ident: e_1_2_11_2_4_1 doi: 10.3390/w7031046 – ident: e_1_2_11_2_30_1 doi: 10.1007/s11069-011-9745-4 – volume-title: Antifragile: Things that gain from disorder year: 2012 ident: e_1_2_11_2_103_1 – ident: e_1_2_11_2_102_1 doi: 10.1080/15730620701737470 – ident: e_1_2_11_2_114_1 doi: 10.1080/1573062X.2019.1700286 – ident: e_1_2_11_2_88_1 doi: 10.1016/j.advwatres.2017.07.009 – ident: e_1_2_11_2_53_1 doi: 10.1111/jfr3.12267 – volume-title: Working with natural processes–Evidence directory. Environmental Agency, Report No. SC150005 year: 2017 ident: e_1_2_11_2_21_1 – ident: e_1_2_11_2_105_1 doi: 10.1111/jfr3.12218 – ident: e_1_2_11_2_38_1 doi: 10.2166/wst.2008.262 – ident: e_1_2_11_2_116_1 doi: 10.1111/j.1747-6593.2010.00236.x – ident: e_1_2_11_2_78_1 doi: 10.1080/1573062X.2017.1279190 – ident: e_1_2_11_2_60_1 doi: 10.1002/wat2.1500 – ident: e_1_2_11_2_62_1 – ident: e_1_2_11_2_46_1 doi: 10.13044/j.sdewes.d7.0279 – ident: e_1_2_11_2_51_1 doi: 10.5194/nhess-17-1-2017 – ident: e_1_2_11_2_40_1 – ident: e_1_2_11_2_68_1 doi: 10.1016/j.ecolmodel.2014.07.012 – ident: e_1_2_11_2_34_1 doi: 10.1016/j.jhydrol.2004.06.023 – volume-title: Green approaches in river engineering: Supporting implementation of green infrastructure year: 2017 ident: e_1_2_11_2_84_1 – ident: e_1_2_11_2_100_1 doi: 10.1038/ngeo629 – ident: e_1_2_11_2_91_1 doi: 10.5194/hess-23-2939-2019 – ident: e_1_2_11_2_58_1 doi: 10.5751/ES-08373-210239 – ident: e_1_2_11_2_99_1 – ident: e_1_2_11_2_19_1 doi: 10.1080/09613218.2014.858203 – ident: e_1_2_11_2_56_1 doi: 10.1002/rra.3529 – ident: e_1_2_11_2_90_1 doi: 10.2495/SDP-V13-N2-226-236 – volume: 3 start-page: 278 year: 2015 ident: e_1_2_11_2_18_1 article-title: Stormwater control measure (SCM) maintenance considerations to ensure designed functionality publication-title: Urban Water Journal – ident: e_1_2_11_2_35_1 doi: 10.1061/JSWBAY.0000878 – volume-title: Exploratory study of pluvial flood impacts in Dutch urban areas year: 2011 ident: e_1_2_11_2_83_1 – ident: e_1_2_11_2_47_1 doi: 10.1002/wat2.1254 – ident: e_1_2_11_2_74_1 – ident: e_1_2_11_2_101_1 doi: 10.2175/193864708790894836 – ident: e_1_2_11_2_20_1 doi: 10.1038/s41598-019-43716-3 – ident: e_1_2_11_2_98_1 doi: 10.1002/2017EF000587 – volume-title: Understanding green infrastructure at different scales: A signposting guide report year: 2019 ident: e_1_2_11_2_10_1 – ident: e_1_2_11_2_86_1 doi: 10.1016/j.agee.2017.03.026 – ident: e_1_2_11_2_14_1 – ident: e_1_2_11_2_81_1 doi: 10.1016/j.scitotenv.2016.05.101 – ident: e_1_2_11_2_17_1 – ident: e_1_2_11_2_36_1 – ident: e_1_2_11_2_44_1 doi: 10.1080/1573062X.2014.916314 |
SSID | ssj0001105395 |
Score | 2.4880333 |
SecondaryResourceType | review_article |
Snippet | Urban flooding is a key global challenge which is expected to become exacerbated under global change due to more intense rainfall and flashier runoff regimes... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e1560 |
SubjectTerms | Environmental engineering Flood control Flood management Flooding Floods Green infrastructure Hydrology Infrastructure Mitigation Rain Rainfall resilience Risk management Runoff Storms Stormwater Stormwater management SuDS Sustainability sustainable drainage Urban areas Urban environments urban flooding Urban runoff Water management water sensitive urban design |
Title | Green infrastructure: The future of urban flood risk management? |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwat2.1560 https://www.proquest.com/docview/2581684321 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fixMxEA717kUfxJ94ekoQHwTZ2p1kdxNftHgnh9z5Yo-7tyWbzYKgrdQWwX_Ef9eZJPujtgenL0vZhmzJfM3MZL_5hrEXmZpIp5RJDLpXKsnJE12nJrE2rxU6OKEkFQqffcpPzuXHy-xyNPo9YC2tV9XY_tpZV_I_VsV7aFeqkv0Hy3aT4g38jPbFK1oYr9eysSfNEJ9qaYIO7HrpWhpFEAuhWHC9rOgkgxjqgUn-raO8_EXrC1sEKUgsN6p1o2Tp-NWFGbB5_dP7MvUhfeaop88c0wHKkKcTS7xio_H-jNbEFiGni_WX-MYonkZAGsvyOk-xTffZ4nQCJiVJqoPA5tjtuBc3ZjXAXz7w0J3_2tr-g5zsT7OCMVWI9z6ufa_fDcquHOZ9-8V0BvTVDbYPmH_gBro_PTo7_dwf32FcKnxPn-6nt7pVE3jdTb0Z7fQpzDAR8pHM7A67HVMQPg14ustGbn6P3RoIU95n77xt-Say3nDEFQ-44ouGe1xxjytOuOI9rt4-YOcfjmfvT5LYayOxgoroC-MqVTjlrHS1NlZA4xTYWutKN2C1cxjpKSMcCFMXsil05ioorJO1qoRLxUO2N1_M3SPGpTAmr9JCNBMp6ywzoAzUGRgNmA7A5IC9bNektFGInvqhfC2DhDaUtHwlLd8Be94N_R7UV3YNOmwXtox_zh8lZNRQRgpI8XF-sa-eoGyt_fj6Q5-wmz38D9kemsI9xfB0VT2LUPkDMG6OEA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Green+infrastructure%3A+The+future+of+urban+flood+risk+management%3F&rft.jtitle=Wiley+interdisciplinary+reviews.+Water&rft.au=Green%2C+Daniel&rft.au=O%27Donnell%2C+Emily&rft.au=Johnson%2C+Matthew&rft.au=Slater%2C+Louise&rft.date=2021-11-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2049-1948&rft.eissn=2049-1948&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwat2.1560&rft.externalDBID=10.1002%252Fwat2.1560&rft.externalDocID=WAT21560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1948&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1948&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1948&client=summon |