Diversity of interaction solutions to the (2+1)-dimensional Ito equation
We aim to show the diversity of interaction solutions to the (2+1)-dimensional Ito equation, based on its Hirota bilinear form. The proof is given through Maple symbolic computations. An interesting characteristic in the resulting interaction solutions is the involvement of an arbitrary function. Sp...
Saved in:
Published in | Computers & mathematics with applications (1987) Vol. 75; no. 1; pp. 289 - 295 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0898-1221 1873-7668 |
DOI | 10.1016/j.camwa.2017.09.013 |
Cover
Loading…
Abstract | We aim to show the diversity of interaction solutions to the (2+1)-dimensional Ito equation, based on its Hirota bilinear form. The proof is given through Maple symbolic computations. An interesting characteristic in the resulting interaction solutions is the involvement of an arbitrary function. Special cases lead to lump solutions, lump-soliton solutions and lump-kink solutions. Two illustrative examples of the resulting solutions are displayed by three-dimensional plots and contour plots. |
---|---|
AbstractList | We aim to show the diversity of interaction solutions to the (2+1 )-dimensional Ito equation, based on its Hirota bilinear form. The proof is given through Maple symbolic computations. An interesting characteristic in the resulting interaction solutions is the involvement of an arbitrary function. Special cases lead to lump solutions, lump-soliton solutions and lump-kink solutions. Two illustrative examples of the resulting solutions are displayed by three-dimensional plots and contour plots. |
Author | Yong, Xuelin Zhang, Hai-Qiang Ma, Wen-Xiu |
Author_xml | – sequence: 1 givenname: Wen-Xiu orcidid: 0000-0001-5309-1493 surname: Ma fullname: Ma, Wen-Xiu email: mawx@cas.usf.edu organization: College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China – sequence: 2 givenname: Xuelin surname: Yong fullname: Yong, Xuelin organization: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA – sequence: 3 givenname: Hai-Qiang surname: Zhang fullname: Zhang, Hai-Qiang organization: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA |
BookMark | eNqFkD9PwzAQxS1UJErhE7BEYgGhhLOdxMnAgMqfVqrEArPlOBfhqo1b2ynqtydpmRhgutPd-53evXMyam2LhFxRSCjQ_H6ZaLX-UgkDKhIoE6D8hIxpIXgs8rwYkTEUZRFTxugZOfd-CQApZzAmsyezQ-dN2Ee2iUwb0CkdjG0jb1fd0Pgo2Ch8YnTD7uhtXJs1tr6fq1U07ze47dQguyCnjVp5vPypE_Lx8vw-ncWLt9f59HERa85piBteNmmqckVzquusEkirWlR5KQTjqeCAldaMVbkumACeapWWqEBnoKDiQvAJuT7e3Ti77dAHubSd6914ySClIusfy3pVeVRpZ7132EhtwsFncMqsJAU5BCeX8hCcHIKTUMo-uJ7lv9iNM2vl9v9QD0cK--d3Bp302mCrsTYOdZC1NX_y31y6iag |
CitedBy_id | crossref_primary_10_1142_S0217984919500702 crossref_primary_10_1142_S0217984919501914 crossref_primary_10_1016_j_camwa_2019_01_027 crossref_primary_10_1016_j_camwa_2018_06_001 crossref_primary_10_1007_s11082_018_1383_6 crossref_primary_10_1088_1674_1056_ab6964 crossref_primary_10_1016_j_chaos_2024_115351 crossref_primary_10_1016_j_ijleo_2019_163348 crossref_primary_10_1016_j_cjph_2020_06_008 crossref_primary_10_1016_j_camwa_2019_01_022 crossref_primary_10_1007_s11128_019_2200_2 crossref_primary_10_1016_j_aej_2022_06_047 crossref_primary_10_1016_j_rinp_2019_102339 crossref_primary_10_1007_s11464_020_0844_y crossref_primary_10_1016_j_cjph_2019_03_003 crossref_primary_10_1016_j_ijleo_2018_12_131 crossref_primary_10_1016_j_ijleo_2018_12_011 crossref_primary_10_1016_j_physa_2019_121344 crossref_primary_10_11948_2019_200 crossref_primary_10_1016_j_amc_2019_06_039 crossref_primary_10_1515_ijnsns_2020_0183 crossref_primary_10_1142_S0217984921502547 crossref_primary_10_11948_20220137 crossref_primary_10_1016_j_aej_2023_12_023 crossref_primary_10_1007_s11071_024_09369_2 crossref_primary_10_1007_s12043_019_1751_1 crossref_primary_10_1007_s10473_019_0214_6 crossref_primary_10_1088_1674_1056_27_12_126303 crossref_primary_10_1142_S0217984922501561 crossref_primary_10_1080_00207160_2020_1792454 crossref_primary_10_1142_S0217984919501811 crossref_primary_10_1088_1402_4896_abd3c3 crossref_primary_10_1007_s12043_020_1918_9 crossref_primary_10_1140_epjp_s13360_020_00463_z crossref_primary_10_11948_20190162 crossref_primary_10_3390_math11051074 crossref_primary_10_1007_s11082_021_02909_9 crossref_primary_10_1142_S0217979223500480 crossref_primary_10_1016_j_physleta_2019_02_042 crossref_primary_10_1016_j_camwa_2018_10_007 crossref_primary_10_1016_j_camwa_2018_02_019 crossref_primary_10_1007_s11071_019_05222_z crossref_primary_10_1016_j_cnsns_2018_11_017 crossref_primary_10_1016_j_rinp_2020_103309 crossref_primary_10_11948_jaac20190003 crossref_primary_10_1088_1402_4896_ab6483 crossref_primary_10_1007_s11464_018_0694_z crossref_primary_10_1007_s11071_024_10122_y crossref_primary_10_1142_S0217984919501227 crossref_primary_10_1016_j_aml_2023_108799 crossref_primary_10_1142_S0217984918503438 crossref_primary_10_1142_S0217984919501902 crossref_primary_10_1142_S0217984920502371 crossref_primary_10_1007_s11071_022_07207_x crossref_primary_10_1016_j_ijleo_2023_171390 crossref_primary_10_1080_25765299_2019_1576583 crossref_primary_10_1016_j_physleta_2022_128589 crossref_primary_10_1142_S0217984924503251 crossref_primary_10_1007_s11128_019_2187_8 crossref_primary_10_1108_HFF_02_2019_0160 crossref_primary_10_1016_j_aml_2019_106071 crossref_primary_10_1142_S0217979220500435 crossref_primary_10_1007_s12043_018_1707_x crossref_primary_10_1140_epjp_i2019_12799_2 crossref_primary_10_1007_s11401_020_0228_3 crossref_primary_10_1155_2020_3542320 crossref_primary_10_1016_j_rinp_2021_104147 crossref_primary_10_1016_j_camwa_2018_03_046 crossref_primary_10_4236_jamp_2018_68148 crossref_primary_10_1186_s13662_021_03220_3 crossref_primary_10_1142_S0217984921505904 crossref_primary_10_1016_j_apm_2018_10_030 crossref_primary_10_1002_mma_7490 crossref_primary_10_1016_j_jmaa_2021_125198 crossref_primary_10_1007_s42452_019_0563_8 crossref_primary_10_15388_NA_2019_1_1 crossref_primary_10_1016_j_cjph_2022_07_001 crossref_primary_10_1186_s13662_018_1512_3 crossref_primary_10_15388_NA_2019_1_3 crossref_primary_10_1007_s40096_020_00341_w crossref_primary_10_1155_2018_9059858 crossref_primary_10_1016_j_cjph_2018_06_021 crossref_primary_10_1016_j_cjph_2018_06_026 crossref_primary_10_1016_j_aml_2019_01_019 crossref_primary_10_1007_s11071_022_08207_7 crossref_primary_10_1016_j_joes_2021_11_002 crossref_primary_10_1142_S0217984921504376 crossref_primary_10_1016_j_camwa_2019_03_002 crossref_primary_10_1016_j_aml_2020_106809 crossref_primary_10_1142_S0217984920502152 crossref_primary_10_1016_j_camwa_2019_03_005 crossref_primary_10_1016_j_camwa_2019_03_007 crossref_primary_10_1016_j_camwa_2019_03_008 crossref_primary_10_1088_1402_4896_ab6afe crossref_primary_10_1007_s11082_024_07209_6 crossref_primary_10_1016_j_joes_2022_01_012 crossref_primary_10_1016_j_padiff_2020_100010 crossref_primary_10_1016_j_aml_2018_05_010 crossref_primary_10_1155_2018_1345346 crossref_primary_10_1002_mma_5057 crossref_primary_10_1007_s13324_018_0258_0 crossref_primary_10_1007_s11071_023_08616_2 crossref_primary_10_1016_j_rinp_2024_107579 crossref_primary_10_1007_s11071_018_4670_7 crossref_primary_10_1016_j_ijleo_2018_12_002 crossref_primary_10_1007_s11071_019_04816_x crossref_primary_10_1142_S0217984918503347 crossref_primary_10_1016_j_ijleo_2019_03_004 crossref_primary_10_1088_1402_4896_abaad5 crossref_primary_10_1155_2018_6852548 crossref_primary_10_1007_s40819_022_01295_4 crossref_primary_10_1155_2020_4270906 crossref_primary_10_1007_s11071_019_05285_y crossref_primary_10_1016_j_wavemoti_2023_103125 crossref_primary_10_1016_j_cjph_2020_10_009 crossref_primary_10_1016_j_camwa_2018_12_010 crossref_primary_10_1016_j_matcom_2023_01_019 crossref_primary_10_1016_j_camwa_2018_12_011 crossref_primary_10_1142_S021798491950355X crossref_primary_10_3938_jkps_74_744 crossref_primary_10_1142_S0217979221501265 crossref_primary_10_1063_1_5019772 crossref_primary_10_1007_s10773_019_04012_y crossref_primary_10_1016_j_cnsns_2020_105447 crossref_primary_10_1016_j_jksus_2018_08_013 crossref_primary_10_1142_S0217984921503139 crossref_primary_10_1016_j_joes_2022_06_017 crossref_primary_10_1016_j_rinp_2023_106283 crossref_primary_10_1142_S0217984919502919 crossref_primary_10_1186_s13662_018_1768_7 crossref_primary_10_3934_math_2021316 crossref_primary_10_1016_j_camwa_2018_06_034 crossref_primary_10_1142_S021798492150041X crossref_primary_10_1007_s11071_022_07911_8 crossref_primary_10_1007_s12043_018_1679_x crossref_primary_10_1016_j_padiff_2023_100572 crossref_primary_10_1007_s13324_019_00337_3 crossref_primary_10_1142_S0217984920500554 crossref_primary_10_1016_j_chaos_2024_115008 crossref_primary_10_1088_1674_1056_27_9_096301 crossref_primary_10_1142_S0217984919502245 crossref_primary_10_1016_j_camwa_2018_08_012 crossref_primary_10_1016_j_jmaa_2024_128423 crossref_primary_10_1016_j_physleta_2023_128910 crossref_primary_10_1088_1572_9494_acc6b8 crossref_primary_10_1140_epjp_i2019_12515_4 crossref_primary_10_1007_s40314_018_0703_6 crossref_primary_10_1016_j_rinp_2019_102291 crossref_primary_10_1007_s11071_022_07514_3 crossref_primary_10_1016_j_aml_2018_10_018 crossref_primary_10_1016_j_joes_2018_12_003 crossref_primary_10_1016_j_heliyon_2023_e15929 crossref_primary_10_1007_s00332_019_09581_0 crossref_primary_10_1063_5_0019219 crossref_primary_10_1007_s11071_022_07322_9 crossref_primary_10_1142_S0217984919500672 crossref_primary_10_1016_j_wavemoti_2024_103383 crossref_primary_10_1016_j_wavemoti_2019_102396 crossref_primary_10_1140_epjp_s13360_021_01454_4 crossref_primary_10_1016_j_physleta_2021_127263 crossref_primary_10_1016_j_camwa_2019_03_048 crossref_primary_10_4236_jamp_2020_82015 crossref_primary_10_1088_0253_6102_71_7_793 crossref_primary_10_1007_s11424_020_9392_5 crossref_primary_10_1142_S0217979219503193 crossref_primary_10_1155_2019_8787460 crossref_primary_10_1515_nleng_2018_0033 crossref_primary_10_1007_s13324_018_0256_2 crossref_primary_10_1142_S0217984920500335 crossref_primary_10_1007_s13324_018_0271_3 crossref_primary_10_1016_j_physleta_2018_09_019 crossref_primary_10_1016_j_cjph_2022_08_026 crossref_primary_10_1016_j_aml_2020_106722 crossref_primary_10_1140_epjp_s13360_021_01212_6 crossref_primary_10_1142_S0217984920501304 crossref_primary_10_1007_s11071_019_05110_6 crossref_primary_10_1007_s40819_019_0607_1 crossref_primary_10_1142_S021798492050219X crossref_primary_10_1142_S0217984920503297 crossref_primary_10_1016_j_padiff_2023_100522 crossref_primary_10_1016_j_camwa_2018_04_015 crossref_primary_10_1016_j_cnsns_2018_09_007 crossref_primary_10_1177_1687814019838357 crossref_primary_10_1016_j_cjph_2018_07_013 crossref_primary_10_1142_S0217984921501608 crossref_primary_10_1515_phys_2023_0104 crossref_primary_10_1007_s11071_023_09122_1 crossref_primary_10_1016_j_aml_2018_06_011 crossref_primary_10_1016_j_indag_2018_04_002 crossref_primary_10_1016_j_padiff_2024_100682 crossref_primary_10_3934_math_2024065 crossref_primary_10_1016_j_camwa_2018_05_023 crossref_primary_10_1142_S0217984919504578 crossref_primary_10_1016_j_jde_2018_10_053 crossref_primary_10_1142_S0217984919501987 crossref_primary_10_1016_j_rinp_2019_102834 crossref_primary_10_1088_1402_4896_ab783e crossref_primary_10_1155_2019_9512531 crossref_primary_10_1007_s11071_020_06112_5 crossref_primary_10_1088_1402_4896_abfcf0 crossref_primary_10_1007_s40840_018_0666_1 crossref_primary_10_1016_j_joes_2022_05_013 crossref_primary_10_1016_j_heliyon_2021_e07704 crossref_primary_10_1186_s13662_019_2063_y crossref_primary_10_1016_j_cnsns_2019_104877 crossref_primary_10_1016_j_camwa_2019_02_026 crossref_primary_10_1088_0253_6102_71_8_927 crossref_primary_10_1016_j_physd_2024_134501 crossref_primary_10_1088_0253_6102_71_6_658 crossref_primary_10_1016_j_cnsns_2021_105939 crossref_primary_10_1016_j_rinp_2022_106103 crossref_primary_10_1088_1674_1056_ab75d7 crossref_primary_10_1007_s11071_023_08791_2 crossref_primary_10_1007_s11082_021_02782_6 crossref_primary_10_1515_ijnsns_2019_0286 crossref_primary_10_12677_AAM_2019_86121 crossref_primary_10_1016_j_chaos_2022_112440 crossref_primary_10_1016_j_camwa_2018_04_039 crossref_primary_10_1142_S0217984918503761 crossref_primary_10_1016_j_camwa_2019_02_035 crossref_primary_10_1007_s10473_020_0306_3 crossref_primary_10_1007_s11082_019_1883_z crossref_primary_10_1016_j_camwa_2018_07_019 crossref_primary_10_1016_j_geomphys_2018_07_003 crossref_primary_10_1016_j_spmi_2017_12_017 crossref_primary_10_1016_j_cnsns_2020_105622 crossref_primary_10_1088_1674_1056_ab3f20 crossref_primary_10_1007_s11071_021_07144_1 crossref_primary_10_1016_j_physb_2018_03_042 crossref_primary_10_1016_j_matcom_2020_04_030 crossref_primary_10_1515_ijnsns_2018_0026 crossref_primary_10_1007_s11071_023_09090_6 crossref_primary_10_1016_j_aej_2020_01_037 crossref_primary_10_1007_s11071_019_04763_7 crossref_primary_10_1007_s13324_018_0267_z crossref_primary_10_1007_s11071_020_06068_6 crossref_primary_10_1142_S021797922150079X crossref_primary_10_1155_2019_3085367 crossref_primary_10_1007_s11071_018_04739_z crossref_primary_10_1088_1402_4896_ab0f8a crossref_primary_10_1142_S021798492050092X crossref_primary_10_1007_s12043_019_1791_6 crossref_primary_10_1142_S0217984919501331 crossref_primary_10_1016_j_camwa_2018_07_008 crossref_primary_10_1007_s12043_018_1652_8 crossref_primary_10_1016_j_ijleo_2019_06_005 crossref_primary_10_1140_epjp_i2019_12679_9 crossref_primary_10_1142_S0217984919501215 crossref_primary_10_1155_2019_9801638 crossref_primary_10_1007_s00033_018_1050_6 crossref_primary_10_3390_math11224665 crossref_primary_10_1016_j_padiff_2024_100926 crossref_primary_10_11948_20190361 crossref_primary_10_1016_j_cjph_2019_05_004 crossref_primary_10_1016_j_padiff_2023_100600 crossref_primary_10_1016_j_padiff_2022_100320 crossref_primary_10_5269_bspm_44592 crossref_primary_10_1140_epjp_s13360_019_00049_4 crossref_primary_10_1007_s12043_019_1776_5 crossref_primary_10_1016_j_aml_2019_04_009 crossref_primary_10_1002_mma_5320 crossref_primary_10_1002_mma_5200 crossref_primary_10_1007_s11071_018_4223_0 crossref_primary_10_11948_20190112 crossref_primary_10_1016_j_aml_2023_108598 crossref_primary_10_1063_5_0019596 crossref_primary_10_1186_s13662_019_1952_4 crossref_primary_10_1007_s12043_018_1700_4 crossref_primary_10_1134_S156035472004005X crossref_primary_10_1007_s11464_019_0771_y crossref_primary_10_1016_j_padiff_2021_100254 crossref_primary_10_1080_17455030_2019_1582823 crossref_primary_10_1016_j_cnsns_2023_107205 crossref_primary_10_1016_j_physd_2018_12_001 crossref_primary_10_1515_ijnsns_2018_0286 crossref_primary_10_1007_s00033_019_1088_0 crossref_primary_10_3390_math7010041 crossref_primary_10_1016_j_camwa_2018_10_035 crossref_primary_10_1142_S0217984919503299 crossref_primary_10_1007_s12043_019_1752_0 crossref_primary_10_1007_s12043_019_1790_7 crossref_primary_10_1007_s13324_018_0255_3 crossref_primary_10_1016_j_camwa_2018_09_054 crossref_primary_10_1140_epjp_i2019_12657_3 crossref_primary_10_1016_j_rinp_2020_103517 crossref_primary_10_1016_j_rinp_2021_104587 crossref_primary_10_1016_j_camwa_2019_05_012 crossref_primary_10_11948_2156_907X_20180227 crossref_primary_10_37394_23206_2023_22_50 |
Cites_doi | 10.1007/s11071-017-3588-9 10.1016/0375-9601(83)90764-8 10.1063/1.527260 10.1007/s11464-013-0319-5 10.1142/S0217979216400282 10.1098/rspa.1996.0013 10.1016/S0034-4877(14)60003-3 10.1007/s11071-015-2539-6 10.1143/JPSJ.49.771 10.1088/1742-6596/411/1/012021 10.1016/0375-9601(77)90875-1 10.1063/1.524208 10.1007/s11071-016-3122-5 10.1007/s11071-016-3203-5 10.1016/0375-9601(94)90616-5 10.1088/0266-5611/7/2/002 10.1016/j.cnsns.2015.12.015 10.1016/j.camwa.2016.11.009 10.1016/j.camwa.2016.02.005 10.1016/0375-9601(90)90609-R 10.1090/S0002-9947-04-03726-2 10.1007/s11071-017-3533-y 10.1142/S0217979216400014 10.22436/jnsa.008.05.05 10.1016/j.aml.2014.05.005 10.1016/j.camwa.2016.08.027 10.1016/j.physleta.2015.06.061 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Jan 1, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2018 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.camwa.2017.09.013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-7668 |
EndPage | 295 |
ExternalDocumentID | 10_1016_j_camwa_2017_09_013 S0898122117305618 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB G-2 HZ~ R2- SEW SSH TAE WUQ ZY4 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-f39f44a6a161cd5b7e1bd7b6977234730ebcc22b6c827034ca49ea0c50a0b3773 |
IEDL.DBID | IXB |
ISSN | 0898-1221 |
IngestDate | Fri Jul 25 06:49:17 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Tue Jul 01 03:39:15 EDT 2025 Fri Feb 23 02:33:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lumps Kinks Hirota bilinear form Solitons |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-f39f44a6a161cd5b7e1bd7b6977234730ebcc22b6c827034ca49ea0c50a0b3773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5309-1493 |
PQID | 2041750435 |
PQPubID | 2045493 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2041750435 crossref_citationtrail_10_1016_j_camwa_2017_09_013 crossref_primary_10_1016_j_camwa_2017_09_013 elsevier_sciencedirect_doi_10_1016_j_camwa_2017_09_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 2018-01-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computers & mathematics with applications (1987) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dorizzi, Grammaticos, Ramani, Winternitz (b23) 1986; 27 Ma (b30) 2011; 2 Satsuma, Ablowitz (b7) 1979; 20 Manakov, Zakharov, Bordag, Matveev (b6) 1977; 63 Ma (b22) 2013; 411 Hirota (b1) 2004 Gilson, Lambert, Nimmo, Willox (b21) 1996; 452 Adem (b28) 2016; 30 Ma, Qin, Lü (b12) 2016; 84 Freeman, Nimmo (b2) 1983; 95 Ma (b4) 2009 Ablowitz, Clarkson (b8) 1991 Yildirim, Yasar, Adem (b29) 2017; 89 Konopelchenko, Strampp (b24) 1991; 7 Ma (b31) 2013; 72 Yu, Sun (b13) 2017; 87 Xu, Chen, Dai (b15) 2014; 37 Yang, Ma (b17) 2017; 89 Yang, Ma (b11) 2016; 30 Ma, You (b3) 2005; 357 Li, Zhao, Li, Dong (b26) 2015; 8 Gilson, Nimmo (b9) 1990; 147 Wazwaz, El-Tantawy (b5) 2017; 87 Tang, Tao, Qing (b16) 2016; 72 Ito (b18) 1980; 49 Ma, Strampp (b25) 1994; 185 Dong, Zhang, Zhang (b27) 2016; 36 Ma (b10) 2015; 379 Ma (b32) 2015; 8 Zhang, Dong, Zhang, Yang (b14) 2017; 73 Wazwaz (b19) 2008; 196 Adem (b20) 2016; 71 Gilson (10.1016/j.camwa.2017.09.013_b21) 1996; 452 Adem (10.1016/j.camwa.2017.09.013_b20) 2016; 71 Tang (10.1016/j.camwa.2017.09.013_b16) 2016; 72 Konopelchenko (10.1016/j.camwa.2017.09.013_b24) 1991; 7 Yang (10.1016/j.camwa.2017.09.013_b11) 2016; 30 Hirota (10.1016/j.camwa.2017.09.013_b1) 2004 Satsuma (10.1016/j.camwa.2017.09.013_b7) 1979; 20 Gilson (10.1016/j.camwa.2017.09.013_b9) 1990; 147 Manakov (10.1016/j.camwa.2017.09.013_b6) 1977; 63 Ito (10.1016/j.camwa.2017.09.013_b18) 1980; 49 Ma (10.1016/j.camwa.2017.09.013_b25) 1994; 185 Yu (10.1016/j.camwa.2017.09.013_b13) 2017; 87 Ma (10.1016/j.camwa.2017.09.013_b4) 2009 Yildirim (10.1016/j.camwa.2017.09.013_b29) 2017; 89 Ma (10.1016/j.camwa.2017.09.013_b12) 2016; 84 Ma (10.1016/j.camwa.2017.09.013_b31) 2013; 72 Adem (10.1016/j.camwa.2017.09.013_b28) 2016; 30 Wazwaz (10.1016/j.camwa.2017.09.013_b5) 2017; 87 Ma (10.1016/j.camwa.2017.09.013_b32) 2015; 8 Ma (10.1016/j.camwa.2017.09.013_b3) 2005; 357 Li (10.1016/j.camwa.2017.09.013_b26) 2015; 8 Freeman (10.1016/j.camwa.2017.09.013_b2) 1983; 95 Dorizzi (10.1016/j.camwa.2017.09.013_b23) 1986; 27 Yang (10.1016/j.camwa.2017.09.013_b17) 2017; 89 Ma (10.1016/j.camwa.2017.09.013_b10) 2015; 379 Ma (10.1016/j.camwa.2017.09.013_b30) 2011; 2 Wazwaz (10.1016/j.camwa.2017.09.013_b19) 2008; 196 Ma (10.1016/j.camwa.2017.09.013_b22) 2013; 411 Zhang (10.1016/j.camwa.2017.09.013_b14) 2017; 73 Ablowitz (10.1016/j.camwa.2017.09.013_b8) 1991 Dong (10.1016/j.camwa.2017.09.013_b27) 2016; 36 Xu (10.1016/j.camwa.2017.09.013_b15) 2014; 37 |
References_xml | – volume: 87 start-page: 1405 year: 2017 end-page: 1412 ident: b13 article-title: Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations publication-title: Nonlinear Dynam. – volume: 49 start-page: 771 year: 1980 end-page: 778 ident: b18 article-title: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders publication-title: J. Phys. Soc. Japan – volume: 196 start-page: 363 year: 2008 end-page: 370 ident: b19 article-title: New solutions of distinct physical structures to high-dimensional nonlinear evolution equations publication-title: Appl. Math. Comput. – volume: 7 start-page: L17 year: 1991 end-page: L24 ident: b24 article-title: The AKNS hierarchy as symmetry constraint of the KP hierarchy publication-title: Inverse Problems – volume: 89 start-page: 2291 year: 2017 end-page: 2297 ident: b29 article-title: A multiple exp-function method for the three model equations of shallow water waves publication-title: Nonlinear Dynam. – volume: 72 start-page: 41 year: 2013 end-page: 56 ident: b31 article-title: Bilinear equations and resonant solutions characterized by Bell polynomials publication-title: Rep. Math. Phys. – volume: 8 start-page: 496 year: 2015 end-page: 506 ident: b26 article-title: Binary Bargmann symmetry constraint associated with 3 publication-title: J. Nonlinear Sci. Appl. – volume: 72 start-page: 2334 year: 2016 end-page: 2342 ident: b16 article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations publication-title: Comput. Math. Appl. – volume: 87 start-page: 2457 year: 2017 end-page: 2461 ident: b5 article-title: New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions publication-title: Nonlinear Dynam. – volume: 27 start-page: 2848 year: 1986 end-page: 2852 ident: b23 article-title: Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? publication-title: J. Math. Phys. – volume: 63 start-page: 205 year: 1977 end-page: 206 ident: b6 article-title: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction publication-title: Phys. Lett. A – volume: 147 start-page: 472 year: 1990 end-page: 476 ident: b9 article-title: Lump solutions of the BKP equation publication-title: Phys. Lett. A – volume: 2 start-page: 140 year: 2011 end-page: 144 ident: b30 article-title: Generalized bilinear differential equations publication-title: Stud. Nonlinear Sci. – volume: 89 start-page: 1539 year: 2017 end-page: 1544 ident: b17 article-title: Abundant interaction solutions to the KP equation publication-title: Nonlinear Dynam. – volume: 71 start-page: 1248 year: 2016 end-page: 1258 ident: b20 article-title: The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions publication-title: Comput. Math. Appl. – volume: 37 start-page: 34 year: 2014 end-page: 38 ident: b15 article-title: Rogue wave for the (2+1)-dimensional Kadomtsev–Petviashvili equation publication-title: Appl. Math. Lett. – volume: 185 start-page: 277 year: 1994 end-page: 286 ident: b25 article-title: An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems publication-title: Phys. Lett. A – volume: 95 start-page: 1 year: 1983 end-page: 3 ident: b2 article-title: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique publication-title: Phys. Lett. A – year: 2004 ident: b1 publication-title: The Direct Method in Soliton Theory – year: 1991 ident: b8 publication-title: Solitons, Nonlinear Evolution Equations and Inverse Scattering – volume: 30 start-page: 1640028 year: 2016 ident: b11 article-title: Lump solutions of the BKP equation by symbolic computation publication-title: Internat. J. Modern Phys. B – volume: 8 start-page: 1139 year: 2015 end-page: 1156 ident: b32 article-title: Trilinear equations, Bell polynomials, and resonant solutions publication-title: Front. Math. China – volume: 379 start-page: 1975 year: 2015 end-page: 1978 ident: b10 article-title: Lump solutions to the Kadomtsev–Petviashvili equation publication-title: Phys. Lett. A – volume: 30 start-page: 1640001 year: 2016 ident: b28 article-title: A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws publication-title: Internat. J. Modern Phys. B – volume: 20 start-page: 1496 year: 1979 end-page: 1503 ident: b7 article-title: Two-dimensional lumps in nonlinear dispersive systems publication-title: J. Math. Phys. – volume: 84 start-page: 923 year: 2016 end-page: 931 ident: b12 article-title: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations publication-title: Nonlinear Dynam. – volume: 73 start-page: 246 year: 2017 end-page: 252 ident: b14 article-title: Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation publication-title: Comput. Math. Appl. – start-page: 506 year: 2009 end-page: 515 ident: b4 article-title: Wronskian solutions to integrable equations publication-title: Discrete Contin. Dyn. Syst. Suppl. – volume: 452 start-page: 223 year: 1996 end-page: 234 ident: b21 article-title: On the combinatorics of the Hirota D-operators publication-title: Proc. R. Soc. Lond. Ser. A – volume: 411 start-page: 012021 year: 2013 ident: b22 article-title: Bilinear equations, Bell polynomials and linear superposition principle publication-title: J. Phys. Conf. Ser. – volume: 36 start-page: 354 year: 2016 end-page: 365 ident: b27 article-title: The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 357 start-page: 1753 year: 2005 end-page: 1778 ident: b3 article-title: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions publication-title: Trans. Amer. Math. Soc. – volume: 89 start-page: 2291 year: 2017 ident: 10.1016/j.camwa.2017.09.013_b29 article-title: A multiple exp-function method for the three model equations of shallow water waves publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3588-9 – volume: 95 start-page: 1 year: 1983 ident: 10.1016/j.camwa.2017.09.013_b2 article-title: Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique publication-title: Phys. Lett. A doi: 10.1016/0375-9601(83)90764-8 – volume: 27 start-page: 2848 year: 1986 ident: 10.1016/j.camwa.2017.09.013_b23 article-title: Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? publication-title: J. Math. Phys. doi: 10.1063/1.527260 – volume: 8 start-page: 1139 year: 2015 ident: 10.1016/j.camwa.2017.09.013_b32 article-title: Trilinear equations, Bell polynomials, and resonant solutions publication-title: Front. Math. China doi: 10.1007/s11464-013-0319-5 – volume: 30 start-page: 1640028 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b11 article-title: Lump solutions of the BKP equation by symbolic computation publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979216400282 – volume: 452 start-page: 223 year: 1996 ident: 10.1016/j.camwa.2017.09.013_b21 article-title: On the combinatorics of the Hirota D-operators publication-title: Proc. R. Soc. Lond. Ser. A doi: 10.1098/rspa.1996.0013 – volume: 72 start-page: 41 year: 2013 ident: 10.1016/j.camwa.2017.09.013_b31 article-title: Bilinear equations and resonant solutions characterized by Bell polynomials publication-title: Rep. Math. Phys. doi: 10.1016/S0034-4877(14)60003-3 – volume: 84 start-page: 923 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b12 article-title: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations publication-title: Nonlinear Dynam. doi: 10.1007/s11071-015-2539-6 – volume: 49 start-page: 771 year: 1980 ident: 10.1016/j.camwa.2017.09.013_b18 article-title: An extension of nonlinear evolution equations of the K-dV (mK-dV) type to higher orders publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.49.771 – volume: 411 start-page: 012021 year: 2013 ident: 10.1016/j.camwa.2017.09.013_b22 article-title: Bilinear equations, Bell polynomials and linear superposition principle publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/411/1/012021 – volume: 63 start-page: 205 year: 1977 ident: 10.1016/j.camwa.2017.09.013_b6 article-title: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction publication-title: Phys. Lett. A doi: 10.1016/0375-9601(77)90875-1 – year: 1991 ident: 10.1016/j.camwa.2017.09.013_b8 – volume: 20 start-page: 1496 year: 1979 ident: 10.1016/j.camwa.2017.09.013_b7 article-title: Two-dimensional lumps in nonlinear dispersive systems publication-title: J. Math. Phys. doi: 10.1063/1.524208 – volume: 87 start-page: 1405 year: 2017 ident: 10.1016/j.camwa.2017.09.013_b13 article-title: Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-3122-5 – volume: 87 start-page: 2457 year: 2017 ident: 10.1016/j.camwa.2017.09.013_b5 article-title: New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-3203-5 – volume: 2 start-page: 140 year: 2011 ident: 10.1016/j.camwa.2017.09.013_b30 article-title: Generalized bilinear differential equations publication-title: Stud. Nonlinear Sci. – volume: 185 start-page: 277 year: 1994 ident: 10.1016/j.camwa.2017.09.013_b25 article-title: An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems publication-title: Phys. Lett. A doi: 10.1016/0375-9601(94)90616-5 – volume: 7 start-page: L17 year: 1991 ident: 10.1016/j.camwa.2017.09.013_b24 article-title: The AKNS hierarchy as symmetry constraint of the KP hierarchy publication-title: Inverse Problems doi: 10.1088/0266-5611/7/2/002 – volume: 36 start-page: 354 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b27 article-title: The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2015.12.015 – volume: 73 start-page: 246 year: 2017 ident: 10.1016/j.camwa.2017.09.013_b14 article-title: Rational solutions and lump solutions to the generalized (3+1)-dimensional shallow water-like equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.11.009 – volume: 71 start-page: 1248 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b20 article-title: The generalized (1+1)-dimensional and (2+1)-dimensional Ito equations: Multiple exp-function algorithm and multiple wave solutions publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.02.005 – start-page: 506 year: 2009 ident: 10.1016/j.camwa.2017.09.013_b4 article-title: Wronskian solutions to integrable equations publication-title: Discrete Contin. Dyn. Syst. Suppl. – volume: 147 start-page: 472 year: 1990 ident: 10.1016/j.camwa.2017.09.013_b9 article-title: Lump solutions of the BKP equation publication-title: Phys. Lett. A doi: 10.1016/0375-9601(90)90609-R – year: 2004 ident: 10.1016/j.camwa.2017.09.013_b1 – volume: 357 start-page: 1753 year: 2005 ident: 10.1016/j.camwa.2017.09.013_b3 article-title: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-04-03726-2 – volume: 89 start-page: 1539 year: 2017 ident: 10.1016/j.camwa.2017.09.013_b17 article-title: Abundant interaction solutions to the KP equation publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3533-y – volume: 30 start-page: 1640001 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b28 article-title: A (2+1)-dimensional Korteweg–de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws publication-title: Internat. J. Modern Phys. B doi: 10.1142/S0217979216400014 – volume: 8 start-page: 496 year: 2015 ident: 10.1016/j.camwa.2017.09.013_b26 article-title: Binary Bargmann symmetry constraint associated with 3 × 3 discrete matrix spectral problem publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.008.05.05 – volume: 37 start-page: 34 year: 2014 ident: 10.1016/j.camwa.2017.09.013_b15 article-title: Rogue wave for the (2+1)-dimensional Kadomtsev–Petviashvili equation publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2014.05.005 – volume: 72 start-page: 2334 year: 2016 ident: 10.1016/j.camwa.2017.09.013_b16 article-title: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2016.08.027 – volume: 196 start-page: 363 year: 2008 ident: 10.1016/j.camwa.2017.09.013_b19 article-title: New solutions of distinct physical structures to high-dimensional nonlinear evolution equations publication-title: Appl. Math. Comput. – volume: 379 start-page: 1975 year: 2015 ident: 10.1016/j.camwa.2017.09.013_b10 article-title: Lump solutions to the Kadomtsev–Petviashvili equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.06.061 |
SSID | ssj0004320 |
Score | 2.6233766 |
Snippet | We aim to show the diversity of interaction solutions to the (2+1)-dimensional Ito equation, based on its Hirota bilinear form. The proof is given through... We aim to show the diversity of interaction solutions to the (2+1 )-dimensional Ito equation, based on its Hirota bilinear form. The proof is given through... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 289 |
SubjectTerms | Applied mathematics Hirota bilinear form Kinks Lumps Mathematical functions Solitons Solutions |
Title | Diversity of interaction solutions to the (2+1)-dimensional Ito equation |
URI | https://dx.doi.org/10.1016/j.camwa.2017.09.013 https://www.proquest.com/docview/2041750435 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKWVj4RhRK5YEBBKZx7MTJWApVC6ILVOpm2Y4jFUFbShAbv51zPopAgoEx8TmKXu7Oz9HdM0LHsVZMxL4hsDcwhKdeSrSJFKGaC5EAQw20a3C-G4b9Eb8ZB-Ma6la9MK6sssz9RU7Ps3V5p12i2Z5PJu17L4phdYINjMhpsGv4ZTzKm_jGl1-9kayQZgRj4qwr5aG8xsuo53cnPkRFLnZK2W-r0488nS8-vU20XrJG3ClebAvV7HQbbVQnMuAyQHdQ_6oqs8CzFDspiEXRuICXLoazGQbSh0_8M3pKEifuXwhz4AGM2JdC-nsXjXrXD90-Kc9KIIYxmpGUxSnnKlTA4EwSaGGpToQOgd75jANCVhvj-zo0kQ9Bzo3isVWeCTzlaSYE20P16Wxq9xFWiUgiwSATprD7s1ZRmworLA8ioZVmDeRXGElTCom78yyeZFUx9ihzYKUDVnqxBGAb6Hw5aV7oaPxtHlbgy2_uICHT_z2xWX0qWUbjK4xz6mTsWXDw3-ceojW4ioqfL01UzxZv9gjoSKZbaOXig7bQamdw2x-2cu_7BN3X33o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1Eo4IEBBFaT2ImTEQpVCm0XWqmbZTuOVARtKUH8fc75KAIJBtacHUXP57vn6O4ZobNIScojTxM4G2jCUiclSoeSuIpxngBD9ZVtcO4PgnjE7sf-uIbaVS-MLassY38R0_NoXT5plWi25pNJ69EJI8hOcIDhOQ0OV9AqsIHAunZ3fPPVHEkLbUYYTezwSnooL_LS8uXDqg-5PFc7delv6elHoM6zT2cLbZS0EV8XX7aNama6gzarKxlwuUN3UXxb1VngWYqtFsSi6FzASx_D2QwD68Pn3qV7QRKr7l8oc-AuWMxrof29h0adu2E7JuVlCURT6mYkpVHKmAwkUDid-IobVyVcBcDvPMoAIqO09jwV6NCDXc60ZJGRjvYd6SjKOd1H9elsag4QlglPQk4hFKZw_DNGuiblhhvmh1xJRRvIqzASulQStxdaPIuqZOxJ5MAKC6xwIgHANtDVctK8ENL4e3hQgS---YOAUP_3xGa1VKLcjm9gZ67Vsaf-4X_fe4rW4mG_J3rdwcMRWgdLWPyJaaJ6tng3x8BNMnWS-94n8VzgFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diversity+of+interaction+solutions+to+the+%282%2B1%29-dimensional+Ito+equation&rft.jtitle=Computers+%26+mathematics+with+applications+%281987%29&rft.au=Ma%2C+Wen-Xiu&rft.au=Yong%2C+Xuelin&rft.au=Zhang%2C+Hai-Qiang&rft.date=2018-01-01&rft.issn=0898-1221&rft.volume=75&rft.issue=1&rft.spage=289&rft.epage=295&rft_id=info:doi/10.1016%2Fj.camwa.2017.09.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_camwa_2017_09_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-1221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-1221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-1221&client=summon |