Nonlinear eigenvalue problems

This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrö...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 47; no. 23; pp. 235204 - 15
Main Authors Bender, Carl M, Fring, Andreas, Komijani, Javad
Format Journal Article
LanguageEnglish
Published IOP Publishing 13.06.2014
Subjects
Online AccessGet full text
ISSN1751-8113
1751-8121
DOI10.1088/1751-8113/47/23/235204

Cover

Loading…
Abstract This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrödinger eigenvalue problem. As x increases from 0, y(x) oscillates and thus resembles a quantum wave function in a classically allowed region. At a critical value x = xcrit, where xcrit depends on a, the solution y(x) undergoes a transition; the oscillations abruptly cease and y(x) decays to 0 monotonically as x → ∞. This transition resembles the transition in a wave function at a turning point as one enters the classically forbidden region. Furthermore, the initial condition a falls into discrete classes; in the nth class of initial conditions an − 1 < a < an (n = 1, 2, 3, ...), y(x) exhibits exactly n maxima in the oscillatory region. The boundaries an of these classes are the analogues of quantum-mechanical eigenvalues. An asymptotic calculation of an for large n is analogous to a high-energy semiclassical (WKB) calculation of eigenvalues in quantum mechanics. The principal result of this paper is that as n → ∞, , where A = 25 6. Numerical analysis reveals that the first Painlevé transcendent has an eigenvalue structure that is quite similar to that of the equation y′(x) = cos [πxy(x)] and that the nth eigenvalue grows with n like a constant times n3 5 as n → ∞. Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series.
AbstractList This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrödinger eigenvalue problem. As x increases from 0, y(x) oscillates and thus resembles a quantum wave function in a classically allowed region. At a critical value x = xcrit, where xcrit depends on a, the solution y(x) undergoes a transition; the oscillations abruptly cease and y(x) decays to 0 monotonically as x → ∞. This transition resembles the transition in a wave function at a turning point as one enters the classically forbidden region. Furthermore, the initial condition a falls into discrete classes; in the nth class of initial conditions an − 1 < a < an (n = 1, 2, 3, ...), y(x) exhibits exactly n maxima in the oscillatory region. The boundaries an of these classes are the analogues of quantum-mechanical eigenvalues. An asymptotic calculation of an for large n is analogous to a high-energy semiclassical (WKB) calculation of eigenvalues in quantum mechanics. The principal result of this paper is that as n → ∞, , where A = 25 6. Numerical analysis reveals that the first Painlevé transcendent has an eigenvalue structure that is quite similar to that of the equation y′(x) = cos [πxy(x)] and that the nth eigenvalue grows with n like a constant times n3 5 as n → ∞. Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series.
This paper presents an asymptotic study of the differential equation y'(x)= cos[[pi]xy(x)] subject to the initial condition y(0)=a. While this differential equation is nonlinear, the solutions to the initial-value problem bear a striking resemblance to solutions to the linear time-independent Schrodinger eigenvalue problem. Numerical analysis reveals that the first Painleve transcendent has an eigenvalue structure that is quite similar to that of the equation y(x)=cos[[pi]xy(x)] and that the nth eigenvalue grows with n like a constant times (ProQuest: Formulae and/or non-USASCII text omitted). Finally, it is noted that the constant A is numerically very close to the lower bound on the power-series constant P in the theory of complex variables, which is associated with the asymptotic behavior of zeros of partial sums of Taylor series.
Author Komijani, Javad
Bender, Carl M
Fring, Andreas
Author_xml – sequence: 1
  givenname: Carl M
  surname: Bender
  fullname: Bender, Carl M
  email: cmb@wustl.edu
  organization: City University London Department of Mathematical Science, Northampton Square, London EC1V 0HB, UK
– sequence: 2
  givenname: Andreas
  surname: Fring
  fullname: Fring, Andreas
  email: a.fring@city.ac.uk
  organization: City University London Department of Mathematical Science, Northampton Square, London EC1V 0HB, UK
– sequence: 3
  givenname: Javad
  surname: Komijani
  fullname: Komijani, Javad
  email: jkomijani@physics.wustl.edu
  organization: Washington University Department of Physics, St Louis, MO 63130, USA
BookMark eNqFkE9LAzEQxYNUsK1-BKVHL2vzb7MJeJFiVSh60XNIdieSsk1qsiv47d2yxYOXwsAMzPvN8N4MTUIMgNANwXcES7kkVUkKSQhb8mpJ2VAlxfwMTY8LSiZ_M2EXaJbzFuOSY0Wn6Po1htYHMGkB_hPCt2l7WOxTtC3s8iU6d6bNcHXsc_SxfnxfPRebt6eX1cOmqBkjXQFOWWmMxM4qS4XljElcNcRiBopyxylg3NjSgmocdaJuSqicUabklklRsjm6He8Oj796yJ3e-VxD25oAsc-aCKGkEgKrQXo_SusUc07gdO070_kYumR8qwnWh1T0wbA-GNa80pTpMZUBF__wffI7k35Og3QEfdzrbexTGAI5Bf0CfeZ1cg
CODEN JPHAC5
CitedBy_id crossref_primary_10_1103_PhysRevLett_113_231605
crossref_primary_10_1088_1751_8121_ac2e29
crossref_primary_10_1088_1751_8121_ac4fa7
crossref_primary_10_1088_1742_6596_2038_1_012025
crossref_primary_10_1088_1751_8113_47_36_368001
crossref_primary_10_1088_1751_8113_48_47_475202
crossref_primary_10_1103_RevModPhys_96_045002
Cites_doi 10.1016/0167-2789(81)90021-X
10.1007/978-1-4757-0435-8
10.1307/mmj/1029000105
10.1016/j.aop.2010.02.011
10.1103/PhysRevLett.104.061601
10.1098/rspa.1990.0111
10.1063/1.3691226
ContentType Journal Article
Copyright 2014 IOP Publishing Ltd
Copyright_xml – notice: 2014 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1751-8113/47/23/235204
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Nonlinear eigenvalue problems
EISSN 1751-8121
EndPage 15
ExternalDocumentID 10_1088_1751_8113_47_23_235204
jpa495288
GroupedDBID 1JI
4.4
5B3
5GY
5VS
5ZH
6TJ
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACNCT
AEFHF
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
NT-
NT.
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
AAYXX
ADEQX
AERVB
CITATION
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c331t-ef9b8aa80fb9b26b433807d1b03e924f42e00db5be9df2f6cd5e7fa9a54b38653
IEDL.DBID IOP
ISSN 1751-8113
IngestDate Fri Jul 11 07:46:56 EDT 2025
Tue Jul 01 02:32:30 EDT 2025
Thu Apr 24 22:52:47 EDT 2025
Wed Aug 21 03:33:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-ef9b8aa80fb9b26b433807d1b03e924f42e00db5be9df2f6cd5e7fa9a54b38653
Notes JPhysA-101115.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1669896609
PQPubID 23500
PageCount 15
ParticipantIDs iop_journals_10_1088_1751_8113_47_23_235204
crossref_citationtrail_10_1088_1751_8113_47_23_235204
crossref_primary_10_1088_1751_8113_47_23_235204
proquest_miscellaneous_1669896609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-13
PublicationDateYYYYMMDD 2014-06-13
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-13
  day: 13
PublicationDecade 2010
PublicationTitle Journal of physics. A, Mathematical and theoretical
PublicationTitleAbbrev JPhysA
PublicationTitleAlternate J. Phys. A: Math. Theor
PublicationYear 2014
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Bender C M (1) 1978
11
2
Clunie J (10) 1967; 65
3
4
5
6
7
Hayman W K (9) 1967
Bender C M (12)
Kapaev A A (8) 1989; 24
References_xml – ident: 7
  doi: 10.1016/0167-2789(81)90021-X
– ident: 6
  doi: 10.1007/978-1-4757-0435-8
– year: 1978
  ident: 1
  publication-title: Advanced Mathematical Methods for Scientists and Engineers
– ident: 11
  doi: 10.1307/mmj/1029000105
– volume: 24
  start-page: 1107
  year: 1989
  ident: 8
  publication-title: Differ. Eqns
– year: 1967
  ident: 9
  publication-title: Research Problems in Function Theory
– ident: 3
  doi: 10.1016/j.aop.2010.02.011
– ident: 12
– ident: 2
  doi: 10.1103/PhysRevLett.104.061601
– ident: 5
  doi: 10.1098/rspa.1990.0111
– volume: 65
  start-page: 113
  issn: 0035-8975
  year: 1967
  ident: 10
  publication-title: Proc. R. Irish Acad.
– ident: 4
  doi: 10.1063/1.3691226
SSID ssj0054092
Score 2.1665614
Snippet This paper presents an asymptotic study of the differential equation y′(x) = cos [πxy(x)] subject to the initial condition y(0) = a. While this differential...
This paper presents an asymptotic study of the differential equation y'(x)= cos[[pi]xy(x)] subject to the initial condition y(0)=a. While this differential...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 235204
SubjectTerms asymptotic
Asymptotic properties
Constants
Differential equations
eigenvalue
Eigenvalues
Mathematical analysis
Mathematical models
Nonlinearity
Schroedinger equation
semiclassical
separatrix
WKB
Title Nonlinear eigenvalue problems
URI https://iopscience.iop.org/article/10.1088/1751-8113/47/23/235204
https://www.proquest.com/docview/1669896609
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aEbz4FqtWVvAm230kk02OIpYqWD1Y8BaSbPaitKXdXvz1TvZRUBERYQ972AmZyWZmQma-j5BLDBIgEqdDBg4PKM5AaHgRhwBAM2oZMO57hx9GfDhm9y_QVhNWvTDTWeP6-_haAwXXJmwK4kSEAS8JRZLQiGVRSvGB1COCblDBuScxuHt8ap0x5iMVL_JKpm0S_nGcT_FpHefwzUlXkWewQ0w757rg5LW_LE3fvn-Bc_yXUrtku8lLg-taYI-suck-2azqQ-3igPRGNaSGngfO43d6jHAXNGw0i0MyHtw-3wzDhlkhtJQmZegKaYTWIi6MNCk3jHrc-TwxMXV4ICtY6uI4N2CczIu04DYHlxVaamDGk4TSI9KZTCfumASYz-GhKbdW5BkKCiOl0xmAkNb3_GZdAq09lW1gxz37xZuqrr-FUF515VVXLFMpVbXqXRKt5GY18MavEldoXdXswcWvX1-0y6pwR_lrEj1x0yXKcU-qyXksT_404inZwmyK-TqyhJ6RTjlfuh5mLKU5r_7JD6VQ2Aw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7aiuLFXaxajeBN0iyzZHIUbWldag8WehtmJjMXJS1NevHXO5OloCJFhBxyyDfkvWTewrz3PQCujZPANFDcRViZBEUJ7AqifRdjDCMoEUbE9g4_j8hggh6meNoAvVUvzGxemf6uuS2JgksVVgVx1DMOL3BpEEAPRV4IzYVDH3nzRDfBBoYEWgr94cu4NsgmJilmI69wdaPwr2t98VFN8x4_DHXhffq7ZZVIVpAW2qKTt-4yF1358Y3S8d-C7YGdKj51bkvQPmio9ABsFnWiMjsEnVFJrcEXjrI8npYrXDnVVJrsCEz6vde7gVtNWHAlhEHuKh0Lyjn1tYhFSASCln8-CYQPlUnMNAqV7ycCCxUnOtREJlhFmsccI2GHhcJj0EpnqToBjonrTPKUSEmTyACpiGPFI4xpLG3vb9QGuNYpkxX9uJ2C8c6KY3BKmRWfWfEZilgIWSl-G3gr3Lwk4FiLuDEaZtVezNY-fVV_WmZ2lj0u4amaLQ2O2OGahPjx6Z9WvARb4_s-exqOHs_AtgmwkC0tC-A5aOWLpeqYICYXF8Uv-glLz91w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+eigenvalue+problems&rft.jtitle=Journal+of+physics.+A%2C+Mathematical+and+theoretical&rft.au=Bender%2C+Carl+M&rft.au=Fring%2C+Andreas&rft.au=Komijani%2C+Javad&rft.date=2014-06-13&rft.issn=1751-8113&rft.eissn=1751-8121&rft.volume=47&rft.issue=23&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1088%2F1751-8113%2F47%2F23%2F235204&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8113&client=summon