Nonlinear eigenvalue problems
This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrö...
Saved in:
Published in | Journal of physics. A, Mathematical and theoretical Vol. 47; no. 23; pp. 235204 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
13.06.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1751-8113 1751-8121 |
DOI | 10.1088/1751-8113/47/23/235204 |
Cover
Loading…
Abstract | This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrödinger eigenvalue problem. As x increases from 0, y(x) oscillates and thus resembles a quantum wave function in a classically allowed region. At a critical value x = xcrit, where xcrit depends on a, the solution y(x) undergoes a transition; the oscillations abruptly cease and y(x) decays to 0 monotonically as x → ∞. This transition resembles the transition in a wave function at a turning point as one enters the classically forbidden region. Furthermore, the initial condition a falls into discrete classes; in the nth class of initial conditions an − 1 < a < an (n = 1, 2, 3, ...), y(x) exhibits exactly n maxima in the oscillatory region. The boundaries an of these classes are the analogues of quantum-mechanical eigenvalues. An asymptotic calculation of an for large n is analogous to a high-energy semiclassical (WKB) calculation of eigenvalues in quantum mechanics. The principal result of this paper is that as n → ∞, , where A = 25 6. Numerical analysis reveals that the first Painlevé transcendent has an eigenvalue structure that is quite similar to that of the equation y′(x) = cos [πxy(x)] and that the nth eigenvalue grows with n like a constant times n3 5 as n → ∞. Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series. |
---|---|
AbstractList | This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrödinger eigenvalue problem. As x increases from 0, y(x) oscillates and thus resembles a quantum wave function in a classically allowed region. At a critical value x = xcrit, where xcrit depends on a, the solution y(x) undergoes a transition; the oscillations abruptly cease and y(x) decays to 0 monotonically as x → ∞. This transition resembles the transition in a wave function at a turning point as one enters the classically forbidden region. Furthermore, the initial condition a falls into discrete classes; in the nth class of initial conditions an − 1 < a < an (n = 1, 2, 3, ...), y(x) exhibits exactly n maxima in the oscillatory region. The boundaries an of these classes are the analogues of quantum-mechanical eigenvalues. An asymptotic calculation of an for large n is analogous to a high-energy semiclassical (WKB) calculation of eigenvalues in quantum mechanics. The principal result of this paper is that as n → ∞, , where A = 25 6. Numerical analysis reveals that the first Painlevé transcendent has an eigenvalue structure that is quite similar to that of the equation y′(x) = cos [πxy(x)] and that the nth eigenvalue grows with n like a constant times n3 5 as n → ∞. Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series. This paper presents an asymptotic study of the differential equation y'(x)= cos[[pi]xy(x)] subject to the initial condition y(0)=a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrodinger eigenvalue problem. Numerical analysis reveals that the first Painleve transcendent has an eigenvalue structure that is quite similar to that of the equation y(x)=cos[[pi]xy(x)] and that the nth eigenvalue grows with n like a constant times (ProQuest: Formulae and/or non-USASCII text omitted). Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series. |
Author | Komijani, Javad Bender, Carl M Fring, Andreas |
Author_xml | – sequence: 1 givenname: Carl M surname: Bender fullname: Bender, Carl M email: cmb@wustl.edu organization: City University London Department of Mathematical Science, Northampton Square, London EC1V 0HB, UK – sequence: 2 givenname: Andreas surname: Fring fullname: Fring, Andreas email: a.fring@city.ac.uk organization: City University London Department of Mathematical Science, Northampton Square, London EC1V 0HB, UK – sequence: 3 givenname: Javad surname: Komijani fullname: Komijani, Javad email: jkomijani@physics.wustl.edu organization: Washington University Department of Physics, St Louis, MO 63130, USA |
BookMark | eNqFkE9LAzEQxYNUsK1-BKVHL2vzb7MJeJFiVSh60XNIdieSsk1qsiv47d2yxYOXwsAMzPvN8N4MTUIMgNANwXcES7kkVUkKSQhb8mpJ2VAlxfwMTY8LSiZ_M2EXaJbzFuOSY0Wn6Po1htYHMGkB_hPCt2l7WOxTtC3s8iU6d6bNcHXsc_SxfnxfPRebt6eX1cOmqBkjXQFOWWmMxM4qS4XljElcNcRiBopyxylg3NjSgmocdaJuSqicUabklklRsjm6He8Oj796yJ3e-VxD25oAsc-aCKGkEgKrQXo_SusUc07gdO070_kYumR8qwnWh1T0wbA-GNa80pTpMZUBF__wffI7k35Og3QEfdzrbexTGAI5Bf0CfeZ1cg |
CODEN | JPHAC5 |
CitedBy_id | crossref_primary_10_1103_PhysRevLett_113_231605 crossref_primary_10_1088_1751_8121_ac2e29 crossref_primary_10_1088_1751_8121_ac4fa7 crossref_primary_10_1088_1742_6596_2038_1_012025 crossref_primary_10_1088_1751_8113_47_36_368001 crossref_primary_10_1088_1751_8113_48_47_475202 crossref_primary_10_1103_RevModPhys_96_045002 |
Cites_doi | 10.1016/0167-2789(81)90021-X 10.1007/978-1-4757-0435-8 10.1307/mmj/1029000105 10.1016/j.aop.2010.02.011 10.1103/PhysRevLett.104.061601 10.1098/rspa.1990.0111 10.1063/1.3691226 |
ContentType | Journal Article |
Copyright | 2014 IOP Publishing Ltd |
Copyright_xml | – notice: 2014 IOP Publishing Ltd |
DBID | AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1751-8113/47/23/235204 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Nonlinear eigenvalue problems |
EISSN | 1751-8121 |
EndPage | 15 |
ExternalDocumentID | 10_1088_1751_8113_47_23_235204 jpa495288 |
GroupedDBID | 1JI 4.4 5B3 5GY 5VS 5ZH 6TJ 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABQJV ABVAM ACAFW ACGFS ACHIP ACNCT AEFHF AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L NT- NT. PJBAE RIN RNS RO9 ROL RPA SY9 TN5 W28 AAYXX ADEQX AERVB CITATION 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c331t-ef9b8aa80fb9b26b433807d1b03e924f42e00db5be9df2f6cd5e7fa9a54b38653 |
IEDL.DBID | IOP |
ISSN | 1751-8113 |
IngestDate | Fri Jul 11 07:46:56 EDT 2025 Tue Jul 01 02:32:30 EDT 2025 Thu Apr 24 22:52:47 EDT 2025 Wed Aug 21 03:33:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-ef9b8aa80fb9b26b433807d1b03e924f42e00db5be9df2f6cd5e7fa9a54b38653 |
Notes | JPhysA-101115.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1669896609 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | iop_journals_10_1088_1751_8113_47_23_235204 crossref_citationtrail_10_1088_1751_8113_47_23_235204 crossref_primary_10_1088_1751_8113_47_23_235204 proquest_miscellaneous_1669896609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-13 |
PublicationDateYYYYMMDD | 2014-06-13 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-13 day: 13 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. A, Mathematical and theoretical |
PublicationTitleAbbrev | JPhysA |
PublicationTitleAlternate | J. Phys. A: Math. Theor |
PublicationYear | 2014 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Bender C M (1) 1978 11 2 Clunie J (10) 1967; 65 3 4 5 6 7 Hayman W K (9) 1967 Bender C M (12) Kapaev A A (8) 1989; 24 |
References_xml | – ident: 7 doi: 10.1016/0167-2789(81)90021-X – ident: 6 doi: 10.1007/978-1-4757-0435-8 – year: 1978 ident: 1 publication-title: Advanced Mathematical Methods for Scientists and Engineers – ident: 11 doi: 10.1307/mmj/1029000105 – volume: 24 start-page: 1107 year: 1989 ident: 8 publication-title: Differ. Eqns – year: 1967 ident: 9 publication-title: Research Problems in Function Theory – ident: 3 doi: 10.1016/j.aop.2010.02.011 – ident: 12 – ident: 2 doi: 10.1103/PhysRevLett.104.061601 – ident: 5 doi: 10.1098/rspa.1990.0111 – volume: 65 start-page: 113 issn: 0035-8975 year: 1967 ident: 10 publication-title: Proc. R. Irish Acad. – ident: 4 doi: 10.1063/1.3691226 |
SSID | ssj0054092 |
Score | 2.1665614 |
Snippet | This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential... This paper presents an asymptotic study of the differential equation y'(x)= cos[[pi]xy(x)] subject to the initial condition y(0)=a. While this differential... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 235204 |
SubjectTerms | asymptotic Asymptotic properties Constants Differential equations eigenvalue Eigenvalues Mathematical analysis Mathematical models Nonlinearity Schroedinger equation semiclassical separatrix WKB |
Title | Nonlinear eigenvalue problems |
URI | https://iopscience.iop.org/article/10.1088/1751-8113/47/23/235204 https://www.proquest.com/docview/1669896609 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aEbz4FqtWVvAm230kk02OIpYqWD1Y8BaSbPaitKXdXvz1TvZRUBERYQ972AmZyWZmQma-j5BLDBIgEqdDBg4PKM5AaHgRhwBAM2oZMO57hx9GfDhm9y_QVhNWvTDTWeP6-_haAwXXJmwK4kSEAS8JRZLQiGVRSvGB1COCblDBuScxuHt8ap0x5iMVL_JKpm0S_nGcT_FpHefwzUlXkWewQ0w757rg5LW_LE3fvn-Bc_yXUrtku8lLg-taYI-suck-2azqQ-3igPRGNaSGngfO43d6jHAXNGw0i0MyHtw-3wzDhlkhtJQmZegKaYTWIi6MNCk3jHrc-TwxMXV4ICtY6uI4N2CczIu04DYHlxVaamDGk4TSI9KZTCfumASYz-GhKbdW5BkKCiOl0xmAkNb3_GZdAq09lW1gxz37xZuqrr-FUF515VVXLFMpVbXqXRKt5GY18MavEldoXdXswcWvX1-0y6pwR_lrEj1x0yXKcU-qyXksT_404inZwmyK-TqyhJ6RTjlfuh5mLKU5r_7JD6VQ2Aw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7aiuLFXaxajeBN0iyzZHIUbWldag8WehtmJjMXJS1NevHXO5OloCJFhBxyyDfkvWTewrz3PQCujZPANFDcRViZBEUJ7AqifRdjDCMoEUbE9g4_j8hggh6meNoAvVUvzGxemf6uuS2JgksVVgVx1DMOL3BpEEAPRV4IzYVDH3nzRDfBBoYEWgr94cu4NsgmJilmI69wdaPwr2t98VFN8x4_DHXhffq7ZZVIVpAW2qKTt-4yF1358Y3S8d-C7YGdKj51bkvQPmio9ABsFnWiMjsEnVFJrcEXjrI8npYrXDnVVJrsCEz6vde7gVtNWHAlhEHuKh0Lyjn1tYhFSASCln8-CYQPlUnMNAqV7ycCCxUnOtREJlhFmsccI2GHhcJj0EpnqToBjonrTPKUSEmTyACpiGPFI4xpLG3vb9QGuNYpkxX9uJ2C8c6KY3BKmRWfWfEZilgIWSl-G3gr3Lwk4FiLuDEaZtVezNY-fVV_WmZ2lj0u4amaLQ2O2OGahPjx6Z9WvARb4_s-exqOHs_AtgmwkC0tC-A5aOWLpeqYICYXF8Uv-glLz91w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+eigenvalue+problems&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Bender%2C+Carl+M&rft.au=Fring%2C+Andreas&rft.au=Komijani%2C+Javad&rft.date=2014-06-13&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=47&rft.issue=23&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1088%2F1751-8113%2F47%2F23%2F235204&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon |