Proposal for local SAR safety margin in pediatric neuro-imaging using 7 T MRI and parallel transmission

Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR...

Full description

Saved in:
Bibliographic Details
Published inPhysics in medicine & biology Vol. 70; no. 3; pp. 35007 - 35022
Main Authors Dudysheva, N, Luong, M, Amadon, A, Morel, L, Touz, N Le, Vignaud, A, Boulant, N, Gras, V
Format Journal Article
LanguageEnglish
Published England IOP Publishing 02.02.2025
Subjects
Online AccessGet full text
ISSN0031-9155
1361-6560
1361-6560
DOI10.1088/1361-6560/ada683

Cover

Abstract Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR 10g ). In this work, we address the pSAR 10g assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. Approach . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of N = 2 up to 30 models, and cross-validated the pSAR 10g prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results. The interpolation model provides that the minimum ASF decreases as 1 + 5.37 ⋅ N − 0.75 with N . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
AbstractList Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR 10g ). In this work, we address the pSAR 10g assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. Approach . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of N = 2 up to 30 models, and cross-validated the pSAR 10g prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results. The interpolation model provides that the minimum ASF decreases as 1 + 5.37 ⋅ N − 0.75 with N . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR ). In this work, we address the pSAR assessment for an in-house built 7 T 16Tx32Rx pediatric head coil, using the concept of virtual observation points (VOPs) for SAR estimation. . We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database of = 2 up to 30 models, and cross-validated the pSAR prediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. The interpolation model provides that the minimum ASF decreases as1+5.37⋅N-0.75with . Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.
Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR10g). In this work, we address the pSAR10gassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation. Approach We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database ofN=2 up to 30 models, and cross-validated the pSAR10gprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results The interpolation model provides that the minimum ASF decreases as 1+5.37∙N-0.75withN. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.&#xD.Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local specific absorption rate (SAR) management strategy, able to predict and monitor the peak local SAR (pSAR10g). In this work, we address the pSAR10gassessment for an in-house built 7 Tesla 16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR estimation. Approach We base our study on full-wave electromagnetic simulations performed on a database of 64 numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on different subsets of this database ofN=2 up to 30 models, and cross-validated the pSAR10gprediction using non-intersecting subsets, each containing 30 models. We thereby propose a minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-SAR ratio, independent of the pTx RF excitation. Main results The interpolation model provides that the minimum ASF decreases as 1+5.37∙N-0.75withN. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the VOP validity for an infinite number of subjects. Significance We propose a general simulation workflow to guide ASF estimation and quantify the trade-off between the number of numerical models available for VOP construction and the safety factor. The approach would apply to any simulation dataset and any pTx setup.&#xD.
Author Luong, M
Morel, L
Dudysheva, N
Boulant, N
Gras, V
Touz, N Le
Amadon, A
Vignaud, A
Author_xml – sequence: 1
  givenname: N
  orcidid: 0009-0005-0819-174X
  surname: Dudysheva
  fullname: Dudysheva, N
  organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France
– sequence: 2
  givenname: M
  surname: Luong
  fullname: Luong, M
  organization: Université Paris-Saclay , CEA, DRF, IRFU, Gif sur Yvette 91191, France
– sequence: 3
  givenname: A
  orcidid: 0000-0002-2667-9387
  surname: Amadon
  fullname: Amadon, A
  organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France
– sequence: 4
  givenname: L
  surname: Morel
  fullname: Morel, L
  organization: CEA , DAM, CEA-Gramat, Gramat F-46500, France
– sequence: 5
  givenname: N Le
  surname: Touz
  fullname: Touz, N Le
  organization: CEA , DAM, CEA-Gramat, Gramat F-46500, France
– sequence: 6
  givenname: A
  surname: Vignaud
  fullname: Vignaud, A
  organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France
– sequence: 7
  givenname: N
  surname: Boulant
  fullname: Boulant, N
  organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France
– sequence: 8
  givenname: V
  orcidid: 0000-0002-4997-2738
  surname: Gras
  fullname: Gras, V
  organization: Université Paris-Saclay , CEA, NeuroSpin, CNRS, BAOBAB, Gif sur Yvette 91191, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39761645$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1PwyAUwImZcR9692Q4erAOBqXluCx-LJnRzHkmlL4uXTqo0B7238uy6U3yAi_we-S93xgNrLOA0C0lj5Tk-ZQyQRORCjLVpRY5u0Cjv6sBGhHCaCJpmg7ROIQdIZTmM36FhkxmggqejtD2w7vWBd3gynncOBOzz_kaB11Bd8B77be1xTFaKGvd-dpgC713Sb3X8WWL-3DcM7zBb-sl1rbErfa6aaDBndc27OsQamev0WWlmwA353OCvp6fNovXZPX-slzMV4lhjHYJaFFKnYm0grhKLssZpDymVS55ClXGZJFRYMbwKqc5N4UsOGVgZiwvtGRsgu5P_7beffcQOhUbMNA02oLrg2JUECK4nMmI3p3RvthDqVofZ_IH9SsnAuQEGO9C8FD9IZSoo391lK2OstXJfyx5OJXUrlU713sbh_0f_wEgfoZz
CODEN PHMBA7
Cites_doi 10.1288/00005537-199509001-00001
10.1002/mrm.28335
10.1109/TMI.2023.3319017
10.1007/s00415-023-11988-5
10.1002/mrm.24138
10.1109/TBME.2009.2021157
10.1088/0031-9155/59/18/5287
10.1109/ACCESS.2017.2767074
10.1016/j.neuroimage.2017.03.035
10.1088/1361-6560/ac7b64
10.1002/mrm.29283
10.1016/j.neuroimage.2019.116132
10.1002/mrm.28441
10.1002/mrm.22927
10.1093/neuonc/noz175.725
10.1002/mrm.29569
10.1162/imag_a_00090
10.1002/mrm.27149
10.1016/j.pnmrs.2018.06.001
10.1093/cercor/6.5.726
10.1016/j.msard.2023.105021
10.25259/JCIS_185_2021
10.1002/mrm.24794
10.1002/mrm.28643
10.1136/adc.2004.067538
10.1007/s10548-019-00710-2
10.1002/jmri.21149
10.1002/mrm.20321
10.3174/ajnr.A6298
10.1002/mrm.29215
10.1002/jmri.27319
10.1093/cercor/11.4.335
10.1016/j.ipemt.2024.100025
10.3174/ajnr.A4547
10.1002/mrm.28784
10.1055/s-2002-36735
10.7939/r3-7vpe-x737
10.3109/03014460.2012.759276
10.1016/j.neuroimage.2022.119498
10.1016/j.mri.2022.08.006
10.1002/mrm.24378
10.1002/mrm.29199
10.1016/j.nicl.2021.102602
10.1002/mrm.24329
10.1016/j.neubiorev.2006.06.001
10.1002/mrm.28276
10.3174/ajnr.A6702
10.1007/s00234-018-2040-2
10.1002/epi4.12041
10.1002/mrm.25367
10.3174/ajnr.A4180
10.1088/1361-6560/ad5070
10.1016/j.jpeds.2010.01.009
10.1016/j.neuroimage.2024.120506
10.1016/j.nicl.2024.103577
10.1111/epi.13313
10.1016/j.neuroimage.2020.117044
10.1371/journal.pone.0213642
10.1007/s00234-020-02629-z
10.1002/bem.20136
10.1111/jon.12958
10.3390/bioengineering11070730
10.1002/mrm.29894
10.1684/epd.2016.0838
10.1016/j.neuroimage.2016.11.030
10.1002/mrm.26148
10.1002/mrm.10353
10.1002/mrm.26468
ContentType Journal Article
Copyright 2025 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2025 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd
– notice: 2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1361-6560/ada683
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Physics
EISSN 1361-6560
ExternalDocumentID 39761645
10_1088_1361_6560_ada683
pmbada683
Genre Journal Article
GrantInformation_xml – fundername: ANR
  grantid: ANR-21-CE19-0028
– fundername: CrossDisciplinary Program on Numerical Simulation of CEA
GroupedDBID ---
-DZ
-~X
123
1JI
4.4
5B3
5RE
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
XPP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c331t-ea6d9a765feeeed49d2e54eeef8945ef739b71e3cc4f8184cb9b413ec238ba933
IEDL.DBID IOP
ISSN 0031-9155
1361-6560
IngestDate Fri Sep 05 05:54:05 EDT 2025
Fri Jul 25 01:49:13 EDT 2025
Thu Jul 31 00:01:09 EDT 2025
Tue Jul 29 22:10:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords virtual observation points
electromagnetic simulation
radiofrequency power deposition
ultra-high field
safety
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
2025 Institute of Physics and Engineering in Medicine. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-ea6d9a765feeeed49d2e54eeef8945ef739b71e3cc4f8184cb9b413ec238ba933
Notes PMB-117707.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0005-0819-174X
0000-0002-2667-9387
0000-0002-4997-2738
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1361-6560/ada683
PMID 39761645
PQID 3160064929
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_3160064929
iop_journals_10_1088_1361_6560_ada683
pubmed_primary_39761645
crossref_primary_10_1088_1361_6560_ada683
PublicationCentury 2000
PublicationDate 2025-02-02
PublicationDateYYYYMMDD 2025-02-02
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-02
  day: 02
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physics in medicine & biology
PublicationTitleAbbrev PMB
PublicationTitleAlternate Phys. Med. Biol
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Sasaki (pmbada683bib69) 2022; 67
Leitão (pmbada683bib52) 2022; 88
Mohammed (pmbada683bib60) 2017; 5
Lenroot (pmbada683bib53) 2006; 30
Gabriel (pmbada683bib29) 1996
Hillyer (pmbada683bib40) 2023; 79
Fiedler (pmbada683bib26) 2018; 168
Rashed (pmbada683bib67) 2019; 202
Eichfelder (pmbada683bib23) 2011; 66
Duan (pmbada683bib21) 2023
Adriany (pmbada683bib1) 2005; 53
Feldman (pmbada683bib25) 2019; 14
Wang (pmbada683bib81) 2024; 11
Beqiri (pmbada683bib8) 2018; 80
Wolf (pmbada683bib83) 2013; 69
Seifert (pmbada683bib70) 2007; 26
Chirita-Emandi (pmbada683bib15) 2015; 119
Kopanoglu (pmbada683bib48) 2020; 84
Graesslin (pmbada683bib32) 2012; 68
Veersema (pmbada683bib79) 2017; 2
Veersema (pmbada683bib80) 2016; 18
Bartolini (pmbada683bib7) 2019; 40
Gras (pmbada683bib34) 2017; 77
Katscher (pmbada683bib45) 2003; 49
Luong (pmbada683bib54) 2022
Ladd (pmbada683bib49) 2018; 109
Myer (pmbada683bib62) 1995; 105
Pecqueux (pmbada683bib64) 2016
Taflove (pmbada683bib74) 2003
Gosselin (pmbada683bib31) 2014; 59
Shao (pmbada683bib71) 2015; 73
De Ciantis (pmbada683bib17) 2016; 57
Yamada (pmbada683bib85) 2021; 11
Yetisir (pmbada683bib86) 2022; 93
Annink (pmbada683bib4) 2020; 41
Ipek (pmbada683bib43) 2014; 71
Bottauscio (pmbada683bib9) 2024; 69
Xu (pmbada683bib84) 2009; 56
Stolte (pmbada683bib72) 2024; 2
Bartholomeusz (pmbada683bib6) 2002; 33
Delbany (pmbada683bib19) 2022
Van Damme (pmbada683bib75) 2021; 85
IEEE (pmbada683bib42) 2002
Meliadò (pmbada683bib59) 2020; 84
Matsuzawa (pmbada683bib57) 2001; 11
Herrler (pmbada683bib38) 2023; 89
Christ (pmbada683bib16) 2005; 26
Vecchiato (pmbada683bib78) 2021
Alushaj (pmbada683bib2) 2024; 41
Herrler (pmbada683bib39) 2021; 85
Lazen (pmbada683bib50) 2024
Food and Drug Administration (pmbada683bib27) 2014
Brink (pmbada683bib11) 2022; 88
Van der Plas (pmbada683bib76) 2024
Júlíusson (pmbada683bib44) 2013; 40
Zanche (pmbada683bib87) 2022
IEC (pmbada683bib41) 2010
Keith (pmbada683bib46) 2024; 9
Rollins (pmbada683bib68) 2010; 156
Malik (pmbada683bib56) 2021; 86
Caviness (pmbada683bib14) 1996; 6
de Greef (pmbada683bib18) 2013; 69
Boulant (pmbada683bib10) 2018
Gabel (pmbada683bib28) 2024
Harris (pmbada683bib37) 2016; 37
Gras (pmbada683bib35) 2023
Puonti (pmbada683bib66) 2020; 219
Dudysheva (pmbada683bib22) 2024
van Lanen (pmbada683bib77) 2021; 30
Wells (pmbada683bib82) 2005; 90
Balchandani (pmbada683bib5) 2015; 36
Hangel (pmbada683bib36) 2024; 271
Pinho Meneses (pmbada683bib65) 2022; 261
Amadon (pmbada683bib3) 2012
Malik (pmbada683bib55) 2022; 88
Committee I S (pmbada683bib24) 2021; 53
Goren (pmbada683bib30) 2024; 91
Obusez (pmbada683bib63) 2018; 168
Klodowski (pmbada683bib47) 2024
Le Garrec (pmbada683bib51) 2017; 78
Burkett (pmbada683bib13) 2021; 63
McCann (pmbada683bib58) 2019; 32
Destruel (pmbada683bib20) 2024
Gras (pmbada683bib33) 2024; 43
Bubrick (pmbada683bib12) 2022; 32
Morrison (pmbada683bib61) 2019; 21
Sun (pmbada683bib73) 2018; 60
References_xml – start-page: 97
  year: 2023
  ident: pmbada683bib35
  article-title: Parallel transmission: physics background, pulse design, and applications in neuro MRI at ultra-high field
– volume: 105
  start-page: 1
  year: 1995
  ident: pmbada683bib62
  article-title: Growth of the pediatric skull base: assessment using magnetic resonance imaging
  publication-title: Laryngoscope
  doi: 10.1288/00005537-199509001-00001
– volume: 84
  start-page: 3379
  year: 2020
  ident: pmbada683bib59
  article-title: Conditional safety margins for less conservative peak local SAR assessment: a probabilistic approach
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28335
– volume: 43
  start-page: 714
  year: 2024
  ident: pmbada683bib33
  article-title: A mathematical analysis of clustering-free local SAR compression algorithms for MRI safety in parallel transmission
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3319017
– year: 2010
  ident: pmbada683bib41
  article-title: Medical electrical equipment part 2-33. Particular requirements for the basic safety and essential performance of magnetic resonance equipment for medical diagnosis
– year: 2018
  ident: pmbada683bib10
  article-title: Workflow proposal for defining SAR safety margins in parallel transmission
– volume: 271
  start-page: 804
  year: 2024
  ident: pmbada683bib36
  article-title: Implementation of a 7T epilepsy task force consensus imaging protocol for routine presurgical epilepsy work-up: effect on diagnostic yield and lesion delineation
  publication-title: J. Neurol.
  doi: 10.1007/s00415-023-11988-5
– year: 1996
  ident: pmbada683bib29
– volume: 68
  start-page: 1664
  year: 2012
  ident: pmbada683bib32
  article-title: A specific absorption rate prediction concept for parallel transmission MR
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24138
– volume: 56
  start-page: 2083
  year: 2009
  ident: pmbada683bib84
  article-title: Effects of dielectric parameters of human body on radiation characteristics of ingestible wireless device at operating frequency of 430 MHz
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2021157
– volume: 59
  start-page: 5287
  year: 2014
  ident: pmbada683bib31
  article-title: Development of a new generation of high-resolution anatomical models for medical device evaluation: the virtual population 3.0
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/18/5287
– year: 2021
  ident: pmbada683bib78
  article-title: High field 7T MRI in a surgical pediatric epilepsy cohort: a pilot study
– volume: 5
  start-page: 27345
  year: 2017
  ident: pmbada683bib60
  article-title: Evaluation of children’s exposure to electromagnetic fields of mobile phones using age-specific head models with age-dependent dielectric properties
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2767074
– volume: 168
  start-page: 33
  year: 2018
  ident: pmbada683bib26
  article-title: SAR simulations & safety
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.035
– volume: 67
  start-page: 14TR01
  year: 2022
  ident: pmbada683bib69
  article-title: Measurement and image-based estimation of dielectric properties of biological tissues -past, present, and future
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ac7b64
– volume: 88
  start-page: 1434
  year: 2022
  ident: pmbada683bib55
  article-title: Evaluation of specific absorption rate and heating in children exposed to a 7T MRI head coil
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29283
– volume: 202
  year: 2019
  ident: pmbada683bib67
  article-title: Development of accurate human head models for personalized electromagnetic dosimetry using deep learning
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116132
– volume: 85
  start-page: 678
  year: 2021
  ident: pmbada683bib75
  article-title: Universal nonselective excitation and refocusing pulses with improved robustness to off-resonance for magnetic resonance imaging at 7 Tesla with parallel transmission
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28441
– volume: 66
  start-page: 1468
  year: 2011
  ident: pmbada683bib23
  article-title: Local specific absorption rate control for parallel transmission by virtual observation points
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22927
– volume: 119
  start-page: 1083
  year: 2015
  ident: pmbada683bib15
  article-title: Head circumference references for school age children in Western Romania
  publication-title: Rev. Med. Chir. Soc. Med. Nat. Iasi.
– volume: 21
  start-page: vi173
  year: 2019
  ident: pmbada683bib61
  article-title: NIMG-56. A multimodal 7 Telsa MRI investigation of long-term effects of radiotherapy on the adolescent brain & cognition
  publication-title: Neuro-Oncology
  doi: 10.1093/neuonc/noz175.725
– volume: 89
  start-page: 1888
  year: 2023
  ident: pmbada683bib38
  article-title: The effects of RF coils and SAR supervision strategies for clinically applicable nonselective parallel-transmit pulses at 7 T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29569
– volume: 2
  start-page: 1
  year: 2024
  ident: pmbada683bib72
  article-title: Precise and rapid whole-head segmentation from magnetic resonance images of older adults using deep learning
  publication-title: Imaging Neurosci.
  doi: 10.1162/imag_a_00090
– volume: 80
  start-page: 1533
  year: 2018
  ident: pmbada683bib8
  article-title: Whole-brain 3D FLAIR at 7T using direct signal control
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27149
– year: 2024
  ident: pmbada683bib20
  article-title: On the combination of simulations from various human models to account for variabilities while limiting SAR10g overestimation for UHF pTx MRI
– volume: 109
  start-page: 1
  year: 2018
  ident: pmbada683bib49
  article-title: Pros and cons of ultra-high-field MRI/MRS for human application
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
  doi: 10.1016/j.pnmrs.2018.06.001
– volume: 6
  start-page: 726
  year: 1996
  ident: pmbada683bib14
  article-title: The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/6.5.726
– volume: 79
  year: 2023
  ident: pmbada683bib40
  article-title: Association between limbic system lesions and anxiety in persons with multiple sclerosis
  publication-title: Mult. Scler. Relat. Disord.
  doi: 10.1016/j.msard.2023.105021
– volume: 11
  start-page: 65
  year: 2021
  ident: pmbada683bib85
  article-title: Application of 7 Tesla magnetic resonance imaging for pediatric neurological disorders: early clinical experience
  publication-title: J. Clin. Imaging Sci.
  doi: 10.25259/JCIS_185_2021
– volume: 71
  start-page: 1559
  year: 2014
  ident: pmbada683bib43
  article-title: Intersubject local SAR variation for 7T prostate MR imaging with an eight-channel single-side adapted dipole antenna array
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24794
– volume: 85
  start-page: 3140
  year: 2021
  ident: pmbada683bib39
  article-title: Fast online-customized (FOCUS) parallel transmission pulses: a combination of universal pulses and individual optimization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28643
– volume: 90
  start-page: 965
  year: 2005
  ident: pmbada683bib82
  article-title: Prediction of total body water in infants and children
  publication-title: Arch. Dis. Child.
  doi: 10.1136/adc.2004.067538
– volume: 32
  start-page: 825
  year: 2019
  ident: pmbada683bib58
  article-title: Variation in reported human head tissue electrical conductivity values
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00710-2
– volume: 26
  start-page: 1315
  year: 2007
  ident: pmbada683bib70
  article-title: Patient safety concept for multichannel transmit coils
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21149
– year: 2014
  ident: pmbada683bib27
  article-title: Criteria for significant risk investigations of magnetic resonance diagnostic devices
– volume: 53
  start-page: 434
  year: 2005
  ident: pmbada683bib1
  article-title: Transmit and receive transmission line arrays for 7 Tesla parallel imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20321
– volume: 40
  start-page: 2137
  year: 2019
  ident: pmbada683bib7
  article-title: Ultra-high-field targeted imaging of focal cortical dysplasia: the intracortical black line sign in type IIb
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6298
– volume: 88
  start-page: 464
  year: 2022
  ident: pmbada683bib11
  article-title: Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1-weighted dataset
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29215
– volume: 53
  start-page: 333
  year: 2021
  ident: pmbada683bib24
  article-title: 7T MR safety
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27319
– volume: 11
  start-page: 335
  year: 2001
  ident: pmbada683bib57
  article-title: Age-related volumetric changes of brain gray and white matter in healthy infants and children
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/11.4.335
– volume: 9
  year: 2024
  ident: pmbada683bib46
  article-title: Towards clinical translation of 7 Tesla MRI in the human brain
  publication-title: IPEM-Transl.
  doi: 10.1016/j.ipemt.2024.100025
– year: 2022
  ident: pmbada683bib54
  article-title: A compact 16Tx-32Rx Geometrically Decoupled Phased Array for 11.7T
– year: 2024
  ident: pmbada683bib28
  article-title: Individual voxel models for head SAR estimation
– year: 2024
  ident: pmbada683bib47
  article-title: Parallel transmit (pTx) 7T MRI for drug-resistant focal epilepsy
– volume: 37
  start-page: 552
  year: 2016
  ident: pmbada683bib37
  article-title: GABA and glutamate in children with primary complex motor stereotypies: an 1H-MRS study at 7T
  publication-title: AJNR Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4547
– year: 2002
  ident: pmbada683bib42
  article-title: IEEE recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz IEEE
– volume: 86
  start-page: 1299
  year: 2021
  ident: pmbada683bib56
  article-title: Specific absorption rate and temperature in neonate models resulting from exposure to a 7T head coil
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28784
– volume: 33
  start-page: 239
  year: 2002
  ident: pmbada683bib6
  article-title: Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults
  publication-title: Neuropediatrics
  doi: 10.1055/s-2002-36735
– year: 2022
  ident: pmbada683bib87
  article-title: ISMRM best practices for safety testing of experimental RF hardware
  doi: 10.7939/r3-7vpe-x737
– volume: 40
  start-page: 220
  year: 2013
  ident: pmbada683bib44
  article-title: Growth references for 0–19 year-old Norwegian children for length/height, weight, body mass index and head circumference
  publication-title: Ann. Hum. Biol.
  doi: 10.3109/03014460.2012.759276
– volume: 261
  year: 2022
  ident: pmbada683bib65
  article-title: Shim coils tailored for correcting B0 inhomogeneity in the human brain (SCOTCH): design methodology and 48-channel prototype assessment in 7-Tesla MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119498
– volume: 93
  start-page: 87
  year: 2022
  ident: pmbada683bib86
  article-title: Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2022.08.006
– volume: 69
  start-page: 1476
  year: 2013
  ident: pmbada683bib18
  article-title: Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24378
– volume: 88
  start-page: 180
  year: 2022
  ident: pmbada683bib52
  article-title: Parallel transmit pulse design for saturation homogeneity (PUSH) for magnetization transfer imaging at 7T
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29199
– volume: 30
  year: 2021
  ident: pmbada683bib77
  article-title: Ultra-high field magnetic resonance imaging in human epilepsy: a systematic review
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2021.102602
– year: 2023
  ident: pmbada683bib21
  article-title: Improved visualization of whole-brain structures and pathology at ultra-high field 7T MRI with parallel transmission universal pulses
– volume: 69
  start-page: 1157
  year: 2013
  ident: pmbada683bib83
  article-title: SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed?
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24329
– volume: 30
  start-page: 718
  year: 2006
  ident: pmbada683bib53
  article-title: Brain development in children and adolescents: insights from anatomical magnetic resonance imaging
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.001
– volume: 84
  start-page: 2724
  year: 2020
  ident: pmbada683bib48
  article-title: Specific absorption rate implications of within-scan patient head motion for ultra-high field MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28276
– volume: 41
  start-page: 1532
  year: 2020
  ident: pmbada683bib4
  article-title: Introduction of ultra-high-field MR imaging in infants: preparations and feasibility
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A6702
– volume: 60
  start-page: 785
  year: 2018
  ident: pmbada683bib73
  article-title: Magnetic resonance imaging of tuberous sclerosis complex with or without epilepsy at 7 T
  publication-title: Neuroradiology
  doi: 10.1007/s00234-018-2040-2
– volume: 2
  start-page: 162
  year: 2017
  ident: pmbada683bib79
  article-title: Seven Tesla MRI improves detection of focal cortical dysplasia in patients with refractory focal epilepsy
  publication-title: Epilepsia Open
  doi: 10.1002/epi4.12041
– volume: 73
  start-page: 2357
  year: 2015
  ident: pmbada683bib71
  article-title: Statistical simulation of SAR variability with geometric and tissue property changes by using the unscented transform
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25367
– volume: 36
  start-page: 1204
  year: 2015
  ident: pmbada683bib5
  article-title: Ultra-high-field MR neuroimaging
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A4180
– volume: 69
  year: 2024
  ident: pmbada683bib9
  article-title: Polynomial chaos expansion of SAR and temperature increase variability in 3 T MRI due to stochastic input data
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ad5070
– volume: 156
  start-page: 907
  year: 2010
  ident: pmbada683bib68
  article-title: United States head circumference growth reference charts: birth to 21 years
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2010.01.009
– year: 2022
  ident: pmbada683bib19
  article-title: Variability of the specific absorption rate in the child’s head using a transmit array head coil at 7T: a simulation study
– year: 2024
  ident: pmbada683bib76
  article-title: Strain tensor imaging using single-shot multi-slice DENSE in a pediatric population at 7T
  doi: 10.1016/j.neuroimage.2024.120506
– volume: 41
  year: 2024
  ident: pmbada683bib2
  article-title: Increased iron in the substantia nigra pars compacta identifies patients with early Parkinson’s disease: a 3T and 7T MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2024.103577
– start-page: 640
  year: 2016
  ident: pmbada683bib64
  article-title: Software and hardware assessment of FDTD simulations for very large and complex scenes
– volume: 57
  start-page: 445
  year: 2016
  ident: pmbada683bib17
  article-title: 7T MRI in focal epilepsy with unrevealing conventional field strength imaging
  publication-title: Epilepsia
  doi: 10.1111/epi.13313
– volume: 219
  year: 2020
  ident: pmbada683bib66
  article-title: Accurate and robust whole-head segmentation from magnetic resonance images for individualized head modeling
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117044
– year: 2024
  ident: pmbada683bib22
  article-title: Pediatric neuroimaging at 7 Tesla: towards building and validating VOPs for local SAR management in pTX
– volume: 14
  year: 2019
  ident: pmbada683bib25
  article-title: 7T MRI in epilepsy patients with previously normal clinical MRI exams compared against healthy controls
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213642
– volume: 63
  start-page: 167
  year: 2021
  ident: pmbada683bib13
  article-title: Clinical 7-T MRI for neuroradiology: strengths, weaknesses, and ongoing challenges
  publication-title: Neuroradiology
  doi: 10.1007/s00234-020-02629-z
– volume: 26
  start-page: S31
  year: 2005
  ident: pmbada683bib16
  article-title: Differences in RF energy absorption in the heads of adults and children
  publication-title: Bioelectromagnetics
  doi: 10.1002/bem.20136
– year: 2012
  ident: pmbada683bib3
  article-title: Validation of a very fast B1-mapping sequence for parallel transmission on a human brain at 7T
– year: 2024
  ident: pmbada683bib50
  article-title: 31P MRSI in pediatric low grade gliomas during treatment at 7T
– volume: 32
  start-page: 292
  year: 2022
  ident: pmbada683bib12
  article-title: 7T versus 3T MRI in the presurgical evaluation of patients with drug-resistant epilepsy
  publication-title: J. Neuroimaging
  doi: 10.1111/jon.12958
– volume: 11
  start-page: 730
  year: 2024
  ident: pmbada683bib81
  article-title: Uncertainty quantification in SAR induced by ultra-high-field MRI RF coil via high-dimensional model representation
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11070730
– volume: 91
  start-page: 735
  year: 2024
  ident: pmbada683bib30
  article-title: Influence of patient head definition on induced E-fields during MR examination
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29894
– year: 2003
  ident: pmbada683bib74
– volume: 18
  start-page: 315
  year: 2016
  ident: pmbada683bib80
  article-title: 7 Tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia
  publication-title: Epileptic Disord.
  doi: 10.1684/epd.2016.0838
– volume: 168
  start-page: 459
  year: 2018
  ident: pmbada683bib63
  article-title: 7T MR of intracranial pathology: preliminary observations and comparisons to 3T and 1.5T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.030
– volume: 77
  start-page: 635
  year: 2017
  ident: pmbada683bib34
  article-title: Universal pulses: a new concept for calibration-free parallel transmission
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26148
– volume: 49
  start-page: 144
  year: 2003
  ident: pmbada683bib45
  article-title: Transmit SENSE: transmit SENSE
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10353
– volume: 78
  start-page: 1217
  year: 2017
  ident: pmbada683bib51
  article-title: Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26468
SSID ssj0011824
Score 2.4658997
Snippet Objective. Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of...
Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in pediatrics. The use of pTx, however,...
Objective Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool with potential application in paediatrics. The use of...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 35007
SubjectTerms Adolescent
Child
Child, Preschool
electromagnetic simulation
Humans
Magnetic Resonance Imaging - methods
Neuroimaging - methods
radiofrequency power deposition
Safety
ultra-high field
virtual observation points
Title Proposal for local SAR safety margin in pediatric neuro-imaging using 7 T MRI and parallel transmission
URI https://iopscience.iop.org/article/10.1088/1361-6560/ada683
https://www.ncbi.nlm.nih.gov/pubmed/39761645
https://www.proquest.com/docview/3160064929
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB_8wONePPXOc71TIujDPWS1TdI2-CSHosKq-IE-HJSkTUVcu4vtPnh__c003QVF5bCUEkrbJJNp5tfO5DcAm4iJA6ul4KgMiksbW55EMb3utghtgXOmptXIvZPo8Eoe36ibKdidrIUZDNupv4tFTxTsRdgGxCXbgYgCTpwx2yY3USKmYZYSV5J6H52eTVwICJw9BbMIOJGgtz7K157wzCZNY71vw83G7Bx8gT_jBvtok_vuqLbd7O8LLscP9mgB5ls4yvb8pYsw5colmPMJKp-W4FOvdb3jySZWNKu-wu0ZZVao8DYEvKwxhuxi75xVpnD1E3swj9g4hvtwnAaENayZ_O6hSYnEKNb-lsXskvXOj5gpc0YE5P2-67OaTCeqHv3D-wZXB_uXvw95m6-BZ0IENXcmyrWJI1U43HKp89ApicUi0VK5IhbaxoETWSYLxAkys9qiDXUZwgZrtBDLMFMOSrcCbMdlOPnYxCmtpVXWqHgHgRvdGmqjkg78Go9YOvS0HGnjTk-SlKSZkjRTL80ObKHg0_bdrN65bmM86Cl2lBwnpnSDUZWKICLohkiyA9-9NkxqJTyHn5xq9T9r-QGfQ0ohTIHf4U-YqR9Hbg1xTW3XG_3F46m4_gciPO6u
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xUBEXRLc8lkfrSu2Bg1kS20l8RMAK2u52RUHlZtmJs0JasisSDvx7ZpLsSpWgIsohiuI4GT--L5nxNwDfkBMHTkvBsTMoLl3seBLFNNxdHroc50xNq5EHw-jyVv64U3dtntN6Lcx01k79x3jYCAU3JmwD4pJeIKKAk2ZMz2Y2SkRvluXLsKpEpEg8_7f4u3AjIHluZJhFwEkIvfVTvnaXf3BpGet-m3LW0NPfhI2WM7LT5gk_wpIvOvChySL53IG1Qesfx5N1QGdafoLxiNIflFgMWSmrEYv9Ob1mpc199cwe7OP4vmC4z-a5OlgtbcnvH-q8RYwC4scsZjdscH3FbJExUgmfTPyEVYRv2D_oR9sW3PYvbs4ueZtUgadCBBX3Nsq0jSOVe9wyqbPQK4mHeaKl8nkstIsDL9JU5gjmMnXaIdD5FLHdWS3ENqwU08LvAjvxKc4QLvFKa-mUsyo-QXZFRUNtVdKFo7lJzazRzjC1zztJDJnfkPlNY_4ufEebm3YAlf-57uu8VQy-KHk3bOGnT6URQUT8CuleF3aa5lrUSqQLvwvV3jtr-QJro_O--XU1_LkP6yGl_KVA7fAAVqrHJ3-IPKRyn-u-9gJaMtJ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposal+for+local+SAR+safety+margin+in+pediatric+neuro-imaging+using+7+T+MRI+and+parallel+transmission&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Dudysheva%2C+Natalia&rft.au=Luong%2C+Michel&rft.au=Amadon%2C+Alexis&rft.au=Morel%2C+Laurent&rft.date=2025-02-02&rft.issn=1361-6560&rft.eissn=1361-6560&rft_id=info:doi/10.1088%2F1361-6560%2Fada683&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon