A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior

Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the qu...

Full description

Saved in:
Bibliographic Details
Published inFinite elements in analysis and design Vol. 196; p. 103572
Main Authors Mai, Hau T., Kang, Joowon, Lee, Jaehong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.11.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0168-874X
1872-6925
DOI10.1016/j.finel.2021.103572

Cover

Loading…
Abstract Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence. •A machine learning-based surrogate model is proposed to integrate with DE algorithm for solving the optimum structure.•The deep neural network is capable of exactly predicting the displacement of nonlinear response.•The combining method is effective, reduces the computational time, and guarantees solution accuracy.
AbstractList Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence.
Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution techniques. To handle the problem effectively the optimization algorithm needs to ensure that the trade-off between the computational time and the quality of the solution is found. In this study, a deep neural network (DNN)-based surrogate model which integrates with differential evolution (DE) algorithm is developed and applied for solving the optimum design problem of geometrically nonlinear space truss under displacement constraints and refer to the approach as DNN-DE. Accordingly, this surrogate model, also is known as a deep neural network, is established to replace conventional finite element analyses (FEAs). Each dataset is created based on FEA which employs the total Lagrangian formulation and the arc-length procedure. Several numerical examples are given to demonstrate the efficiency and validity of the proposed paradigm. These results indicate that the proposed approach not only reduces the computational cost dramatically but also guarantees convergence. •A machine learning-based surrogate model is proposed to integrate with DE algorithm for solving the optimum structure.•The deep neural network is capable of exactly predicting the displacement of nonlinear response.•The combining method is effective, reduces the computational time, and guarantees solution accuracy.
ArticleNumber 103572
Author Mai, Hau T.
Kang, Joowon
Lee, Jaehong
Author_xml – sequence: 1
  givenname: Hau T.
  surname: Mai
  fullname: Mai, Hau T.
  email: maitienhaunx@gmail.com
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
– sequence: 2
  givenname: Joowon
  surname: Kang
  fullname: Kang, Joowon
  email: kangj@ynu.ac.kr
  organization: School of Architecture, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
– sequence: 3
  givenname: Jaehong
  surname: Lee
  fullname: Lee, Jaehong
  email: jhlee@sejong.ac.kr
  organization: Deep Learning Architectural Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
BookMark eNqFkEtLBDEQhIMouD5-gZeA51mTzDMHDyK-YMGLgreQyXR2s8xM1k5G0V9v3PXkQU8NRX3d1XVE9kc_AiFnnM0549XFem7dCP1cMMGTkpe12CMz3tQiq6Qo98ksuZqsqYuXQ3IUwpoxVoqqmJFwRQdtVommPWgc3bjMWh2go2FC9EsdgQ6-g55aj9Rvohvcp47Oj9RbGnEKgYY0TJwQAn13cUWX4AeI6Izu-w-aovZpvUbawkq_OY8n5MDqPsDpzzwmz7c3T9f32eLx7uH6apGZPOcxsyl-Kyrb6NbWRVlIDpCUUjZt1XRCF6KFpqhs3jCrjZS1zMu26iqQXWm7nOfH5Hy3d4P-dYIQ1dpPOKaTSpS15AUTRZ1ccucy6ENAsMq4uP0wona94kx9d6zWatux-u5Y7TpObP6L3aAbNH78Q13uKEjPvzlAFYyD0UDnEExUnXd_8l_23pui
CitedBy_id crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1016_j_istruc_2023_03_124
crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_1007_s40436_025_00545_0
crossref_primary_10_1007_s00521_025_11039_2
crossref_primary_10_1016_j_engstruct_2024_118987
crossref_primary_10_1016_j_finel_2022_103893
crossref_primary_10_1016_j_istruc_2023_105712
crossref_primary_10_1007_s11709_024_1083_1
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1007_s10489_023_04565_w
crossref_primary_10_3389_fbuil_2022_1049616
crossref_primary_10_1007_s00158_024_03896_7
crossref_primary_10_1088_1755_1315_1350_1_012042
crossref_primary_10_1016_j_engstruct_2023_117290
crossref_primary_10_1109_ACCESS_2023_3282453
crossref_primary_10_1016_j_buildenv_2023_110191
crossref_primary_10_1016_j_compstruc_2025_107647
crossref_primary_10_1016_j_istruc_2023_04_006
crossref_primary_10_1007_s10999_023_09705_1
crossref_primary_10_1016_j_rineng_2024_102139
crossref_primary_10_1016_j_euromechsol_2022_104584
crossref_primary_10_32604_cmes_2022_020819
crossref_primary_10_1016_j_compstruct_2024_118713
crossref_primary_10_1016_j_engstruct_2024_117946
crossref_primary_10_1016_j_trd_2025_104656
crossref_primary_10_3390_math11102347
crossref_primary_10_1016_j_engappai_2024_109991
crossref_primary_10_1016_j_istruc_2024_107722
crossref_primary_10_1016_j_euromechsol_2022_104869
crossref_primary_10_1016_j_jobe_2025_112131
crossref_primary_10_1016_j_finel_2023_103956
crossref_primary_10_1016_j_compstruc_2023_107232
crossref_primary_10_1002_adfm_202404165
crossref_primary_10_1016_j_engstruct_2023_115980
crossref_primary_10_1016_j_heliyon_2024_e39308
crossref_primary_10_1016_j_compstruc_2022_106846
crossref_primary_10_1016_j_asoc_2022_109762
crossref_primary_10_1016_j_autcon_2024_105284
crossref_primary_10_1016_j_engstruct_2025_120089
crossref_primary_10_1016_j_istruc_2023_01_099
crossref_primary_10_1111_mice_13226
crossref_primary_10_3389_fbuil_2022_899072
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1016_j_jocs_2024_102327
crossref_primary_10_1007_s11831_024_10152_0
crossref_primary_10_1016_j_eswa_2023_121530
crossref_primary_10_1016_j_swevo_2024_101613
crossref_primary_10_1088_1674_4527_ac9f06
crossref_primary_10_1016_j_compositesb_2025_112393
crossref_primary_10_3390_a16080380
crossref_primary_10_3390_math10162906
crossref_primary_10_1016_j_istruc_2024_108158
crossref_primary_10_1155_2023_7953869
crossref_primary_10_1016_j_advengsoft_2024_103717
crossref_primary_10_1016_j_swevo_2022_101120
crossref_primary_10_1016_j_asoc_2025_112727
Cites_doi 10.1016/j.cma.2006.09.001
10.1016/0168-874X(96)00046-7
10.1016/j.finel.2006.12.008
10.1016/S0168-874X(00)00057-3
10.1016/0045-7949(91)90276-R
10.1007/s00158-009-0420-2
10.2514/3.8882
10.1007/s00158-003-0300-0
10.1016/j.cma.2018.12.026
10.1016/j.compstruc.2015.11.014
10.1016/j.compstruc.2017.07.017
10.1016/j.finel.2006.04.007
10.1016/j.compstruc.2020.106283
10.1016/S0045-7949(99)00199-6
10.1016/j.jobe.2020.101244
10.1007/s00158-002-0179-1
10.1016/j.compstruc.2020.106310
10.1016/0020-7683(71)90038-2
10.1016/0045-7949(87)90242-2
10.1016/j.ijmecsci.2009.10.005
10.1098/rsif.2017.0844
10.1016/j.finel.2008.07.004
10.1016/S0920-4105(98)00034-5
10.1007/s10898-015-0376-2
10.1023/A:1008202821328
10.1016/j.finel.2014.07.001
10.1016/0045-7949(89)90070-9
10.1007/s00158-018-1958-7
10.1016/j.eswa.2015.04.072
10.1016/j.neucom.2016.12.038
10.2514/3.8224
10.1016/j.paerosci.2008.11.001
10.1016/0045-7949(91)90178-O
10.1007/s00158-018-2101-5
10.1016/j.cad.2019.05.038
10.1016/j.conbuildmat.2020.120950
10.1016/j.cma.2019.112790
10.1073/pnas.1911815116
10.1016/0956-0521(91)90050-F
10.1016/j.compositesb.2018.09.087
10.1007/BF01759922
10.1007/s00419-010-0407-x
10.1016/j.autcon.2016.05.004
10.1016/j.advengsoft.2015.11.001
10.1016/j.matdes.2020.109098
10.1007/s00521-016-2426-1
10.1016/j.ijplas.2020.102852
10.1016/0020-7683(79)90081-7
10.1016/j.eml.2017.10.001
10.1016/j.compstruc.2006.02.004
10.1016/j.cma.2020.112861
10.1007/s11831-017-9237-0
10.1016/j.ast.2019.03.041
10.1016/j.compstruc.2006.09.002
10.1016/j.apacoust.2020.107547
10.1016/j.compstruc.2017.06.016
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Nov 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Nov 15, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2021.103572
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2021_103572
S0168874X21000561
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
T9H
VH1
WUQ
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-f872b26f8abf745491ee72b598b68d2a42be846f380fac997935b6d6e9d5fd313
IEDL.DBID .~1
ISSN 0168-874X
IngestDate Sun Jul 13 04:57:31 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Tue Jul 01 03:12:46 EDT 2025
Fri Feb 23 02:41:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep neural network
Neural network
Surrogate model
Geometric nonlinear
Machine learning
Truss optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-f872b26f8abf745491ee72b598b68d2a42be846f380fac997935b6d6e9d5fd313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2579140247
PQPubID 2045476
ParticipantIDs proquest_journals_2579140247
crossref_citationtrail_10_1016_j_finel_2021_103572
crossref_primary_10_1016_j_finel_2021_103572
elsevier_sciencedirect_doi_10_1016_j_finel_2021_103572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Abueidda, Koric, Sobh, Sehitoglu (bib27) 2020; 136
Krishnamoorthy, Ramesh, Dinesh (bib71) 1996; 22
Hrinda, Nguyen (bib14) 2008; 44
Truong, Dinh-Cong, Lee, Nguyen-Thoi (bib41) 2020; 30
M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics, Non-linear Finite Element Analysis of Solids and Structures, Wiley, ????
Hajela, Berke (bib37) 1991; 2
Zeiler (bib61) 2012
G. Hinton, N. Srivastava, K. Swersky, Neural Networks for Machine Learning, Coursera, Video Lectures 264 (????).
Shin, Park, Park (bib13) 2007; 196
Yildiz, Öztürk, Kaya, Öztürk (bib45) 2003; 25
Liang, Liu, Martin, Sun (bib39) 2018; 15
Mozaffar, Bostanabad, Chen, Ehmann, Cao, Bessa (bib31) 2019; 116
Berke, Hajela (bib38) 1992; 4
Ho-Huu, Nguyen-Thoi, Nguyen-Thoi, Le-Anh (bib69) 2015; 42
Forrester, Keane (bib25) 2009; 45
Bonet, Gil, Wood (bib70) 2012
Riks (bib51) 1979; 15
Boukouvala, Hasan, Floudas (bib54) 2017; 67
Yu, Hur, Jung, Jang (bib33) 2019; 59
Duchi, Hazan, Singer (bib60) 2011; 12
H. Nguyen, T. Vu, T. P. Vo, H.-T. Thai, Efficient machine learning models for prediction of concrete strengths, Construct. Build. Mater. 266 (????) 120950.
Saka, Ulker (bib7) 1991; 41
Ho-Huu, Nguyen-Thoi, Truong-Khac, Le-Anh, Vo-Duy (bib17) 2018; 29
Thai, Nguyen, Lee, Patel, Vo (bib1) 2020
Lee, Ha, Zokhirova, Moon, Lee (bib40) 2018; 25
Kameshki, Saka (bib20) 2007; 85
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (bib28) 2020; 362
Hajela, Berke (bib34) 1991; 41
Lieu, Do, Lee (bib73) 2018; 195
Kaveh, Rahami (bib19) 2006; 84
Gu, Chen, Buehler (bib30) 2018; 18
El-Sayed, Ridgely, Sandgren (bib12) 1989; 32
Abueidda, Koric, Sobh (bib35) 2020; 237
Wang, Ma, Zhao, Tian (bib58) 2020
S. Lee, S. Park, T. Kim, Q. X. Lieu, J. Lee, Damage quantification in truss structures by limited sensor-based surrogate model, Appl. Acoust. 172 (????) 107547.
Ho-Huu, Nguyen-Thoi, Vo-Duy, Nguyen-Trang (bib67) 2016; 165
Vo, Lee (bib4) 2011; 81
Khot, Kamat (bib10) 1985; 23
Haririan, Cardoso, Arora (bib11) 1987; 26
Bartoli, Lefebvre, Dubreuil, Olivanti, Priem, Bons, Martins, Morlier (bib24) 2019; 90
Ho-Huu, Nguyen-Thoi, Le-Anh, Nguyen-Trang (bib68) 2016; 92
Ho-Huu, Vo-Duy, Luu-Van, Le-Anh, Nguyen-Thoi (bib18) 2016; 68
Shi, Liu, Long, Wu, Tang (bib23) 2019; 347
Hou, Li, Long, Yang, Li (bib3) 2007; 43
Chandrasekhar, Suresh (bib42) 2020
Deb, Gulati (bib15) 2001; 37
Nguyen, Atroshchenko, Nguyen-Xuan, Vo (bib2) 2017; 193
Arpat, Gümrah, Yeten (bib55) 1998; 20
Zhou, Zhan, Zhang, Zhu, Bai, Wang, Gu (bib43) 2020; 239
Choong, Hangai (bib72) 1993; 34
Lee, Kim, Lieu, Lee (bib29) 2020
Do, Lee, Lee (bib64) 2019; 159
Coda, Paccola (bib49) 2014; 91
Yun, Bahng (bib46) 2000; 77
Niutta, Wehrle, Duddeck, Belingardi (bib53) 2018; 57
Vo, Lee (bib5) 2010; 52
Khot (bib9) 1983; 21
Missoum, Gürdal, Gu (bib8) 2002; 23
Shan, Wang (bib21) 2010; 41
Chen, Qiu, Gao, Jiang, Yang (bib22) 2020; 362
Greco, Gesualdo, Venturini, Coda (bib48) 2006; 42
Deng, Li, Huang, Yao, Yu, Seide, Seltzer, Zweig, He, Williams (bib59) 2013
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib26) 2017; 234
Riks (bib50) 1972
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib66) 2014; 15
Regis (bib52) 2020
Nwankpa, Ijomah, Gachagan, Marshall (bib57) 2018
Kingma, Ba, Adam (bib63) 2014
Wempner (bib6) 1971; 7
Storn, Price (bib16) 1997; 11
Li, Huang, Li, Zheng, Hong (bib44) 2019; 115
Hamdia, Zhuang, Rabczuk (bib56) 2020
Kollmann, Abueidda, Koric, Guleryuz, Sobh (bib36) 2020; 196
Liu (10.1016/j.finel.2021.103572_bib26) 2017; 234
Khot (10.1016/j.finel.2021.103572_bib9) 1983; 21
Wempner (10.1016/j.finel.2021.103572_bib6) 1971; 7
Zeiler (10.1016/j.finel.2021.103572_bib61) 2012
Riks (10.1016/j.finel.2021.103572_bib50) 1972
Shan (10.1016/j.finel.2021.103572_bib21) 2010; 41
10.1016/j.finel.2021.103572_bib47
Bonet (10.1016/j.finel.2021.103572_bib70) 2012
Choong (10.1016/j.finel.2021.103572_bib72) 1993; 34
Coda (10.1016/j.finel.2021.103572_bib49) 2014; 91
Kingma (10.1016/j.finel.2021.103572_bib63) 2014
Saka (10.1016/j.finel.2021.103572_bib7) 1991; 41
Missoum (10.1016/j.finel.2021.103572_bib8) 2002; 23
Hrinda (10.1016/j.finel.2021.103572_bib14) 2008; 44
Nguyen (10.1016/j.finel.2021.103572_bib2) 2017; 193
Yu (10.1016/j.finel.2021.103572_bib33) 2019; 59
Niutta (10.1016/j.finel.2021.103572_bib53) 2018; 57
Liang (10.1016/j.finel.2021.103572_bib39) 2018; 15
Storn (10.1016/j.finel.2021.103572_bib16) 1997; 11
Li (10.1016/j.finel.2021.103572_bib44) 2019; 115
Chandrasekhar (10.1016/j.finel.2021.103572_bib42) 2020
Hajela (10.1016/j.finel.2021.103572_bib34) 1991; 41
Hou (10.1016/j.finel.2021.103572_bib3) 2007; 43
Do (10.1016/j.finel.2021.103572_bib64) 2019; 159
Krishnamoorthy (10.1016/j.finel.2021.103572_bib71) 1996; 22
Boukouvala (10.1016/j.finel.2021.103572_bib54) 2017; 67
Ho-Huu (10.1016/j.finel.2021.103572_bib68) 2016; 92
Deng (10.1016/j.finel.2021.103572_bib59) 2013
Vo (10.1016/j.finel.2021.103572_bib4) 2011; 81
Kollmann (10.1016/j.finel.2021.103572_bib36) 2020; 196
Haririan (10.1016/j.finel.2021.103572_bib11) 1987; 26
Forrester (10.1016/j.finel.2021.103572_bib25) 2009; 45
Truong (10.1016/j.finel.2021.103572_bib41) 2020; 30
Samaniego (10.1016/j.finel.2021.103572_bib28) 2020; 362
Abueidda (10.1016/j.finel.2021.103572_bib27) 2020; 136
Ho-Huu (10.1016/j.finel.2021.103572_bib69) 2015; 42
Yun (10.1016/j.finel.2021.103572_bib46) 2000; 77
Zhou (10.1016/j.finel.2021.103572_bib43) 2020; 239
Yildiz (10.1016/j.finel.2021.103572_bib45) 2003; 25
Duchi (10.1016/j.finel.2021.103572_bib60) 2011; 12
Hajela (10.1016/j.finel.2021.103572_bib37) 1991; 2
10.1016/j.finel.2021.103572_bib65
10.1016/j.finel.2021.103572_bib62
Kaveh (10.1016/j.finel.2021.103572_bib19) 2006; 84
Bartoli (10.1016/j.finel.2021.103572_bib24) 2019; 90
Abueidda (10.1016/j.finel.2021.103572_bib35) 2020; 237
Ho-Huu (10.1016/j.finel.2021.103572_bib67) 2016; 165
Khot (10.1016/j.finel.2021.103572_bib10) 1985; 23
Nwankpa (10.1016/j.finel.2021.103572_bib57) 2018
Ho-Huu (10.1016/j.finel.2021.103572_bib18) 2016; 68
Lee (10.1016/j.finel.2021.103572_bib29) 2020
Greco (10.1016/j.finel.2021.103572_bib48) 2006; 42
Ho-Huu (10.1016/j.finel.2021.103572_bib17) 2018; 29
Thai (10.1016/j.finel.2021.103572_bib1) 2020
Chen (10.1016/j.finel.2021.103572_bib22) 2020; 362
Lieu (10.1016/j.finel.2021.103572_bib73) 2018; 195
Hamdia (10.1016/j.finel.2021.103572_bib56) 2020
Deb (10.1016/j.finel.2021.103572_bib15) 2001; 37
Mozaffar (10.1016/j.finel.2021.103572_bib31) 2019; 116
Lee (10.1016/j.finel.2021.103572_bib40) 2018; 25
Regis (10.1016/j.finel.2021.103572_bib52) 2020
Berke (10.1016/j.finel.2021.103572_bib38) 1992; 4
Srivastava (10.1016/j.finel.2021.103572_bib66) 2014; 15
Kameshki (10.1016/j.finel.2021.103572_bib20) 2007; 85
10.1016/j.finel.2021.103572_bib32
Wang (10.1016/j.finel.2021.103572_bib58) 2020
Shi (10.1016/j.finel.2021.103572_bib23) 2019; 347
Riks (10.1016/j.finel.2021.103572_bib51) 1979; 15
El-Sayed (10.1016/j.finel.2021.103572_bib12) 1989; 32
Vo (10.1016/j.finel.2021.103572_bib5) 2010; 52
Shin (10.1016/j.finel.2021.103572_bib13) 2007; 196
Gu (10.1016/j.finel.2021.103572_bib30) 2018; 18
Arpat (10.1016/j.finel.2021.103572_bib55) 1998; 20
References_xml – volume: 41
  start-page: 219
  year: 2010
  end-page: 241
  ident: bib21
  article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions
  publication-title: Struct. Multidiscip. Optim.
– volume: 239
  start-page: 106310
  year: 2020
  ident: bib43
  article-title: A new data-driven topology optimization framework for structural optimization
  publication-title: Comput. Struct.
– year: 1972
  ident: bib50
  article-title: The Application of Newton's Method to the Problem of Elastic Stability
– volume: 77
  start-page: 41
  year: 2000
  end-page: 52
  ident: bib46
  article-title: Substructural identification using neural networks
  publication-title: Comput. Struct.
– year: 2014
  ident: bib63
  article-title: A Method for Stochastic Optimization
– volume: 84
  start-page: 770
  year: 2006
  end-page: 778
  ident: bib19
  article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm
  publication-title: Comput. Struct.
– volume: 42
  start-page: 1079
  year: 2006
  end-page: 1086
  ident: bib48
  article-title: Nonlinear positional formulation for space truss analysis
  publication-title: Finite Elem. Anal. Des.
– start-page: 8604
  year: 2013
  end-page: 8608
  ident: bib59
  article-title: Recent advances in deep learning for speech research at microsoft
  publication-title: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bib26
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 18
  start-page: 19
  year: 2018
  end-page: 28
  ident: bib30
  article-title: De novo composite design based on machine learning algorithm
  publication-title: Extreme Mechanics Letters
– volume: 15
  start-page: 20170844
  year: 2018
  ident: bib39
  article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
  publication-title: J. R. Soc. Interface
– volume: 196
  start-page: 109098
  year: 2020
  ident: bib36
  article-title: Deep learning for topology optimization of 2d metamaterials
  publication-title: Mater. Des.
– volume: 23
  start-page: 139
  year: 1985
  end-page: 144
  ident: bib10
  article-title: Minimum weight design of truss structures with geometric nonlinear behavior
  publication-title: AIAA J.
– volume: 90
  start-page: 85
  year: 2019
  end-page: 102
  ident: bib24
  article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design
  publication-title: Aero. Sci. Technol.
– volume: 85
  start-page: 71
  year: 2007
  end-page: 79
  ident: bib20
  article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm
  publication-title: Comput. Struct.
– volume: 68
  start-page: 81
  year: 2016
  end-page: 94
  ident: bib18
  article-title: Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme
  publication-title: Autom. ConStruct.
– year: 2018
  ident: bib57
  article-title: Activation Functions: Comparison of Trends in Practice and Research for Deep Learning
– volume: 4
  start-page: 90
  year: 1992
  end-page: 98
  ident: bib38
  article-title: Applications of artificial neural nets in structural mechanics
  publication-title: Struct. Optim.
– volume: 7
  start-page: 1581
  year: 1971
  end-page: 1599
  ident: bib6
  article-title: Discrete approximations related to nonlinear theories of solids
  publication-title: Int. J. Solid Struct.
– volume: 21
  start-page: 1181
  year: 1983
  end-page: 1186
  ident: bib9
  article-title: Nonlinear analysis of optimized structure with constraints on systemstability
  publication-title: AIAA J.
– volume: 116
  start-page: 26414
  year: 2019
  end-page: 26420
  ident: bib31
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 193
  start-page: 110
  year: 2017
  end-page: 127
  ident: bib2
  article-title: Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory
  publication-title: Comput. Struct.
– volume: 30
  start-page: 101244
  year: 2020
  ident: bib41
  article-title: An effective deep feedforward neural networks (dfnn) method for damage identification of truss structures using noisy incomplete modal data
  publication-title: Journal of Building Engineering
– volume: 15
  start-page: 529
  year: 1979
  end-page: 551
  ident: bib51
  article-title: An incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solid Struct.
– volume: 52
  start-page: 65
  year: 2010
  end-page: 74
  ident: bib5
  article-title: Geometrically nonlinear theory of thin-walled composite box beams using shear-deformable beam theory
  publication-title: Int. J. Mech. Sci.
– reference: H. Nguyen, T. Vu, T. P. Vo, H.-T. Thai, Efficient machine learning models for prediction of concrete strengths, Construct. Build. Mater. 266 (????) 120950.
– volume: 42
  start-page: 7057
  year: 2015
  end-page: 7069
  ident: bib69
  article-title: An improved constrained differential evolution using discrete variables (d-icde) for layout optimization of truss structures
  publication-title: Expert Syst. Appl.
– volume: 195
  start-page: 99
  year: 2018
  end-page: 112
  ident: bib73
  article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints
  publication-title: Comput. Struct.
– start-page: 37
  year: 2020
  end-page: 47
  ident: bib52
  article-title: A survey of surrogate approaches for expensive constrained black-box optimization
  publication-title: Optimization of Complex Systems: Theory, Models
– volume: 136
  start-page: 102852
  year: 2020
  ident: bib27
  article-title: Deep learning for plasticity and thermo-viscoplasticity
  publication-title: Int. J. Plast.
– volume: 26
  start-page: 123
  year: 1987
  end-page: 133
  ident: bib11
  article-title: Use of adina for design optimization of nonlinear structures
  publication-title: Comput. Struct.
– year: 2020
  ident: bib1
  article-title: Review of Nonlinear Analysis and Modeling of Steel and Composite Structures
– volume: 44
  start-page: 933
  year: 2008
  end-page: 950
  ident: bib14
  article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach
  publication-title: Finite Elem. Anal. Des.
– volume: 45
  start-page: 50
  year: 2009
  end-page: 79
  ident: bib25
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aero. Sci.
– volume: 362
  start-page: 112790
  year: 2020
  ident: bib28
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 57
  start-page: 1857
  year: 2018
  end-page: 1869
  ident: bib53
  article-title: Surrogate modeling in design optimization of structures with discontinuous responses
  publication-title: Struct. Multidiscip. Optim.
– volume: 115
  start-page: 172
  year: 2019
  end-page: 180
  ident: bib44
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput. Aided Des.
– volume: 34
  start-page: 133
  year: 1993
  end-page: 149
  ident: bib72
  article-title: Review on methods of bifurcation analysis for geometrically nonlinear structures
  publication-title: Bulletin of the International Association for Shell and Spatial structures
– volume: 32
  start-page: 69
  year: 1989
  end-page: 73
  ident: bib12
  article-title: Nonlinear structural optimization using goal programming
  publication-title: Comput. Struct.
– volume: 12
  year: 2011
  ident: bib60
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– volume: 23
  start-page: 214
  year: 2002
  end-page: 221
  ident: bib8
  article-title: Optimization of nonlinear trusses using a displacement-based approach
  publication-title: Struct. Multidiscip. Optim.
– volume: 20
  start-page: 1
  year: 1998
  end-page: 8
  ident: bib55
  article-title: The neighborhood approach to prediction of permeability from wireline logs and limited core plug analysis data using backpropagation artificial neural networks
  publication-title: J. Petrol. Sci. Eng.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: bib16
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 41
  start-page: 657
  year: 1991
  end-page: 667
  ident: bib34
  article-title: Neurobiological computational models in structural analysis and design
  publication-title: Comput. Struct.
– reference: S. Lee, S. Park, T. Kim, Q. X. Lieu, J. Lee, Damage quantification in truss structures by limited sensor-based surrogate model, Appl. Acoust. 172 (????) 107547.
– volume: 347
  start-page: 782
  year: 2019
  end-page: 805
  ident: bib23
  article-title: Filter-based adaptive kriging method for black-box optimization problems with expensive objective and constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 41
  start-page: 1387
  year: 1991
  end-page: 1396
  ident: bib7
  article-title: Optimum design of geometrically nonlinear space trusses
  publication-title: Comput. Struct.
– reference: M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics, Non-linear Finite Element Analysis of Solids and Structures, Wiley, ????
– volume: 91
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib49
  article-title: A total-Lagrangian position-based fem applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse
  publication-title: Finite Elem. Anal. Des.
– start-page: 1
  year: 2020
  end-page: 26
  ident: bib58
  article-title: A comprehensive survey of loss functions in machine learning
  publication-title: Annals of Data Science
– volume: 25
  start-page: 121
  year: 2018
  end-page: 129
  ident: bib40
  article-title: Background information of deep learning for structural engineering
  publication-title: Arch. Comput. Methods Eng.
– volume: 237
  start-page: 106283
  year: 2020
  ident: bib35
  article-title: Topology optimization of 2d structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
– volume: 196
  start-page: 1154
  year: 2007
  end-page: 1167
  ident: bib13
  article-title: Optimization of structures with nonlinear behavior using equivalent loads
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 25
  start-page: 251
  year: 2003
  end-page: 260
  ident: bib45
  article-title: Integrated optimal topology design and shape optimization using neural networks
  publication-title: Struct. Multidiscip. Optim.
– volume: 81
  start-page: 419
  year: 2011
  end-page: 435
  ident: bib4
  article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory
  publication-title: Arch. Appl. Mech.
– volume: 159
  start-page: 300
  year: 2019
  end-page: 326
  ident: bib64
  article-title: Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems
  publication-title: Compos. B Eng.
– volume: 67
  start-page: 3
  year: 2017
  end-page: 42
  ident: bib54
  article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
  publication-title: J. Global Optim.
– volume: 29
  start-page: 167
  year: 2018
  end-page: 185
  ident: bib17
  article-title: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2020
  end-page: 11
  ident: bib56
  article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm
  publication-title: Neural Comput. Appl.
– volume: 2
  start-page: 473
  year: 1991
  end-page: 481
  ident: bib37
  article-title: Neural network based decomposition in optimal structural synthesis
  publication-title: Comput. Syst. Eng.
– reference: G. Hinton, N. Srivastava, K. Swersky, Neural Networks for Machine Learning, Coursera, Video Lectures 264 (????).
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib66
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: bib70
  article-title: Worked Examples in Nonlinear Continuum Mechanics for Finite Element Analysis
– start-page: 15
  year: 2020
  ident: bib42
  article-title: TOuNN: Direct Topology Optimization Using Neural Networks
– volume: 37
  start-page: 447
  year: 2001
  end-page: 465
  ident: bib15
  article-title: Design of truss-structures for minimum weight using genetic algorithms
  publication-title: Finite Elem. Anal. Des.
– volume: 43
  start-page: 555
  year: 2007
  end-page: 565
  ident: bib3
  article-title: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria
  publication-title: Finite Elem. Anal. Des.
– volume: 92
  start-page: 48
  year: 2016
  end-page: 56
  ident: bib68
  article-title: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures
  publication-title: Adv. Eng. Software
– volume: 362
  start-page: 112861
  year: 2020
  ident: bib22
  article-title: Optimization of expensive black-box problems via gradient-enhanced kriging
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 105887
  year: 2020
  ident: bib29
  article-title: Cnn-based Image Recognition for Topology Optimization
– volume: 22
  start-page: 109
  year: 1996
  end-page: 142
  ident: bib71
  article-title: Post-buckling analysis of structures by three-parameter constrained solution techniques
  publication-title: Finite Elem. Anal. Des.
– year: 2012
  ident: bib61
  article-title: Adadelta: an Adaptive Learning Rate Method
– volume: 59
  start-page: 787
  year: 2019
  end-page: 799
  ident: bib33
  article-title: Deep learning for determining a near-optimal topological design without any iteration
  publication-title: Struct. Multidiscip. Optim.
– volume: 165
  start-page: 59
  year: 2016
  end-page: 75
  ident: bib67
  article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables
  publication-title: Comput. Struct.
– ident: 10.1016/j.finel.2021.103572_bib62
– volume: 196
  start-page: 1154
  year: 2007
  ident: 10.1016/j.finel.2021.103572_bib13
  article-title: Optimization of structures with nonlinear behavior using equivalent loads
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.09.001
– start-page: 105887
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib29
– volume: 22
  start-page: 109
  year: 1996
  ident: 10.1016/j.finel.2021.103572_bib71
  article-title: Post-buckling analysis of structures by three-parameter constrained solution techniques
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/0168-874X(96)00046-7
– volume: 43
  start-page: 555
  year: 2007
  ident: 10.1016/j.finel.2021.103572_bib3
  article-title: Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2006.12.008
– volume: 37
  start-page: 447
  year: 2001
  ident: 10.1016/j.finel.2021.103572_bib15
  article-title: Design of truss-structures for minimum weight using genetic algorithms
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/S0168-874X(00)00057-3
– ident: 10.1016/j.finel.2021.103572_bib47
– volume: 41
  start-page: 1387
  year: 1991
  ident: 10.1016/j.finel.2021.103572_bib7
  article-title: Optimum design of geometrically nonlinear space trusses
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90276-R
– year: 2020
  ident: 10.1016/j.finel.2021.103572_bib1
– volume: 41
  start-page: 219
  year: 2010
  ident: 10.1016/j.finel.2021.103572_bib21
  article-title: Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0420-2
– volume: 34
  start-page: 133
  year: 1993
  ident: 10.1016/j.finel.2021.103572_bib72
  article-title: Review on methods of bifurcation analysis for geometrically nonlinear structures
  publication-title: Bulletin of the International Association for Shell and Spatial structures
– volume: 23
  start-page: 139
  year: 1985
  ident: 10.1016/j.finel.2021.103572_bib10
  article-title: Minimum weight design of truss structures with geometric nonlinear behavior
  publication-title: AIAA J.
  doi: 10.2514/3.8882
– volume: 25
  start-page: 251
  year: 2003
  ident: 10.1016/j.finel.2021.103572_bib45
  article-title: Integrated optimal topology design and shape optimization using neural networks
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-003-0300-0
– start-page: 1
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib56
  article-title: An efficient optimization approach for designing machine learning models based on genetic algorithm
  publication-title: Neural Comput. Appl.
– volume: 347
  start-page: 782
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib23
  article-title: Filter-based adaptive kriging method for black-box optimization problems with expensive objective and constraints
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.12.026
– start-page: 37
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib52
  article-title: A survey of surrogate approaches for expensive constrained black-box optimization
– year: 2018
  ident: 10.1016/j.finel.2021.103572_bib57
– volume: 165
  start-page: 59
  year: 2016
  ident: 10.1016/j.finel.2021.103572_bib67
  article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2015.11.014
– volume: 193
  start-page: 110
  year: 2017
  ident: 10.1016/j.finel.2021.103572_bib2
  article-title: Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.07.017
– volume: 42
  start-page: 1079
  year: 2006
  ident: 10.1016/j.finel.2021.103572_bib48
  article-title: Nonlinear positional formulation for space truss analysis
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2006.04.007
– start-page: 15
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib42
– volume: 237
  start-page: 106283
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib35
  article-title: Topology optimization of 2d structures with nonlinearities using deep learning
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106283
– volume: 77
  start-page: 41
  year: 2000
  ident: 10.1016/j.finel.2021.103572_bib46
  article-title: Substructural identification using neural networks
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(99)00199-6
– volume: 30
  start-page: 101244
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib41
  article-title: An effective deep feedforward neural networks (dfnn) method for damage identification of truss structures using noisy incomplete modal data
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2020.101244
– volume: 23
  start-page: 214
  year: 2002
  ident: 10.1016/j.finel.2021.103572_bib8
  article-title: Optimization of nonlinear trusses using a displacement-based approach
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-002-0179-1
– volume: 239
  start-page: 106310
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib43
  article-title: A new data-driven topology optimization framework for structural optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2020.106310
– volume: 7
  start-page: 1581
  year: 1971
  ident: 10.1016/j.finel.2021.103572_bib6
  article-title: Discrete approximations related to nonlinear theories of solids
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/0020-7683(71)90038-2
– volume: 26
  start-page: 123
  year: 1987
  ident: 10.1016/j.finel.2021.103572_bib11
  article-title: Use of adina for design optimization of nonlinear structures
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(87)90242-2
– volume: 52
  start-page: 65
  year: 2010
  ident: 10.1016/j.finel.2021.103572_bib5
  article-title: Geometrically nonlinear theory of thin-walled composite box beams using shear-deformable beam theory
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2009.10.005
– volume: 15
  start-page: 20170844
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib39
  article-title: A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0844
– volume: 44
  start-page: 933
  year: 2008
  ident: 10.1016/j.finel.2021.103572_bib14
  article-title: Optimization of stability-constrained geometrically nonlinear shallow trusses using an arc length sparse method with a strain energy density approach
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2008.07.004
– volume: 20
  start-page: 1
  year: 1998
  ident: 10.1016/j.finel.2021.103572_bib55
  article-title: The neighborhood approach to prediction of permeability from wireline logs and limited core plug analysis data using backpropagation artificial neural networks
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/S0920-4105(98)00034-5
– year: 2012
  ident: 10.1016/j.finel.2021.103572_bib61
– volume: 67
  start-page: 3
  year: 2017
  ident: 10.1016/j.finel.2021.103572_bib54
  article-title: Global optimization of general constrained grey-box models: new method and its application to constrained PDEs for pressure swing adsorption
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-015-0376-2
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.finel.2021.103572_bib16
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 91
  start-page: 1
  year: 2014
  ident: 10.1016/j.finel.2021.103572_bib49
  article-title: A total-Lagrangian position-based fem applied to physical and geometrical nonlinear dynamics of plane frames including semi-rigid connections and progressive collapse
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2014.07.001
– volume: 32
  start-page: 69
  year: 1989
  ident: 10.1016/j.finel.2021.103572_bib12
  article-title: Nonlinear structural optimization using goal programming
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(89)90070-9
– volume: 57
  start-page: 1857
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib53
  article-title: Surrogate modeling in design optimization of structures with discontinuous responses
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1958-7
– volume: 42
  start-page: 7057
  year: 2015
  ident: 10.1016/j.finel.2021.103572_bib69
  article-title: An improved constrained differential evolution using discrete variables (d-icde) for layout optimization of truss structures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.072
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.finel.2021.103572_bib26
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 21
  start-page: 1181
  year: 1983
  ident: 10.1016/j.finel.2021.103572_bib9
  article-title: Nonlinear analysis of optimized structure with constraints on systemstability
  publication-title: AIAA J.
  doi: 10.2514/3.8224
– volume: 45
  start-page: 50
  year: 2009
  ident: 10.1016/j.finel.2021.103572_bib25
  article-title: Recent advances in surrogate-based optimization
  publication-title: Prog. Aero. Sci.
  doi: 10.1016/j.paerosci.2008.11.001
– volume: 41
  start-page: 657
  year: 1991
  ident: 10.1016/j.finel.2021.103572_bib34
  article-title: Neurobiological computational models in structural analysis and design
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(91)90178-O
– volume: 59
  start-page: 787
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib33
  article-title: Deep learning for determining a near-optimal topological design without any iteration
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2101-5
– volume: 115
  start-page: 172
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib44
  article-title: Non-iterative structural topology optimization using deep learning
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2019.05.038
– ident: 10.1016/j.finel.2021.103572_bib32
  doi: 10.1016/j.conbuildmat.2020.120950
– volume: 362
  start-page: 112790
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib28
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112790
– volume: 116
  start-page: 26414
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib31
  article-title: Deep learning predicts path-dependent plasticity
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1911815116
– start-page: 8604
  year: 2013
  ident: 10.1016/j.finel.2021.103572_bib59
  article-title: Recent advances in deep learning for speech research at microsoft
– volume: 2
  start-page: 473
  year: 1991
  ident: 10.1016/j.finel.2021.103572_bib37
  article-title: Neural network based decomposition in optimal structural synthesis
  publication-title: Comput. Syst. Eng.
  doi: 10.1016/0956-0521(91)90050-F
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.finel.2021.103572_bib66
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 159
  start-page: 300
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib64
  article-title: Material optimization of functionally graded plates using deep neural network and modified symbiotic organisms search for eigenvalue problems
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2018.09.087
– volume: 4
  start-page: 90
  year: 1992
  ident: 10.1016/j.finel.2021.103572_bib38
  article-title: Applications of artificial neural nets in structural mechanics
  publication-title: Struct. Optim.
  doi: 10.1007/BF01759922
– volume: 81
  start-page: 419
  year: 2011
  ident: 10.1016/j.finel.2021.103572_bib4
  article-title: Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-010-0407-x
– volume: 68
  start-page: 81
  year: 2016
  ident: 10.1016/j.finel.2021.103572_bib18
  article-title: Optimal design of truss structures with frequency constraints using improved differential evolution algorithm based on an adaptive mutation scheme
  publication-title: Autom. ConStruct.
  doi: 10.1016/j.autcon.2016.05.004
– volume: 92
  start-page: 48
  year: 2016
  ident: 10.1016/j.finel.2021.103572_bib68
  article-title: An effective reliability-based improved constrained differential evolution for reliability-based design optimization of truss structures
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2015.11.001
– volume: 196
  start-page: 109098
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib36
  article-title: Deep learning for topology optimization of 2d metamaterials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109098
– volume: 29
  start-page: 167
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib17
  article-title: An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2426-1
– volume: 136
  start-page: 102852
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib27
  article-title: Deep learning for plasticity and thermo-viscoplasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102852
– start-page: 1
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib58
  article-title: A comprehensive survey of loss functions in machine learning
  publication-title: Annals of Data Science
– year: 2012
  ident: 10.1016/j.finel.2021.103572_bib70
– volume: 15
  start-page: 529
  year: 1979
  ident: 10.1016/j.finel.2021.103572_bib51
  article-title: An incremental approach to the solution of snapping and buckling problems
  publication-title: Int. J. Solid Struct.
  doi: 10.1016/0020-7683(79)90081-7
– volume: 18
  start-page: 19
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib30
  article-title: De novo composite design based on machine learning algorithm
  publication-title: Extreme Mechanics Letters
  doi: 10.1016/j.eml.2017.10.001
– volume: 84
  start-page: 770
  year: 2006
  ident: 10.1016/j.finel.2021.103572_bib19
  article-title: Nonlinear analysis and optimal design of structures via force method and genetic algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.02.004
– volume: 362
  start-page: 112861
  year: 2020
  ident: 10.1016/j.finel.2021.103572_bib22
  article-title: Optimization of expensive black-box problems via gradient-enhanced kriging
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.112861
– year: 2014
  ident: 10.1016/j.finel.2021.103572_bib63
– year: 1972
  ident: 10.1016/j.finel.2021.103572_bib50
– volume: 25
  start-page: 121
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib40
  article-title: Background information of deep learning for structural engineering
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-017-9237-0
– volume: 90
  start-page: 85
  year: 2019
  ident: 10.1016/j.finel.2021.103572_bib24
  article-title: Adaptive modeling strategy for constrained global optimization with application to aerodynamic wing design
  publication-title: Aero. Sci. Technol.
  doi: 10.1016/j.ast.2019.03.041
– volume: 85
  start-page: 71
  year: 2007
  ident: 10.1016/j.finel.2021.103572_bib20
  article-title: Optimum geometry design of nonlinear braced domes using genetic algorithm
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.09.002
– volume: 12
  year: 2011
  ident: 10.1016/j.finel.2021.103572_bib60
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.finel.2021.103572_bib65
  doi: 10.1016/j.apacoust.2020.107547
– volume: 195
  start-page: 99
  year: 2018
  ident: 10.1016/j.finel.2021.103572_bib73
  article-title: An adaptive hybrid evolutionary firefly algorithm for shape and size optimization of truss structures with frequency constraints
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.06.016
SSID ssj0005264
Score 2.571576
Snippet Design optimization of geometrically nonlinear structures is well known as a computationally expensive problem by using incremental-iterative solution...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103572
SubjectTerms Artificial neural networks
Computational efficiency
Computing costs
Computing time
Deep neural network
Design optimization
Evolutionary algorithms
Evolutionary computation
Finite element method
Geometric nonlinear
Iterative methods
Iterative solution
Machine learning
Neural network
Neural networks
Surrogate model
Truss optimization
Trusses
Title A machine learning-based surrogate model for optimization of truss structures with geometrically nonlinear behavior
URI https://dx.doi.org/10.1016/j.finel.2021.103572
https://www.proquest.com/docview/2579140247
Volume 196
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDDwRjwrD4yENn7FHitEVUCwQKVuVpzYqIhS1MDAwm_nLnEQIMHAGMtOIp_v7rvzPQg5znKvCqPxyj83idA9k-TOhKQE-zZ3THLVw-Tk6xs1HInLsRwvkLM2FwbDKqPsb2R6La3jSDfuZvd5MuneAlgBDhFjhi5qWZtAQmR4yk_fv4Z5qFjfWyc4u608VMd4BUByeP_AUkw-lxn7TTv9kNO18hmsk9WIGmm_-bENsuCfNslaRJA08me1SVa-lBfcIlWfTutYSU9jc4j7BLVWSavX-XyGDjRad8KhgFzpDITHNGZl0lmgmI1R0aa-7CsY5RRdtvTez6bYhAtI-_hGn5pCG_mctun-22Q0OL87GyaxyUJScJ6-JEFnzDEVdO5CJsBaTL2HEWm0U7pkuWDOA0YJXPdCXhgD_CydKpU3pQwlT_kOWYSP-V1CCw94JxQ6DaYUqdeO8ZJnIQgteJA67BHWbq4tYgVybITxaNtQswdbU8QiRWxDkT1y8rnouSnA8fd01VLNfjtHFlTE3wsPWxrbyMaVBXlmwAJlItv_73sPyDI-YfpiKg_JIlDNHwGOeXGd-qB2yFL_4mp48wHyD_RG
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaC9NDtsD62oc9Nhx1nJJYsWToGRYu0SXNZC-QmWLZUdGiaIm4P-_clbblIB7SHXm3LNkSR_CiRHwF-5YVXpdF05F-YJNNDkxTOhKTC-LZwXAo1pOLky5kaX2cXcznvwUlXC0NpldH2tza9sdbxyiDO5uDh9nbwB8EKakg257RFLSkE2iB2KtmHjdH5ZDxby_RQkeJbJzSgIx9q0rwCgjk6guAp1Z_LnL_loP4z1Y3_OduGLxE4slH7bzvQ8_e7sBVBJIsqWu_C5zWGwa9Qj9iiSZf0LPaHuEnIcVWsflqtlrSHxppmOAzBK1ui_VjEwky2DIwKMmrWUsw-YVzOaNeW3fjlgvpwoXTv_rH7lmujWLGu4v8bXJ-dXp2Mk9hnISmFSB-ToHPuuAq6cCHHKTSp93hFGu2UrniRcecRpgShh6EojUGVlk5VyptKhkqk4jv08WN-D1jpEfKEUqfBVFnqteOiEnkImc5EkDrsA-8m15aRhJx6YdzZLtvsr20kYkkitpXIPvx-GfTQcnC8_7jqpGZfLSWLXuL9gUedjG3U5NqiSTMYhPIsP_joe3_C5vjqcmqn57PJIXyiO1TNmMoj6KME_THCmkf3Iy7bZ0xg9vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning-based+surrogate+model+for+optimization+of+truss+structures+with+geometrically+nonlinear+behavior&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Mai%2C+Hau+T&rft.au=Kang%2C+Joowon&rft.au=Lee%2C+Jaehong&rft.date=2021-11-15&rft.pub=Elsevier+BV&rft.issn=0168-874X&rft.volume=196&rft.spage=1&rft_id=info:doi/10.1016%2Fj.finel.2021.103572&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon