Proposal for local SAR safety margin in pediatric neuro-imaging using 7 T MRI and parallel transmission
Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR...
Saved in:
Published in | Physics in medicine & biology Vol. 70; no. 3; pp. 35007 - 35022 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
02.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-9155 1361-6560 1361-6560 |
DOI | 10.1088/1361-6560/ada683 |
Cover
Abstract | Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR 10g ). In this work, we address the pSAR 10g assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. Approach . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of N = 2 up to 30 models, and cross-validated the pSAR 10g prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results. The interpolation model provides that the minimum ASF decreases as 1 + 5.37 ⋅ N − 0.75 with N . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup. |
---|---|
AbstractList | Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR 10g ). In this work, we address the pSAR 10g assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. Approach . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of N = 2 up to 30 models, and cross-validated the pSAR 10g prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results. The interpolation model provides that the minimum ASF decreases as 1 + 5.37 ⋅ N − 0.75 with N . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR ). In this work, we address the pSAR assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of = 2 up to 30 models, and cross-validated the pSAR prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. The interpolation model provides that the minimum ASF decreases as1+5.37⋅N-0.75with . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup. Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR10g). In this work, we address the pSAR10gassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation. Approach We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database ofN=2 up to 30 models, and cross-validated the pSAR10gprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results The interpolation model provides that the minimum ASF decreases as 1+5.37∙N-0.75withN. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
.Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR10g). In this work, we address the pSAR10gassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation. Approach We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database ofN=2 up to 30 models, and cross-validated the pSAR10gprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results The interpolation model provides that the minimum ASF decreases as 1+5.37∙N-0.75withN. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
. |
Author | Luong, M Morel, L Dudysheva, N Boulant, N Gras, V Touz, N Le Amadon, A Vignaud, A |
Author_xml | – sequence: 1 givenname: N orcidid: 0009-0005-0819-174X surname: Dudysheva fullname: Dudysheva, N organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France – sequence: 2 givenname: M surname: Luong fullname: Luong, M organization: Université Paris-Saclay , CEA, DRF, IRFU, Gif sur Yvette 91191, France – sequence: 3 givenname: A orcidid: 0000-0002-2667-9387 surname: Amadon fullname: Amadon, A organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France – sequence: 4 givenname: L surname: Morel fullname: Morel, L organization: CEA , DAM, CEA-Gramat, Gramat F-46500, France – sequence: 5 givenname: N Le surname: Touz fullname: Touz, N Le organization: CEA , DAM, CEA-Gramat, Gramat F-46500, France – sequence: 6 givenname: A surname: Vignaud fullname: Vignaud, A organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France – sequence: 7 givenname: N surname: Boulant fullname: Boulant, N organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France – sequence: 8 givenname: V orcidid: 0000-0002-4997-2738 surname: Gras fullname: Gras, V organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39761645$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1PwyAUwImZcR9692Q4erAOBqXluCx-LJnRzHkmlL4uXTqo0B7238uy6U3yAi_we-S93xgNrLOA0C0lj5Tk-ZQyQRORCjLVpRY5u0Cjv6sBGhHCaCJpmg7ROIQdIZTmM36FhkxmggqejtD2w7vWBd3gynncOBOzz_kaB11Bd8B77be1xTFaKGvd-dpgC713Sb3X8WWL-3DcM7zBb-sl1rbErfa6aaDBndc27OsQamev0WWlmwA353OCvp6fNovXZPX-slzMV4lhjHYJaFFKnYm0grhKLssZpDymVS55ClXGZJFRYMbwKqc5N4UsOGVgZiwvtGRsgu5P_7beffcQOhUbMNA02oLrg2JUECK4nMmI3p3RvthDqVofZ_IH9SsnAuQEGO9C8FD9IZSoo391lK2OstXJfyx5OJXUrlU713sbh_0f_wEgfoZz |
CODEN | PHMBA7 |
Cites_doi | 10.1288/00005537-199509001-00001 10.1002/mrm.28335 10.1109/TMI.2023.3319017 10.1007/s00415-023-11988-5 10.1002/mrm.24138 10.1109/TBME.2009.2021157 10.1088/0031-9155/59/18/5287 10.1109/ACCESS.2017.2767074 10.1016/j.neuroimage.2017.03.035 10.1088/1361-6560/ac7b64 10.1002/mrm.29283 10.1016/j.neuroimage.2019.116132 10.1002/mrm.28441 10.1002/mrm.22927 10.1093/neuonc/noz175.725 10.1002/mrm.29569 10.1162/imag_a_00090 10.1002/mrm.27149 10.1016/j.pnmrs.2018.06.001 10.1093/cercor/6.5.726 10.1016/j.msard.2023.105021 10.25259/JCIS_185_2021 10.1002/mrm.24794 10.1002/mrm.28643 10.1136/adc.2004.067538 10.1007/s10548-019-00710-2 10.1002/jmri.21149 10.1002/mrm.20321 10.3174/ajnr.A6298 10.1002/mrm.29215 10.1002/jmri.27319 10.1093/cercor/11.4.335 10.1016/j.ipemt.2024.100025 10.3174/ajnr.A4547 10.1002/mrm.28784 10.1055/s-2002-36735 10.7939/r3-7vpe-x737 10.3109/03014460.2012.759276 10.1016/j.neuroimage.2022.119498 10.1016/j.mri.2022.08.006 10.1002/mrm.24378 10.1002/mrm.29199 10.1016/j.nicl.2021.102602 10.1002/mrm.24329 10.1016/j.neubiorev.2006.06.001 10.1002/mrm.28276 10.3174/ajnr.A6702 10.1007/s00234-018-2040-2 10.1002/epi4.12041 10.1002/mrm.25367 10.3174/ajnr.A4180 10.1088/1361-6560/ad5070 10.1016/j.jpeds.2010.01.009 10.1016/j.neuroimage.2024.120506 10.1016/j.nicl.2024.103577 10.1111/epi.13313 10.1016/j.neuroimage.2020.117044 10.1371/journal.pone.0213642 10.1007/s00234-020-02629-z 10.1002/bem.20136 10.1111/jon.12958 10.3390/bioengineering11070730 10.1002/mrm.29894 10.1684/epd.2016.0838 10.1016/j.neuroimage.2016.11.030 10.1002/mrm.26148 10.1002/mrm.10353 10.1002/mrm.26468 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd 2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd – notice: 2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | O3W TSCCA AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1361-6560/ada683 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1361-6560 |
ExternalDocumentID | 39761645 10_1088_1361_6560_ada683 pmbada683 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ANR grantid: ANR-21-CE19-0028 – fundername: CrossDisciplinary Program on Numerical Simulation of CEA |
GroupedDBID | --- -DZ -~X 123 1JI 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABLJU ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 TSCCA W28 XPP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c331t-ea6d9a765feeeed49d2e54eeef8945ef739b71e3cc4f8184cb9b413ec238ba933 |
IEDL.DBID | IOP |
ISSN | 0031-9155 1361-6560 |
IngestDate | Fri Sep 05 05:54:05 EDT 2025 Fri Jul 25 01:49:13 EDT 2025 Thu Jul 31 00:01:09 EDT 2025 Tue Jul 29 22:10:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | virtual observation points electromagnetic simulation radiofrequency power deposition ultra-high field safety |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-ea6d9a765feeeed49d2e54eeef8945ef739b71e3cc4f8184cb9b413ec238ba933 |
Notes | PMB-117707.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0005-0819-174X 0000-0002-2667-9387 0000-0002-4997-2738 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6560/ada683 |
PMID | 39761645 |
PQID | 3160064929 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3160064929 iop_journals_10_1088_1361_6560_ada683 pubmed_primary_39761645 crossref_primary_10_1088_1361_6560_ada683 |
PublicationCentury | 2000 |
PublicationDate | 2025-02-02 |
PublicationDateYYYYMMDD | 2025-02-02 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physics in medicine & biology |
PublicationTitleAbbrev | PMB |
PublicationTitleAlternate | Phys. Med. Biol |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Sasaki (pmbada683bib69) 2022; 67 Leitão (pmbada683bib52) 2022; 88 Mohammed (pmbada683bib60) 2017; 5 Lenroot (pmbada683bib53) 2006; 30 Gabriel (pmbada683bib29) 1996 Hillyer (pmbada683bib40) 2023; 79 Fiedler (pmbada683bib26) 2018; 168 Rashed (pmbada683bib67) 2019; 202 Eichfelder (pmbada683bib23) 2011; 66 Duan (pmbada683bib21) 2023 Adriany (pmbada683bib1) 2005; 53 Feldman (pmbada683bib25) 2019; 14 Wang (pmbada683bib81) 2024; 11 Beqiri (pmbada683bib8) 2018; 80 Wolf (pmbada683bib83) 2013; 69 Seifert (pmbada683bib70) 2007; 26 Chirita-Emandi (pmbada683bib15) 2015; 119 Kopanoglu (pmbada683bib48) 2020; 84 Graesslin (pmbada683bib32) 2012; 68 Veersema (pmbada683bib79) 2017; 2 Veersema (pmbada683bib80) 2016; 18 Bartolini (pmbada683bib7) 2019; 40 Gras (pmbada683bib34) 2017; 77 Katscher (pmbada683bib45) 2003; 49 Luong (pmbada683bib54) 2022 Ladd (pmbada683bib49) 2018; 109 Myer (pmbada683bib62) 1995; 105 Pecqueux (pmbada683bib64) 2016 Taflove (pmbada683bib74) 2003 Gosselin (pmbada683bib31) 2014; 59 Shao (pmbada683bib71) 2015; 73 De Ciantis (pmbada683bib17) 2016; 57 Yamada (pmbada683bib85) 2021; 11 Yetisir (pmbada683bib86) 2022; 93 Annink (pmbada683bib4) 2020; 41 Ipek (pmbada683bib43) 2014; 71 Bottauscio (pmbada683bib9) 2024; 69 Xu (pmbada683bib84) 2009; 56 Stolte (pmbada683bib72) 2024; 2 Bartholomeusz (pmbada683bib6) 2002; 33 Delbany (pmbada683bib19) 2022 Van Damme (pmbada683bib75) 2021; 85 IEEE (pmbada683bib42) 2002 Meliadò (pmbada683bib59) 2020; 84 Matsuzawa (pmbada683bib57) 2001; 11 Herrler (pmbada683bib38) 2023; 89 Christ (pmbada683bib16) 2005; 26 Vecchiato (pmbada683bib78) 2021 Alushaj (pmbada683bib2) 2024; 41 Herrler (pmbada683bib39) 2021; 85 Lazen (pmbada683bib50) 2024 Food and Drug Administration (pmbada683bib27) 2014 Brink (pmbada683bib11) 2022; 88 Van der Plas (pmbada683bib76) 2024 Júlíusson (pmbada683bib44) 2013; 40 Zanche (pmbada683bib87) 2022 IEC (pmbada683bib41) 2010 Keith (pmbada683bib46) 2024; 9 Rollins (pmbada683bib68) 2010; 156 Malik (pmbada683bib56) 2021; 86 Caviness (pmbada683bib14) 1996; 6 de Greef (pmbada683bib18) 2013; 69 Boulant (pmbada683bib10) 2018 Gabel (pmbada683bib28) 2024 Harris (pmbada683bib37) 2016; 37 Gras (pmbada683bib35) 2023 Puonti (pmbada683bib66) 2020; 219 Dudysheva (pmbada683bib22) 2024 van Lanen (pmbada683bib77) 2021; 30 Wells (pmbada683bib82) 2005; 90 Balchandani (pmbada683bib5) 2015; 36 Hangel (pmbada683bib36) 2024; 271 Pinho Meneses (pmbada683bib65) 2022; 261 Amadon (pmbada683bib3) 2012 Malik (pmbada683bib55) 2022; 88 Committee I S (pmbada683bib24) 2021; 53 Goren (pmbada683bib30) 2024; 91 Obusez (pmbada683bib63) 2018; 168 Klodowski (pmbada683bib47) 2024 Le Garrec (pmbada683bib51) 2017; 78 Burkett (pmbada683bib13) 2021; 63 McCann (pmbada683bib58) 2019; 32 Destruel (pmbada683bib20) 2024 Gras (pmbada683bib33) 2024; 43 Bubrick (pmbada683bib12) 2022; 32 Morrison (pmbada683bib61) 2019; 21 Sun (pmbada683bib73) 2018; 60 |
References_xml | – start-page: 97 year: 2023 ident: pmbada683bib35 article-title: Parallel transmission: physics background, pulse design, and applications in neuro MRI at ultra-high field – volume: 105 start-page: 1 year: 1995 ident: pmbada683bib62 article-title: Growth of the pediatric skull base: assessment using magnetic resonance imaging publication-title: Laryngoscope doi: 10.1288/00005537-199509001-00001 – volume: 84 start-page: 3379 year: 2020 ident: pmbada683bib59 article-title: Conditional safety margins for less conservative peak local SAR assessment: a probabilistic approach publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28335 – volume: 43 start-page: 714 year: 2024 ident: pmbada683bib33 article-title: A mathematical analysis of clustering-free local SAR compression algorithms for MRI safety in parallel transmission publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2023.3319017 – year: 2010 ident: pmbada683bib41 article-title: Medical electrical equipment part 2-33. Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis – year: 2018 ident: pmbada683bib10 article-title: Workflow proposal for defining SAR safety margins in parallel transmission – volume: 271 start-page: 804 year: 2024 ident: pmbada683bib36 article-title: Implementation of a 7T epilepsy task force consensus imaging protocol for routine presurgical epilepsy work-up: effect on diagnostic yield and lesion delineation publication-title: J. Neurol. doi: 10.1007/s00415-023-11988-5 – year: 1996 ident: pmbada683bib29 – volume: 68 start-page: 1664 year: 2012 ident: pmbada683bib32 article-title: A specific absorption rate prediction concept for parallel transmission MR publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24138 – volume: 56 start-page: 2083 year: 2009 ident: pmbada683bib84 article-title: Effects of dielectric parameters of human body on radiation characteristics of ingestible wireless device at operating frequency of 430 MHz publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2021157 – volume: 59 start-page: 5287 year: 2014 ident: pmbada683bib31 article-title: Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/18/5287 – year: 2021 ident: pmbada683bib78 article-title: High field 7T MRI in a surgical pediatric epilepsy cohort: a pilot study – volume: 5 start-page: 27345 year: 2017 ident: pmbada683bib60 article-title: Evaluation of children’s exposure to electromagnetic fields of mobile phones using age-specific head models with age-dependent dielectric properties publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2767074 – volume: 168 start-page: 33 year: 2018 ident: pmbada683bib26 article-title: SAR simulations & safety publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.035 – volume: 67 start-page: 14TR01 year: 2022 ident: pmbada683bib69 article-title: Measurement and image-based estimation of dielectric properties of biological tissues -past, present, and future publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ac7b64 – volume: 88 start-page: 1434 year: 2022 ident: pmbada683bib55 article-title: Evaluation of specific absorption rate and heating in children exposed to a 7T MRI head coil publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29283 – volume: 202 year: 2019 ident: pmbada683bib67 article-title: Development of accurate human head models for personalized electromagnetic dosimetry using deep learning publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116132 – volume: 85 start-page: 678 year: 2021 ident: pmbada683bib75 article-title: Universal nonselective excitation and refocusing pulses with improved robustness to off-resonance for magnetic resonance imaging at 7 Tesla with parallel transmission publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28441 – volume: 66 start-page: 1468 year: 2011 ident: pmbada683bib23 article-title: Local specific absorption rate control for parallel transmission by virtual observation points publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22927 – volume: 119 start-page: 1083 year: 2015 ident: pmbada683bib15 article-title: Head circumference references for school age children in Western Romania publication-title: Rev. Med. Chir. Soc. Med. Nat. Iasi. – volume: 21 start-page: vi173 year: 2019 ident: pmbada683bib61 article-title: NIMG-56. A multimodal 7 Telsa MRI investigation of long-term effects of radiotherapy on the adolescent brain & cognition publication-title: Neuro-Oncology doi: 10.1093/neuonc/noz175.725 – volume: 89 start-page: 1888 year: 2023 ident: pmbada683bib38 article-title: The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29569 – volume: 2 start-page: 1 year: 2024 ident: pmbada683bib72 article-title: Precise and rapid whole-head segmentation from magnetic resonance images of older adults using deep learning publication-title: Imaging Neurosci. doi: 10.1162/imag_a_00090 – volume: 80 start-page: 1533 year: 2018 ident: pmbada683bib8 article-title: Whole-brain 3D FLAIR at 7T using direct signal control publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27149 – year: 2024 ident: pmbada683bib20 article-title: On the combination of simulations from various human models to account for variabilities while limiting SAR10g overestimation for UHF pTx MRI – volume: 109 start-page: 1 year: 2018 ident: pmbada683bib49 article-title: Pros and cons of ultra-high-field MRI/MRS for human application publication-title: Prog. Nucl. Magn. Reson. Spectrosc. doi: 10.1016/j.pnmrs.2018.06.001 – volume: 6 start-page: 726 year: 1996 ident: pmbada683bib14 article-title: The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images publication-title: Cereb. Cortex doi: 10.1093/cercor/6.5.726 – volume: 79 year: 2023 ident: pmbada683bib40 article-title: Association between limbic system lesions and anxiety in persons with multiple sclerosis publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2023.105021 – volume: 11 start-page: 65 year: 2021 ident: pmbada683bib85 article-title: Application of 7 Tesla magnetic resonance imaging for pediatric neurological disorders: early clinical experience publication-title: J. Clin. Imaging Sci. doi: 10.25259/JCIS_185_2021 – volume: 71 start-page: 1559 year: 2014 ident: pmbada683bib43 article-title: Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24794 – volume: 85 start-page: 3140 year: 2021 ident: pmbada683bib39 article-title: Fast online-customized (FOCUS) parallel transmission pulses: a combination of universal pulses and individual optimization publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28643 – volume: 90 start-page: 965 year: 2005 ident: pmbada683bib82 article-title: Prediction of total body water in infants and children publication-title: Arch. Dis. Child. doi: 10.1136/adc.2004.067538 – volume: 32 start-page: 825 year: 2019 ident: pmbada683bib58 article-title: Variation in reported human head tissue electrical conductivity values publication-title: Brain Topogr. doi: 10.1007/s10548-019-00710-2 – volume: 26 start-page: 1315 year: 2007 ident: pmbada683bib70 article-title: Patient safety concept for multichannel transmit coils publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21149 – year: 2014 ident: pmbada683bib27 article-title: Criteria for significant risk investigations of magnetic resonance diagnostic devices – volume: 53 start-page: 434 year: 2005 ident: pmbada683bib1 article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20321 – volume: 40 start-page: 2137 year: 2019 ident: pmbada683bib7 article-title: Ultra-high-field targeted imaging of focal cortical dysplasia: the intracortical black line sign in type IIb publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A6298 – volume: 88 start-page: 464 year: 2022 ident: pmbada683bib11 article-title: Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1-weighted dataset publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29215 – volume: 53 start-page: 333 year: 2021 ident: pmbada683bib24 article-title: 7T MR safety publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.27319 – volume: 11 start-page: 335 year: 2001 ident: pmbada683bib57 article-title: Age-related volumetric changes of brain gray and white matter in healthy infants and children publication-title: Cereb. Cortex doi: 10.1093/cercor/11.4.335 – volume: 9 year: 2024 ident: pmbada683bib46 article-title: Towards clinical translation of 7 Tesla MRI in the human brain publication-title: IPEM-Transl. doi: 10.1016/j.ipemt.2024.100025 – year: 2022 ident: pmbada683bib54 article-title: A compact 16Tx-32Rx Geometrically Decoupled Phased Array for 11.7T – year: 2024 ident: pmbada683bib28 article-title: Individual voxel models for head SAR estimation – year: 2024 ident: pmbada683bib47 article-title: Parallel transmit (pTx) 7T MRI for drug-resistant focal epilepsy – volume: 37 start-page: 552 year: 2016 ident: pmbada683bib37 article-title: GABA and glutamate in children with primary complex motor stereotypies: an 1H-MRS study at 7T publication-title: AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A4547 – year: 2002 ident: pmbada683bib42 article-title: IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz IEEE – volume: 86 start-page: 1299 year: 2021 ident: pmbada683bib56 article-title: Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28784 – volume: 33 start-page: 239 year: 2002 ident: pmbada683bib6 article-title: Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults publication-title: Neuropediatrics doi: 10.1055/s-2002-36735 – year: 2022 ident: pmbada683bib87 article-title: ISMRM best practices for safety testing of experimental RF hardware doi: 10.7939/r3-7vpe-x737 – volume: 40 start-page: 220 year: 2013 ident: pmbada683bib44 article-title: Growth references for 0–19 year-old Norwegian children for length/height, weight, body mass index and head circumference publication-title: Ann. Hum. Biol. doi: 10.3109/03014460.2012.759276 – volume: 261 year: 2022 ident: pmbada683bib65 article-title: Shim coils tailored for correcting B0 inhomogeneity in the human brain (SCOTCH): design methodology and 48-channel prototype assessment in 7-Tesla MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119498 – volume: 93 start-page: 87 year: 2022 ident: pmbada683bib86 article-title: Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2022.08.006 – volume: 69 start-page: 1476 year: 2013 ident: pmbada683bib18 article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24378 – volume: 88 start-page: 180 year: 2022 ident: pmbada683bib52 article-title: Parallel transmit pulse design for saturation homogeneity (PUSH) for magnetization transfer imaging at 7T publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29199 – volume: 30 year: 2021 ident: pmbada683bib77 article-title: Ultra-high field magnetic resonance imaging in human epilepsy: a systematic review publication-title: NeuroImage doi: 10.1016/j.nicl.2021.102602 – year: 2023 ident: pmbada683bib21 article-title: Improved visualization of whole-brain structures and pathology at ultra-high field 7T MRI with parallel transmission universal pulses – volume: 69 start-page: 1157 year: 2013 ident: pmbada683bib83 article-title: SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24329 – volume: 30 start-page: 718 year: 2006 ident: pmbada683bib53 article-title: Brain development in children and adolescents: insights from anatomical magnetic resonance imaging publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2006.06.001 – volume: 84 start-page: 2724 year: 2020 ident: pmbada683bib48 article-title: Specific absorption rate implications of within-scan patient head motion for ultra-high field MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28276 – volume: 41 start-page: 1532 year: 2020 ident: pmbada683bib4 article-title: Introduction of ultra-high-field MR imaging in infants: preparations and feasibility publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A6702 – volume: 60 start-page: 785 year: 2018 ident: pmbada683bib73 article-title: Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T publication-title: Neuroradiology doi: 10.1007/s00234-018-2040-2 – volume: 2 start-page: 162 year: 2017 ident: pmbada683bib79 article-title: Seven Tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy publication-title: Epilepsia Open doi: 10.1002/epi4.12041 – volume: 73 start-page: 2357 year: 2015 ident: pmbada683bib71 article-title: Statistical simulation of SAR variability with geometric and tissue property changes by using the unscented transform publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25367 – volume: 36 start-page: 1204 year: 2015 ident: pmbada683bib5 article-title: Ultra-high-field MR neuroimaging publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A4180 – volume: 69 year: 2024 ident: pmbada683bib9 article-title: Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/ad5070 – volume: 156 start-page: 907 year: 2010 ident: pmbada683bib68 article-title: United States head circumference growth reference charts: birth to 21 years publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2010.01.009 – year: 2022 ident: pmbada683bib19 article-title: Variability of the specific absorption rate in the child’s head using a transmit array head coil at 7T: a simulation study – year: 2024 ident: pmbada683bib76 article-title: Strain tensor imaging using single-shot multi-slice DENSE in a pediatric population at 7T doi: 10.1016/j.neuroimage.2024.120506 – volume: 41 year: 2024 ident: pmbada683bib2 article-title: Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson’s disease: a 3T and 7T MRI study publication-title: NeuroImage doi: 10.1016/j.nicl.2024.103577 – start-page: 640 year: 2016 ident: pmbada683bib64 article-title: Software and hardware assessment of FDTD simulations for very large and complex scenes – volume: 57 start-page: 445 year: 2016 ident: pmbada683bib17 article-title: 7T MRI in focal epilepsy with unrevealing conventional field strength imaging publication-title: Epilepsia doi: 10.1111/epi.13313 – volume: 219 year: 2020 ident: pmbada683bib66 article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117044 – year: 2024 ident: pmbada683bib22 article-title: Pediatric neuroimaging at 7 Tesla: towards building and validating VOPs for local SAR management in pTX – volume: 14 year: 2019 ident: pmbada683bib25 article-title: 7T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls publication-title: PLoS One doi: 10.1371/journal.pone.0213642 – volume: 63 start-page: 167 year: 2021 ident: pmbada683bib13 article-title: Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges publication-title: Neuroradiology doi: 10.1007/s00234-020-02629-z – volume: 26 start-page: S31 year: 2005 ident: pmbada683bib16 article-title: Differences in RF energy absorption in the heads of adults and children publication-title: Bioelectromagnetics doi: 10.1002/bem.20136 – year: 2012 ident: pmbada683bib3 article-title: Validation of a very fast B1-mapping sequence for parallel transmission on a human brain at 7T – year: 2024 ident: pmbada683bib50 article-title: 31P MRSI in pediatric low grade gliomas during treatment at 7T – volume: 32 start-page: 292 year: 2022 ident: pmbada683bib12 article-title: 7T versus 3T MRI in the presurgical evaluation of patients with drug-resistant epilepsy publication-title: J. Neuroimaging doi: 10.1111/jon.12958 – volume: 11 start-page: 730 year: 2024 ident: pmbada683bib81 article-title: Uncertainty quantification in SAR induced by ultra-high-field MRI RF coil via high-dimensional model representation publication-title: Bioengineering doi: 10.3390/bioengineering11070730 – volume: 91 start-page: 735 year: 2024 ident: pmbada683bib30 article-title: Influence of patient head definition on induced E-fields during MR examination publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29894 – year: 2003 ident: pmbada683bib74 – volume: 18 start-page: 315 year: 2016 ident: pmbada683bib80 article-title: 7 Tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia publication-title: Epileptic Disord. doi: 10.1684/epd.2016.0838 – volume: 168 start-page: 459 year: 2018 ident: pmbada683bib63 article-title: 7T MR of intracranial pathology: preliminary observations and comparisons to 3T and 1.5T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.030 – volume: 77 start-page: 635 year: 2017 ident: pmbada683bib34 article-title: Universal pulses: a new concept for calibration-free parallel transmission publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26148 – volume: 49 start-page: 144 year: 2003 ident: pmbada683bib45 article-title: Transmit SENSE: transmit SENSE publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10353 – volume: 78 start-page: 1217 year: 2017 ident: pmbada683bib51 article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26468 |
SSID | ssj0011824 |
Score | 2.4658997 |
Snippet | Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of... Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however,... Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 35007 |
SubjectTerms | Adolescent Child Child, Preschool electromagnetic simulation Humans Magnetic Resonance Imaging - methods Neuroimaging - methods radiofrequency power deposition Safety ultra-high field virtual observation points |
Title | Proposal for local SAR safety margin in pediatric neuro-imaging using 7 T MRI and parallel transmission |
URI | https://iopscience.iop.org/article/10.1088/1361-6560/ada683 https://www.ncbi.nlm.nih.gov/pubmed/39761645 https://www.proquest.com/docview/3160064929 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB_8wONePPXOc71TIujDPWS1TdI2-CSHosKq-IE-HJSkTUVcu4vtPnh__c003QVF5bCUEkrbJJNp5tfO5DcAm4iJA6ul4KgMiksbW55EMb3utghtgXOmptXIvZPo8Eoe36ibKdidrIUZDNupv4tFTxTsRdgGxCXbgYgCTpwx2yY3USKmYZYSV5J6H52eTVwICJw9BbMIOJGgtz7K157wzCZNY71vw83G7Bx8gT_jBvtok_vuqLbd7O8LLscP9mgB5ls4yvb8pYsw5colmPMJKp-W4FOvdb3jySZWNKu-wu0ZZVao8DYEvKwxhuxi75xVpnD1E3swj9g4hvtwnAaENayZ_O6hSYnEKNb-lsXskvXOj5gpc0YE5P2-67OaTCeqHv3D-wZXB_uXvw95m6-BZ0IENXcmyrWJI1U43HKp89ApicUi0VK5IhbaxoETWSYLxAkys9qiDXUZwgZrtBDLMFMOSrcCbMdlOPnYxCmtpVXWqHgHgRvdGmqjkg78Go9YOvS0HGnjTk-SlKSZkjRTL80ObKHg0_bdrN65bmM86Cl2lBwnpnSDUZWKICLohkiyA9-9NkxqJTyHn5xq9T9r-QGfQ0ohTIHf4U-YqR9Hbg1xTW3XG_3F46m4_gciPO6u |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUBEXRLc8lkfrSu2Bg1kS20l8RMAK2u52RUHlZtmJs0JasisSDvx7ZpLsSpWgIsohiuI4GT--L5nxNwDfkBMHTkvBsTMoLl3seBLFNNxdHroc50xNq5EHw-jyVv64U3dtntN6Lcx01k79x3jYCAU3JmwD4pJeIKKAk2ZMz2Y2SkRvluXLsKpEpEg8_7f4u3AjIHluZJhFwEkIvfVTvnaXf3BpGet-m3LW0NPfhI2WM7LT5gk_wpIvOvChySL53IG1Qesfx5N1QGdafoLxiNIflFgMWSmrEYv9Ob1mpc199cwe7OP4vmC4z-a5OlgtbcnvH-q8RYwC4scsZjdscH3FbJExUgmfTPyEVYRv2D_oR9sW3PYvbs4ueZtUgadCBBX3Nsq0jSOVe9wyqbPQK4mHeaKl8nkstIsDL9JU5gjmMnXaIdD5FLHdWS3ENqwU08LvAjvxKc4QLvFKa-mUsyo-QXZFRUNtVdKFo7lJzazRzjC1zztJDJnfkPlNY_4ufEebm3YAlf-57uu8VQy-KHk3bOGnT6URQUT8CuleF3aa5lrUSqQLvwvV3jtr-QJro_O--XU1_LkP6yGl_KVA7fAAVqrHJ3-IPKRyn-u-9gJaMtJ2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+for+local+SAR+safety+margin+in+pediatric+neuro-imaging+using+7+T+MRI+and+parallel+transmission&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Dudysheva%2C+Natalia&rft.au=Luong%2C+Michel&rft.au=Amadon%2C+Alexis&rft.au=Morel%2C+Laurent&rft.date=2025-02-02&rft.issn=1361-6560&rft.eissn=1361-6560&rft_id=info:doi/10.1088%2F1361-6560%2Fada683&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |