A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the qu...
Saved in:
Published in | Finite elements in analysis and design Vol. 196; p. 103572 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0168-874X 1872-6925 |
DOI | 10.1016/j.finel.2021.103572 |
Cover
Loading…
Abstract | Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence.
•A machine learning-based surrogate model is proposed to integrate with DE algorithm for solving the optimum structure.•The deep neural network is capable of exactly predicting the displacement of nonlinear response.•The combining method is effective, reduces the computational time, and guarantees solution accuracy. |
---|---|
AbstractList | Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence. Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence. •A machine learning-based surrogate model is proposed to integrate with DE algorithm for solving the optimum structure.•The deep neural network is capable of exactly predicting the displacement of nonlinear response.•The combining method is effective, reduces the computational time, and guarantees solution accuracy. |
ArticleNumber | 103572 |
Author | Mai, Hau T. Kang, Joowon Lee, Jaehong |
Author_xml | – sequence: 1 givenname: Hau T. surname: Mai fullname: Mai, Hau T. email: maitienhaunx@gmail.com organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea – sequence: 2 givenname: Joowon surname: Kang fullname: Kang, Joowon email: kangj@ynu.ac.kr organization: School of Architecture, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea – sequence: 3 givenname: Jaehong surname: Lee fullname: Lee, Jaehong email: jhlee@sejong.ac.kr organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea |
BookMark | eNqFkEtLBDEQhIMouD5-gZeA51mTzDMHDyK-YMGLgreQyXR2s8xM1k5G0V9v3PXkQU8NRX3d1XVE9kc_AiFnnM0549XFem7dCP1cMMGTkpe12CMz3tQiq6Qo98ksuZqsqYuXQ3IUwpoxVoqqmJFwRQdtVommPWgc3bjMWh2go2FC9EsdgQ6-g55aj9Rvohvcp47Oj9RbGnEKgYY0TJwQAn13cUWX4AeI6Izu-w-aovZpvUbawkq_OY8n5MDqPsDpzzwmz7c3T9f32eLx7uH6apGZPOcxsyl-Kyrb6NbWRVlIDpCUUjZt1XRCF6KFpqhs3jCrjZS1zMu26iqQXWm7nOfH5Hy3d4P-dYIQ1dpPOKaTSpS15AUTRZ1ccucy6ENAsMq4uP0wona94kx9d6zWatux-u5Y7TpObP6L3aAbNH78Q13uKEjPvzlAFYyD0UDnEExUnXd_8l_23pui |
CitedBy_id | crossref_primary_10_1016_j_ins_2024_121408 crossref_primary_10_1016_j_istruc_2023_03_124 crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_1007_s40436_025_00545_0 crossref_primary_10_1007_s00521_025_11039_2 crossref_primary_10_1016_j_engstruct_2024_118987 crossref_primary_10_1016_j_finel_2022_103893 crossref_primary_10_1016_j_istruc_2023_105712 crossref_primary_10_1007_s11709_024_1083_1 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1007_s10489_023_04565_w crossref_primary_10_3389_fbuil_2022_1049616 crossref_primary_10_1007_s00158_024_03896_7 crossref_primary_10_1088_1755_1315_1350_1_012042 crossref_primary_10_1016_j_engstruct_2023_117290 crossref_primary_10_1109_ACCESS_2023_3282453 crossref_primary_10_1016_j_buildenv_2023_110191 crossref_primary_10_1016_j_compstruc_2025_107647 crossref_primary_10_1016_j_istruc_2023_04_006 crossref_primary_10_1007_s10999_023_09705_1 crossref_primary_10_1016_j_rineng_2024_102139 crossref_primary_10_1016_j_euromechsol_2022_104584 crossref_primary_10_32604_cmes_2022_020819 crossref_primary_10_1016_j_compstruct_2024_118713 crossref_primary_10_1016_j_engstruct_2024_117946 crossref_primary_10_1016_j_trd_2025_104656 crossref_primary_10_3390_math11102347 crossref_primary_10_1016_j_engappai_2024_109991 crossref_primary_10_1016_j_istruc_2024_107722 crossref_primary_10_1016_j_euromechsol_2022_104869 crossref_primary_10_1016_j_jobe_2025_112131 crossref_primary_10_1016_j_finel_2023_103956 crossref_primary_10_1016_j_compstruc_2023_107232 crossref_primary_10_1002_adfm_202404165 crossref_primary_10_1016_j_engstruct_2023_115980 crossref_primary_10_1016_j_heliyon_2024_e39308 crossref_primary_10_1016_j_compstruc_2022_106846 crossref_primary_10_1016_j_asoc_2022_109762 crossref_primary_10_1016_j_autcon_2024_105284 crossref_primary_10_1016_j_engstruct_2025_120089 crossref_primary_10_1016_j_istruc_2023_01_099 crossref_primary_10_1111_mice_13226 crossref_primary_10_3389_fbuil_2022_899072 crossref_primary_10_1016_j_apm_2022_02_036 crossref_primary_10_1016_j_jocs_2024_102327 crossref_primary_10_1007_s11831_024_10152_0 crossref_primary_10_1016_j_eswa_2023_121530 crossref_primary_10_1016_j_swevo_2024_101613 crossref_primary_10_1088_1674_4527_ac9f06 crossref_primary_10_1016_j_compositesb_2025_112393 crossref_primary_10_3390_a16080380 crossref_primary_10_3390_math10162906 crossref_primary_10_1016_j_istruc_2024_108158 crossref_primary_10_1155_2023_7953869 crossref_primary_10_1016_j_advengsoft_2024_103717 crossref_primary_10_1016_j_swevo_2022_101120 crossref_primary_10_1016_j_asoc_2025_112727 |
Cites_doi | 10.1016/j.cma.2006.09.001 10.1016/0168-874X(96)00046-7 10.1016/j.finel.2006.12.008 10.1016/S0168-874X(00)00057-3 10.1016/0045-7949(91)90276-R 10.1007/s00158-009-0420-2 10.2514/3.8882 10.1007/s00158-003-0300-0 10.1016/j.cma.2018.12.026 10.1016/j.compstruc.2015.11.014 10.1016/j.compstruc.2017.07.017 10.1016/j.finel.2006.04.007 10.1016/j.compstruc.2020.106283 10.1016/S0045-7949(99)00199-6 10.1016/j.jobe.2020.101244 10.1007/s00158-002-0179-1 10.1016/j.compstruc.2020.106310 10.1016/0020-7683(71)90038-2 10.1016/0045-7949(87)90242-2 10.1016/j.ijmecsci.2009.10.005 10.1098/rsif.2017.0844 10.1016/j.finel.2008.07.004 10.1016/S0920-4105(98)00034-5 10.1007/s10898-015-0376-2 10.1023/A:1008202821328 10.1016/j.finel.2014.07.001 10.1016/0045-7949(89)90070-9 10.1007/s00158-018-1958-7 10.1016/j.eswa.2015.04.072 10.1016/j.neucom.2016.12.038 10.2514/3.8224 10.1016/j.paerosci.2008.11.001 10.1016/0045-7949(91)90178-O 10.1007/s00158-018-2101-5 10.1016/j.cad.2019.05.038 10.1016/j.conbuildmat.2020.120950 10.1016/j.cma.2019.112790 10.1073/pnas.1911815116 10.1016/0956-0521(91)90050-F 10.1016/j.compositesb.2018.09.087 10.1007/BF01759922 10.1007/s00419-010-0407-x 10.1016/j.autcon.2016.05.004 10.1016/j.advengsoft.2015.11.001 10.1016/j.matdes.2020.109098 10.1007/s00521-016-2426-1 10.1016/j.ijplas.2020.102852 10.1016/0020-7683(79)90081-7 10.1016/j.eml.2017.10.001 10.1016/j.compstruc.2006.02.004 10.1016/j.cma.2020.112861 10.1007/s11831-017-9237-0 10.1016/j.ast.2019.03.041 10.1016/j.compstruc.2006.09.002 10.1016/j.apacoust.2020.107547 10.1016/j.compstruc.2017.06.016 |
ContentType | Journal Article |
Copyright | 2021 Copyright Elsevier BV Nov 15, 2021 |
Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Nov 15, 2021 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.finel.2021.103572 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1872-6925 |
ExternalDocumentID | 10_1016_j_finel_2021_103572 S0168874X21000561 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH T9H VH1 WUQ 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-f872b26f8abf745491ee72b598b68d2a42be846f380fac997935b6d6e9d5fd313 |
IEDL.DBID | .~1 |
ISSN | 0168-874X |
IngestDate | Sun Jul 13 04:57:31 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Tue Jul 01 03:12:46 EDT 2025 Fri Feb 23 02:41:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep neural network Neural network Surrogate model Geometric nonlinear Machine learning Truss optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-f872b26f8abf745491ee72b598b68d2a42be846f380fac997935b6d6e9d5fd313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2579140247 |
PQPubID | 2045476 |
ParticipantIDs | proquest_journals_2579140247 crossref_citationtrail_10_1016_j_finel_2021_103572 crossref_primary_10_1016_j_finel_2021_103572 elsevier_sciencedirect_doi_10_1016_j_finel_2021_103572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Finite elements in analysis and design |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Abueidda, Koric, Sobh, Sehitoglu (bib27) 2020; 136 Krishnamoorthy, Ramesh, Dinesh (bib71) 1996; 22 Hrinda, Nguyen (bib14) 2008; 44 Truong, Dinh-Cong, Lee, Nguyen-Thoi (bib41) 2020; 30 M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics, Non-linear Finite Element Analysis of Solids and Structures, Wiley, ???? Hajela, Berke (bib37) 1991; 2 Zeiler (bib61) 2012 G. Hinton, N. Srivastava, K. Swersky, Neural Networks for Machine Learning, Coursera, Video Lectures 264 (????). Shin, Park, Park (bib13) 2007; 196 Yildiz, Öztürk, Kaya, Öztürk (bib45) 2003; 25 Liang, Liu, Martin, Sun (bib39) 2018; 15 Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (bib31) 2019; 116 Berke, Hajela (bib38) 1992; 4 Ho-Huu, Nguyen-Thoi, Nguyen-Thoi, Le-Anh (bib69) 2015; 42 Forrester, Keane (bib25) 2009; 45 Bonet, Gil, Wood (bib70) 2012 Riks (bib51) 1979; 15 Boukouvala, Hasan, Floudas (bib54) 2017; 67 Yu, Hur, Jung, Jang (bib33) 2019; 59 Duchi, Hazan, Singer (bib60) 2011; 12 H. Nguyen, T. Vu, T. P. Vo, H.-T. Thai, Efficient machine learning models for prediction of concrete strengths, Construct. Build. Mater. 266 (????) 120950. Saka, Ulker (bib7) 1991; 41 Ho-Huu, Nguyen-Thoi, Truong-Khac, Le-Anh, Vo-Duy (bib17) 2018; 29 Thai, Nguyen, Lee, Patel, Vo (bib1) 2020 Lee, Ha, Zokhirova, Moon, Lee (bib40) 2018; 25 Kameshki, Saka (bib20) 2007; 85 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib28) 2020; 362 Hajela, Berke (bib34) 1991; 41 Lieu, Do, Lee (bib73) 2018; 195 Kaveh, Rahami (bib19) 2006; 84 Gu, Chen, Buehler (bib30) 2018; 18 El-Sayed, Ridgely, Sandgren (bib12) 1989; 32 Abueidda, Koric, Sobh (bib35) 2020; 237 Wang, Ma, Zhao, Tian (bib58) 2020 S. Lee, S. Park, T. Kim, Q. X. Lieu, J. Lee, Damage quantification in truss structures by limited sensor-based surrogate model, Appl. Acoust. 172 (????) 107547. Ho-Huu, Nguyen-Thoi, Vo-Duy, Nguyen-Trang (bib67) 2016; 165 Vo, Lee (bib4) 2011; 81 Khot, Kamat (bib10) 1985; 23 Haririan, Cardoso, Arora (bib11) 1987; 26 Bartoli, Lefebvre, Dubreuil, Olivanti, Priem, Bons, Martins, Morlier (bib24) 2019; 90 Ho-Huu, Nguyen-Thoi, Le-Anh, Nguyen-Trang (bib68) 2016; 92 Ho-Huu, Vo-Duy, Luu-Van, Le-Anh, Nguyen-Thoi (bib18) 2016; 68 Shi, Liu, Long, Wu, Tang (bib23) 2019; 347 Hou, Li, Long, Yang, Li (bib3) 2007; 43 Chandrasekhar, Suresh (bib42) 2020 Deb, Gulati (bib15) 2001; 37 Nguyen, Atroshchenko, Nguyen-Xuan, Vo (bib2) 2017; 193 Arpat, Gümrah, Yeten (bib55) 1998; 20 Zhou, Zhan, Zhang, Zhu, Bai, Wang, Gu (bib43) 2020; 239 Choong, Hangai (bib72) 1993; 34 Lee, Kim, Lieu, Lee (bib29) 2020 Do, Lee, Lee (bib64) 2019; 159 Coda, Paccola (bib49) 2014; 91 Yun, Bahng (bib46) 2000; 77 Niutta, Wehrle, Duddeck, Belingardi (bib53) 2018; 57 Vo, Lee (bib5) 2010; 52 Khot (bib9) 1983; 21 Missoum, Gürdal, Gu (bib8) 2002; 23 Shan, Wang (bib21) 2010; 41 Chen, Qiu, Gao, Jiang, Yang (bib22) 2020; 362 Greco, Gesualdo, Venturini, Coda (bib48) 2006; 42 Deng, Li, Huang, Yao, Yu, Seide, Seltzer, Zweig, He, Williams (bib59) 2013 Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib26) 2017; 234 Riks (bib50) 1972 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib66) 2014; 15 Regis (bib52) 2020 Nwankpa, Ijomah, Gachagan, Marshall (bib57) 2018 Kingma, Ba, Adam (bib63) 2014 Wempner (bib6) 1971; 7 Storn, Price (bib16) 1997; 11 Li, Huang, Li, Zheng, Hong (bib44) 2019; 115 Hamdia, Zhuang, Rabczuk (bib56) 2020 Kollmann, Abueidda, Koric, Guleryuz, Sobh (bib36) 2020; 196 Liu (10.1016/j.finel.2021.103572_bib26) 2017; 234 Khot (10.1016/j.finel.2021.103572_bib9) 1983; 21 Wempner (10.1016/j.finel.2021.103572_bib6) 1971; 7 Zeiler (10.1016/j.finel.2021.103572_bib61) 2012 Riks (10.1016/j.finel.2021.103572_bib50) 1972 Shan (10.1016/j.finel.2021.103572_bib21) 2010; 41 10.1016/j.finel.2021.103572_bib47 Bonet (10.1016/j.finel.2021.103572_bib70) 2012 Choong (10.1016/j.finel.2021.103572_bib72) 1993; 34 Coda (10.1016/j.finel.2021.103572_bib49) 2014; 91 Kingma (10.1016/j.finel.2021.103572_bib63) 2014 Saka (10.1016/j.finel.2021.103572_bib7) 1991; 41 Missoum (10.1016/j.finel.2021.103572_bib8) 2002; 23 Hrinda (10.1016/j.finel.2021.103572_bib14) 2008; 44 Nguyen (10.1016/j.finel.2021.103572_bib2) 2017; 193 Yu (10.1016/j.finel.2021.103572_bib33) 2019; 59 Niutta (10.1016/j.finel.2021.103572_bib53) 2018; 57 Liang (10.1016/j.finel.2021.103572_bib39) 2018; 15 Storn (10.1016/j.finel.2021.103572_bib16) 1997; 11 Li (10.1016/j.finel.2021.103572_bib44) 2019; 115 Chandrasekhar (10.1016/j.finel.2021.103572_bib42) 2020 Hajela (10.1016/j.finel.2021.103572_bib34) 1991; 41 Hou (10.1016/j.finel.2021.103572_bib3) 2007; 43 Do (10.1016/j.finel.2021.103572_bib64) 2019; 159 Krishnamoorthy (10.1016/j.finel.2021.103572_bib71) 1996; 22 Boukouvala (10.1016/j.finel.2021.103572_bib54) 2017; 67 Ho-Huu (10.1016/j.finel.2021.103572_bib68) 2016; 92 Deng (10.1016/j.finel.2021.103572_bib59) 2013 Vo (10.1016/j.finel.2021.103572_bib4) 2011; 81 Kollmann (10.1016/j.finel.2021.103572_bib36) 2020; 196 Haririan (10.1016/j.finel.2021.103572_bib11) 1987; 26 Forrester (10.1016/j.finel.2021.103572_bib25) 2009; 45 Truong (10.1016/j.finel.2021.103572_bib41) 2020; 30 Samaniego (10.1016/j.finel.2021.103572_bib28) 2020; 362 Abueidda (10.1016/j.finel.2021.103572_bib27) 2020; 136 Ho-Huu (10.1016/j.finel.2021.103572_bib69) 2015; 42 Yun (10.1016/j.finel.2021.103572_bib46) 2000; 77 Zhou (10.1016/j.finel.2021.103572_bib43) 2020; 239 Yildiz (10.1016/j.finel.2021.103572_bib45) 2003; 25 Duchi (10.1016/j.finel.2021.103572_bib60) 2011; 12 Hajela (10.1016/j.finel.2021.103572_bib37) 1991; 2 10.1016/j.finel.2021.103572_bib65 10.1016/j.finel.2021.103572_bib62 Kaveh (10.1016/j.finel.2021.103572_bib19) 2006; 84 Bartoli (10.1016/j.finel.2021.103572_bib24) 2019; 90 Abueidda (10.1016/j.finel.2021.103572_bib35) 2020; 237 Ho-Huu (10.1016/j.finel.2021.103572_bib67) 2016; 165 Khot (10.1016/j.finel.2021.103572_bib10) 1985; 23 Nwankpa (10.1016/j.finel.2021.103572_bib57) 2018 Ho-Huu (10.1016/j.finel.2021.103572_bib18) 2016; 68 Lee (10.1016/j.finel.2021.103572_bib29) 2020 Greco (10.1016/j.finel.2021.103572_bib48) 2006; 42 Ho-Huu (10.1016/j.finel.2021.103572_bib17) 2018; 29 Thai (10.1016/j.finel.2021.103572_bib1) 2020 Chen (10.1016/j.finel.2021.103572_bib22) 2020; 362 Lieu (10.1016/j.finel.2021.103572_bib73) 2018; 195 Hamdia (10.1016/j.finel.2021.103572_bib56) 2020 Deb (10.1016/j.finel.2021.103572_bib15) 2001; 37 Mozaffar (10.1016/j.finel.2021.103572_bib31) 2019; 116 Lee (10.1016/j.finel.2021.103572_bib40) 2018; 25 Regis (10.1016/j.finel.2021.103572_bib52) 2020 Berke (10.1016/j.finel.2021.103572_bib38) 1992; 4 Srivastava (10.1016/j.finel.2021.103572_bib66) 2014; 15 Kameshki (10.1016/j.finel.2021.103572_bib20) 2007; 85 10.1016/j.finel.2021.103572_bib32 Wang (10.1016/j.finel.2021.103572_bib58) 2020 Shi (10.1016/j.finel.2021.103572_bib23) 2019; 347 Riks (10.1016/j.finel.2021.103572_bib51) 1979; 15 El-Sayed (10.1016/j.finel.2021.103572_bib12) 1989; 32 Vo (10.1016/j.finel.2021.103572_bib5) 2010; 52 Shin (10.1016/j.finel.2021.103572_bib13) 2007; 196 Gu (10.1016/j.finel.2021.103572_bib30) 2018; 18 Arpat (10.1016/j.finel.2021.103572_bib55) 1998; 20 |
References_xml | – volume: 41 start-page: 219 year: 2010 end-page: 241 ident: bib21 article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions publication-title: Struct. Multidiscip. Optim. – volume: 239 start-page: 106310 year: 2020 ident: bib43 article-title: A new data-driven topology optimization framework for structural optimization publication-title: Comput. Struct. – year: 1972 ident: bib50 article-title: The Application of Newton's Method to the Problem of Elastic Stability – volume: 77 start-page: 41 year: 2000 end-page: 52 ident: bib46 article-title: Substructural identification using neural networks publication-title: Comput. Struct. – year: 2014 ident: bib63 article-title: A Method for Stochastic Optimization – volume: 84 start-page: 770 year: 2006 end-page: 778 ident: bib19 article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm publication-title: Comput. Struct. – volume: 42 start-page: 1079 year: 2006 end-page: 1086 ident: bib48 article-title: Nonlinear positional formulation for space truss analysis publication-title: Finite Elem. Anal. Des. – start-page: 8604 year: 2013 end-page: 8608 ident: bib59 article-title: Recent advances in deep learning for speech research at microsoft publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: bib26 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 18 start-page: 19 year: 2018 end-page: 28 ident: bib30 article-title: De novo composite design based on machine learning algorithm publication-title: Extreme Mechanics Letters – volume: 15 start-page: 20170844 year: 2018 ident: bib39 article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis publication-title: J. R. Soc. Interface – volume: 196 start-page: 109098 year: 2020 ident: bib36 article-title: Deep learning for topology optimization of 2d metamaterials publication-title: Mater. Des. – volume: 23 start-page: 139 year: 1985 end-page: 144 ident: bib10 article-title: Minimum weight design of truss structures with geometric nonlinear behavior publication-title: AIAA J. – volume: 90 start-page: 85 year: 2019 end-page: 102 ident: bib24 article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design publication-title: Aero. Sci. Technol. – volume: 85 start-page: 71 year: 2007 end-page: 79 ident: bib20 article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm publication-title: Comput. Struct. – volume: 68 start-page: 81 year: 2016 end-page: 94 ident: bib18 article-title: Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme publication-title: Autom. ConStruct. – year: 2018 ident: bib57 article-title: Activation Functions: Comparison of Trends in Practice and Research for Deep Learning – volume: 4 start-page: 90 year: 1992 end-page: 98 ident: bib38 article-title: Applications of artificial neural nets in structural mechanics publication-title: Struct. Optim. – volume: 7 start-page: 1581 year: 1971 end-page: 1599 ident: bib6 article-title: Discrete approximations related to nonlinear theories of solids publication-title: Int. J. Solid Struct. – volume: 21 start-page: 1181 year: 1983 end-page: 1186 ident: bib9 article-title: Nonlinear analysis of optimized structure with constraints on systemstability publication-title: AIAA J. – volume: 116 start-page: 26414 year: 2019 end-page: 26420 ident: bib31 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 193 start-page: 110 year: 2017 end-page: 127 ident: bib2 article-title: Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory publication-title: Comput. Struct. – volume: 30 start-page: 101244 year: 2020 ident: bib41 article-title: An effective deep feedforward neural networks (dfnn) method for damage identification of truss structures using noisy incomplete modal data publication-title: Journal of Building Engineering – volume: 15 start-page: 529 year: 1979 end-page: 551 ident: bib51 article-title: An incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solid Struct. – volume: 52 start-page: 65 year: 2010 end-page: 74 ident: bib5 article-title: Geometrically nonlinear theory of thin-walled composite box beams using shear-deformable beam theory publication-title: Int. J. Mech. Sci. – reference: H. Nguyen, T. Vu, T. P. Vo, H.-T. Thai, Efficient machine learning models for prediction of concrete strengths, Construct. Build. Mater. 266 (????) 120950. – volume: 42 start-page: 7057 year: 2015 end-page: 7069 ident: bib69 article-title: An improved constrained differential evolution using discrete variables (d-icde) for layout optimization of truss structures publication-title: Expert Syst. Appl. – volume: 195 start-page: 99 year: 2018 end-page: 112 ident: bib73 article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints publication-title: Comput. Struct. – start-page: 37 year: 2020 end-page: 47 ident: bib52 article-title: A survey of surrogate approaches for expensive constrained black-box optimization publication-title: Optimization of Complex Systems: Theory, Models – volume: 136 start-page: 102852 year: 2020 ident: bib27 article-title: Deep learning for plasticity and thermo-viscoplasticity publication-title: Int. J. Plast. – volume: 26 start-page: 123 year: 1987 end-page: 133 ident: bib11 article-title: Use of adina for design optimization of nonlinear structures publication-title: Comput. Struct. – year: 2020 ident: bib1 article-title: Review of Nonlinear Analysis and Modeling of Steel and Composite Structures – volume: 44 start-page: 933 year: 2008 end-page: 950 ident: bib14 article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach publication-title: Finite Elem. Anal. Des. – volume: 45 start-page: 50 year: 2009 end-page: 79 ident: bib25 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aero. Sci. – volume: 362 start-page: 112790 year: 2020 ident: bib28 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Eng. – volume: 57 start-page: 1857 year: 2018 end-page: 1869 ident: bib53 article-title: Surrogate modeling in design optimization of structures with discontinuous responses publication-title: Struct. Multidiscip. Optim. – volume: 115 start-page: 172 year: 2019 end-page: 180 ident: bib44 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput. Aided Des. – volume: 34 start-page: 133 year: 1993 end-page: 149 ident: bib72 article-title: Review on methods of bifurcation analysis for geometrically nonlinear structures publication-title: Bulletin of the International Association for Shell and Spatial structures – volume: 32 start-page: 69 year: 1989 end-page: 73 ident: bib12 article-title: Nonlinear structural optimization using goal programming publication-title: Comput. Struct. – volume: 12 year: 2011 ident: bib60 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – volume: 23 start-page: 214 year: 2002 end-page: 221 ident: bib8 article-title: Optimization of nonlinear trusses using a displacement-based approach publication-title: Struct. Multidiscip. Optim. – volume: 20 start-page: 1 year: 1998 end-page: 8 ident: bib55 article-title: The neighborhood approach to prediction of permeability from wireline logs and limited core plug analysis data using backpropagation artificial neural networks publication-title: J. Petrol. Sci. Eng. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: bib16 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. – volume: 41 start-page: 657 year: 1991 end-page: 667 ident: bib34 article-title: Neurobiological computational models in structural analysis and design publication-title: Comput. Struct. – reference: S. Lee, S. Park, T. Kim, Q. X. Lieu, J. Lee, Damage quantification in truss structures by limited sensor-based surrogate model, Appl. Acoust. 172 (????) 107547. – volume: 347 start-page: 782 year: 2019 end-page: 805 ident: bib23 article-title: Filter-based adaptive kriging method for black-box optimization problems with expensive objective and constraints publication-title: Comput. Methods Appl. Mech. Eng. – volume: 41 start-page: 1387 year: 1991 end-page: 1396 ident: bib7 article-title: Optimum design of geometrically nonlinear space trusses publication-title: Comput. Struct. – reference: M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics, Non-linear Finite Element Analysis of Solids and Structures, Wiley, ???? – volume: 91 start-page: 1 year: 2014 end-page: 15 ident: bib49 article-title: A total-Lagrangian position-based fem applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse publication-title: Finite Elem. Anal. Des. – start-page: 1 year: 2020 end-page: 26 ident: bib58 article-title: A comprehensive survey of loss functions in machine learning publication-title: Annals of Data Science – volume: 25 start-page: 121 year: 2018 end-page: 129 ident: bib40 article-title: Background information of deep learning for structural engineering publication-title: Arch. Comput. Methods Eng. – volume: 237 start-page: 106283 year: 2020 ident: bib35 article-title: Topology optimization of 2d structures with nonlinearities using deep learning publication-title: Comput. Struct. – volume: 196 start-page: 1154 year: 2007 end-page: 1167 ident: bib13 article-title: Optimization of structures with nonlinear behavior using equivalent loads publication-title: Comput. Methods Appl. Mech. Eng. – volume: 25 start-page: 251 year: 2003 end-page: 260 ident: bib45 article-title: Integrated optimal topology design and shape optimization using neural networks publication-title: Struct. Multidiscip. Optim. – volume: 81 start-page: 419 year: 2011 end-page: 435 ident: bib4 article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory publication-title: Arch. Appl. Mech. – volume: 159 start-page: 300 year: 2019 end-page: 326 ident: bib64 article-title: Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems publication-title: Compos. B Eng. – volume: 67 start-page: 3 year: 2017 end-page: 42 ident: bib54 article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption publication-title: J. Global Optim. – volume: 29 start-page: 167 year: 2018 end-page: 185 ident: bib17 article-title: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints publication-title: Neural Comput. Appl. – start-page: 1 year: 2020 end-page: 11 ident: bib56 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Comput. Appl. – volume: 2 start-page: 473 year: 1991 end-page: 481 ident: bib37 article-title: Neural network based decomposition in optimal structural synthesis publication-title: Comput. Syst. Eng. – reference: G. Hinton, N. Srivastava, K. Swersky, Neural Networks for Machine Learning, Coursera, Video Lectures 264 (????). – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib66 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2012 ident: bib70 article-title: Worked Examples in Nonlinear Continuum Mechanics for Finite Element Analysis – start-page: 15 year: 2020 ident: bib42 article-title: TOuNN: Direct Topology Optimization Using Neural Networks – volume: 37 start-page: 447 year: 2001 end-page: 465 ident: bib15 article-title: Design of truss-structures for minimum weight using genetic algorithms publication-title: Finite Elem. Anal. Des. – volume: 43 start-page: 555 year: 2007 end-page: 565 ident: bib3 article-title: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria publication-title: Finite Elem. Anal. Des. – volume: 92 start-page: 48 year: 2016 end-page: 56 ident: bib68 article-title: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures publication-title: Adv. Eng. Software – volume: 362 start-page: 112861 year: 2020 ident: bib22 article-title: Optimization of expensive black-box problems via gradient-enhanced kriging publication-title: Comput. Methods Appl. Mech. Eng. – start-page: 105887 year: 2020 ident: bib29 article-title: Cnn-based Image Recognition for Topology Optimization – volume: 22 start-page: 109 year: 1996 end-page: 142 ident: bib71 article-title: Post-buckling analysis of structures by three-parameter constrained solution techniques publication-title: Finite Elem. Anal. Des. – year: 2012 ident: bib61 article-title: Adadelta: an Adaptive Learning Rate Method – volume: 59 start-page: 787 year: 2019 end-page: 799 ident: bib33 article-title: Deep learning for determining a near-optimal topological design without any iteration publication-title: Struct. Multidiscip. Optim. – volume: 165 start-page: 59 year: 2016 end-page: 75 ident: bib67 article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables publication-title: Comput. Struct. – ident: 10.1016/j.finel.2021.103572_bib62 – volume: 196 start-page: 1154 year: 2007 ident: 10.1016/j.finel.2021.103572_bib13 article-title: Optimization of structures with nonlinear behavior using equivalent loads publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.09.001 – start-page: 105887 year: 2020 ident: 10.1016/j.finel.2021.103572_bib29 – volume: 22 start-page: 109 year: 1996 ident: 10.1016/j.finel.2021.103572_bib71 article-title: Post-buckling analysis of structures by three-parameter constrained solution techniques publication-title: Finite Elem. Anal. Des. doi: 10.1016/0168-874X(96)00046-7 – volume: 43 start-page: 555 year: 2007 ident: 10.1016/j.finel.2021.103572_bib3 article-title: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2006.12.008 – volume: 37 start-page: 447 year: 2001 ident: 10.1016/j.finel.2021.103572_bib15 article-title: Design of truss-structures for minimum weight using genetic algorithms publication-title: Finite Elem. Anal. Des. doi: 10.1016/S0168-874X(00)00057-3 – ident: 10.1016/j.finel.2021.103572_bib47 – volume: 41 start-page: 1387 year: 1991 ident: 10.1016/j.finel.2021.103572_bib7 article-title: Optimum design of geometrically nonlinear space trusses publication-title: Comput. Struct. doi: 10.1016/0045-7949(91)90276-R – year: 2020 ident: 10.1016/j.finel.2021.103572_bib1 – volume: 41 start-page: 219 year: 2010 ident: 10.1016/j.finel.2021.103572_bib21 article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-009-0420-2 – volume: 34 start-page: 133 year: 1993 ident: 10.1016/j.finel.2021.103572_bib72 article-title: Review on methods of bifurcation analysis for geometrically nonlinear structures publication-title: Bulletin of the International Association for Shell and Spatial structures – volume: 23 start-page: 139 year: 1985 ident: 10.1016/j.finel.2021.103572_bib10 article-title: Minimum weight design of truss structures with geometric nonlinear behavior publication-title: AIAA J. doi: 10.2514/3.8882 – volume: 25 start-page: 251 year: 2003 ident: 10.1016/j.finel.2021.103572_bib45 article-title: Integrated optimal topology design and shape optimization using neural networks publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-003-0300-0 – start-page: 1 year: 2020 ident: 10.1016/j.finel.2021.103572_bib56 article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm publication-title: Neural Comput. Appl. – volume: 347 start-page: 782 year: 2019 ident: 10.1016/j.finel.2021.103572_bib23 article-title: Filter-based adaptive kriging method for black-box optimization problems with expensive objective and constraints publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.12.026 – start-page: 37 year: 2020 ident: 10.1016/j.finel.2021.103572_bib52 article-title: A survey of surrogate approaches for expensive constrained black-box optimization – year: 2018 ident: 10.1016/j.finel.2021.103572_bib57 – volume: 165 start-page: 59 year: 2016 ident: 10.1016/j.finel.2021.103572_bib67 article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2015.11.014 – volume: 193 start-page: 110 year: 2017 ident: 10.1016/j.finel.2021.103572_bib2 article-title: Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.07.017 – volume: 42 start-page: 1079 year: 2006 ident: 10.1016/j.finel.2021.103572_bib48 article-title: Nonlinear positional formulation for space truss analysis publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2006.04.007 – start-page: 15 year: 2020 ident: 10.1016/j.finel.2021.103572_bib42 – volume: 237 start-page: 106283 year: 2020 ident: 10.1016/j.finel.2021.103572_bib35 article-title: Topology optimization of 2d structures with nonlinearities using deep learning publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106283 – volume: 77 start-page: 41 year: 2000 ident: 10.1016/j.finel.2021.103572_bib46 article-title: Substructural identification using neural networks publication-title: Comput. Struct. doi: 10.1016/S0045-7949(99)00199-6 – volume: 30 start-page: 101244 year: 2020 ident: 10.1016/j.finel.2021.103572_bib41 article-title: An effective deep feedforward neural networks (dfnn) method for damage identification of truss structures using noisy incomplete modal data publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2020.101244 – volume: 23 start-page: 214 year: 2002 ident: 10.1016/j.finel.2021.103572_bib8 article-title: Optimization of nonlinear trusses using a displacement-based approach publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-002-0179-1 – volume: 239 start-page: 106310 year: 2020 ident: 10.1016/j.finel.2021.103572_bib43 article-title: A new data-driven topology optimization framework for structural optimization publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2020.106310 – volume: 7 start-page: 1581 year: 1971 ident: 10.1016/j.finel.2021.103572_bib6 article-title: Discrete approximations related to nonlinear theories of solids publication-title: Int. J. Solid Struct. doi: 10.1016/0020-7683(71)90038-2 – volume: 26 start-page: 123 year: 1987 ident: 10.1016/j.finel.2021.103572_bib11 article-title: Use of adina for design optimization of nonlinear structures publication-title: Comput. Struct. doi: 10.1016/0045-7949(87)90242-2 – volume: 52 start-page: 65 year: 2010 ident: 10.1016/j.finel.2021.103572_bib5 article-title: Geometrically nonlinear theory of thin-walled composite box beams using shear-deformable beam theory publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2009.10.005 – volume: 15 start-page: 20170844 year: 2018 ident: 10.1016/j.finel.2021.103572_bib39 article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2017.0844 – volume: 44 start-page: 933 year: 2008 ident: 10.1016/j.finel.2021.103572_bib14 article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2008.07.004 – volume: 20 start-page: 1 year: 1998 ident: 10.1016/j.finel.2021.103572_bib55 article-title: The neighborhood approach to prediction of permeability from wireline logs and limited core plug analysis data using backpropagation artificial neural networks publication-title: J. Petrol. Sci. Eng. doi: 10.1016/S0920-4105(98)00034-5 – year: 2012 ident: 10.1016/j.finel.2021.103572_bib61 – volume: 67 start-page: 3 year: 2017 ident: 10.1016/j.finel.2021.103572_bib54 article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption publication-title: J. Global Optim. doi: 10.1007/s10898-015-0376-2 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.finel.2021.103572_bib16 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 91 start-page: 1 year: 2014 ident: 10.1016/j.finel.2021.103572_bib49 article-title: A total-Lagrangian position-based fem applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2014.07.001 – volume: 32 start-page: 69 year: 1989 ident: 10.1016/j.finel.2021.103572_bib12 article-title: Nonlinear structural optimization using goal programming publication-title: Comput. Struct. doi: 10.1016/0045-7949(89)90070-9 – volume: 57 start-page: 1857 year: 2018 ident: 10.1016/j.finel.2021.103572_bib53 article-title: Surrogate modeling in design optimization of structures with discontinuous responses publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1958-7 – volume: 42 start-page: 7057 year: 2015 ident: 10.1016/j.finel.2021.103572_bib69 article-title: An improved constrained differential evolution using discrete variables (d-icde) for layout optimization of truss structures publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.072 – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.finel.2021.103572_bib26 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 21 start-page: 1181 year: 1983 ident: 10.1016/j.finel.2021.103572_bib9 article-title: Nonlinear analysis of optimized structure with constraints on systemstability publication-title: AIAA J. doi: 10.2514/3.8224 – volume: 45 start-page: 50 year: 2009 ident: 10.1016/j.finel.2021.103572_bib25 article-title: Recent advances in surrogate-based optimization publication-title: Prog. Aero. Sci. doi: 10.1016/j.paerosci.2008.11.001 – volume: 41 start-page: 657 year: 1991 ident: 10.1016/j.finel.2021.103572_bib34 article-title: Neurobiological computational models in structural analysis and design publication-title: Comput. Struct. doi: 10.1016/0045-7949(91)90178-O – volume: 59 start-page: 787 year: 2019 ident: 10.1016/j.finel.2021.103572_bib33 article-title: Deep learning for determining a near-optimal topological design without any iteration publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-2101-5 – volume: 115 start-page: 172 year: 2019 ident: 10.1016/j.finel.2021.103572_bib44 article-title: Non-iterative structural topology optimization using deep learning publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2019.05.038 – ident: 10.1016/j.finel.2021.103572_bib32 doi: 10.1016/j.conbuildmat.2020.120950 – volume: 362 start-page: 112790 year: 2020 ident: 10.1016/j.finel.2021.103572_bib28 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112790 – volume: 116 start-page: 26414 year: 2019 ident: 10.1016/j.finel.2021.103572_bib31 article-title: Deep learning predicts path-dependent plasticity publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1911815116 – start-page: 8604 year: 2013 ident: 10.1016/j.finel.2021.103572_bib59 article-title: Recent advances in deep learning for speech research at microsoft – volume: 2 start-page: 473 year: 1991 ident: 10.1016/j.finel.2021.103572_bib37 article-title: Neural network based decomposition in optimal structural synthesis publication-title: Comput. Syst. Eng. doi: 10.1016/0956-0521(91)90050-F – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.finel.2021.103572_bib66 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – volume: 159 start-page: 300 year: 2019 ident: 10.1016/j.finel.2021.103572_bib64 article-title: Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.09.087 – volume: 4 start-page: 90 year: 1992 ident: 10.1016/j.finel.2021.103572_bib38 article-title: Applications of artificial neural nets in structural mechanics publication-title: Struct. Optim. doi: 10.1007/BF01759922 – volume: 81 start-page: 419 year: 2011 ident: 10.1016/j.finel.2021.103572_bib4 article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-010-0407-x – volume: 68 start-page: 81 year: 2016 ident: 10.1016/j.finel.2021.103572_bib18 article-title: Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme publication-title: Autom. ConStruct. doi: 10.1016/j.autcon.2016.05.004 – volume: 92 start-page: 48 year: 2016 ident: 10.1016/j.finel.2021.103572_bib68 article-title: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2015.11.001 – volume: 196 start-page: 109098 year: 2020 ident: 10.1016/j.finel.2021.103572_bib36 article-title: Deep learning for topology optimization of 2d metamaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109098 – volume: 29 start-page: 167 year: 2018 ident: 10.1016/j.finel.2021.103572_bib17 article-title: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2426-1 – volume: 136 start-page: 102852 year: 2020 ident: 10.1016/j.finel.2021.103572_bib27 article-title: Deep learning for plasticity and thermo-viscoplasticity publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102852 – start-page: 1 year: 2020 ident: 10.1016/j.finel.2021.103572_bib58 article-title: A comprehensive survey of loss functions in machine learning publication-title: Annals of Data Science – year: 2012 ident: 10.1016/j.finel.2021.103572_bib70 – volume: 15 start-page: 529 year: 1979 ident: 10.1016/j.finel.2021.103572_bib51 article-title: An incremental approach to the solution of snapping and buckling problems publication-title: Int. J. Solid Struct. doi: 10.1016/0020-7683(79)90081-7 – volume: 18 start-page: 19 year: 2018 ident: 10.1016/j.finel.2021.103572_bib30 article-title: De novo composite design based on machine learning algorithm publication-title: Extreme Mechanics Letters doi: 10.1016/j.eml.2017.10.001 – volume: 84 start-page: 770 year: 2006 ident: 10.1016/j.finel.2021.103572_bib19 article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.02.004 – volume: 362 start-page: 112861 year: 2020 ident: 10.1016/j.finel.2021.103572_bib22 article-title: Optimization of expensive black-box problems via gradient-enhanced kriging publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.112861 – year: 2014 ident: 10.1016/j.finel.2021.103572_bib63 – year: 1972 ident: 10.1016/j.finel.2021.103572_bib50 – volume: 25 start-page: 121 year: 2018 ident: 10.1016/j.finel.2021.103572_bib40 article-title: Background information of deep learning for structural engineering publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-017-9237-0 – volume: 90 start-page: 85 year: 2019 ident: 10.1016/j.finel.2021.103572_bib24 article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design publication-title: Aero. Sci. Technol. doi: 10.1016/j.ast.2019.03.041 – volume: 85 start-page: 71 year: 2007 ident: 10.1016/j.finel.2021.103572_bib20 article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.09.002 – volume: 12 year: 2011 ident: 10.1016/j.finel.2021.103572_bib60 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.finel.2021.103572_bib65 doi: 10.1016/j.apacoust.2020.107547 – volume: 195 start-page: 99 year: 2018 ident: 10.1016/j.finel.2021.103572_bib73 article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.06.016 |
SSID | ssj0005264 |
Score | 2.571576 |
Snippet | Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103572 |
SubjectTerms | Artificial neural networks Computational efficiency Computing costs Computing time Deep neural network Design optimization Evolutionary algorithms Evolutionary computation Finite element method Geometric nonlinear Iterative methods Iterative solution Machine learning Neural network Neural networks Surrogate model Truss optimization Trusses |
Title | A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior |
URI | https://dx.doi.org/10.1016/j.finel.2021.103572 https://www.proquest.com/docview/2579140247 |
Volume | 196 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRjwrD4yENn7FHitEVUCwQKVuVpzYqIhS1MDAwm_nLnEQIMHAGMtOIp_v7rvzPQg5znKvCqPxyj83idA9k-TOhKQE-zZ3THLVw-Tk6xs1HInLsRwvkLM2FwbDKqPsb2R6La3jSDfuZvd5MuneAlgBDhFjhi5qWZtAQmR4yk_fv4Z5qFjfWyc4u608VMd4BUByeP_AUkw-lxn7TTv9kNO18hmsk9WIGmm_-bENsuCfNslaRJA08me1SVa-lBfcIlWfTutYSU9jc4j7BLVWSavX-XyGDjRad8KhgFzpDITHNGZl0lmgmI1R0aa-7CsY5RRdtvTez6bYhAtI-_hGn5pCG_mctun-22Q0OL87GyaxyUJScJ6-JEFnzDEVdO5CJsBaTL2HEWm0U7pkuWDOA0YJXPdCXhgD_CydKpU3pQwlT_kOWYSP-V1CCw94JxQ6DaYUqdeO8ZJnIQgteJA67BHWbq4tYgVybITxaNtQswdbU8QiRWxDkT1y8rnouSnA8fd01VLNfjtHFlTE3wsPWxrbyMaVBXlmwAJlItv_73sPyDI-YfpiKg_JIlDNHwGOeXGd-qB2yFL_4mp48wHyD_RG |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaC9NDtsD62oc9Nhx1nJJYsWToGRYu0SXNZC-QmWLZUdGiaIm4P-_clbblIB7SHXm3LNkSR_CiRHwF-5YVXpdF05F-YJNNDkxTOhKTC-LZwXAo1pOLky5kaX2cXcznvwUlXC0NpldH2tza9sdbxyiDO5uDh9nbwB8EKakg257RFLSkE2iB2KtmHjdH5ZDxby_RQkeJbJzSgIx9q0rwCgjk6guAp1Z_LnL_loP4z1Y3_OduGLxE4slH7bzvQ8_e7sBVBJIsqWu_C5zWGwa9Qj9iiSZf0LPaHuEnIcVWsflqtlrSHxppmOAzBK1ui_VjEwky2DIwKMmrWUsw-YVzOaNeW3fjlgvpwoXTv_rH7lmujWLGu4v8bXJ-dXp2Mk9hnISmFSB-ToHPuuAq6cCHHKTSp93hFGu2UrniRcecRpgShh6EojUGVlk5VyptKhkqk4jv08WN-D1jpEfKEUqfBVFnqteOiEnkImc5EkDrsA-8m15aRhJx6YdzZLtvsr20kYkkitpXIPvx-GfTQcnC8_7jqpGZfLSWLXuL9gUedjG3U5NqiSTMYhPIsP_joe3_C5vjqcmqn57PJIXyiO1TNmMoj6KME_THCmkf3Iy7bZ0xg9vc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning-based+surrogate+model+for+optimization+of+truss+structures+with+geometrically+nonlinear+behavior&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Mai%2C+Hau+T&rft.au=Kang%2C+Joowon&rft.au=Lee%2C+Jaehong&rft.date=2021-11-15&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=196&rft.spage=1&rft_id=info:doi/10.1016%2Fj.finel.2021.103572&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |