Local minimizers of the Ginzburg–Landau functional with prescribed degrees

We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2 subject to prescribed degree conditions on each component of ∂ D . In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Gi...

Full description

Saved in:
Bibliographic Details
Published inJournal of functional analysis Vol. 257; no. 4; pp. 1053 - 1091
Main Author Dos Santos, Mickaël
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.08.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0022-1236
1096-0783
DOI10.1016/j.jfa.2009.02.023

Cover

Abstract We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2 subject to prescribed degree conditions on each component of ∂ D . In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: E ε ( u ) has, in domains D with 2 , 3 , … holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control.
AbstractList We consider, in a smooth bounded multiply connected domain $\dom\subset\R^2$, the Ginzburg-Landau energy $\d E_\v(u)=\frac{1}{2}\int_\dom{|\n u|^2}+\frac{1}{4\v^2}\int_\dom{(1-|u|^2)^2}$ subject to prescribed degree conditions on each component of $\p\dom$. In general, minimal energy maps do not exist \cite{BeMi1}. When $\dom$ has a single hole, Berlyand and Rybalko \cite{BeRy1} proved that for small $\v$ local minimizers do exist. We extend the result in \cite{BeRy1}: $\d E_\v(u)$ has, in domains $\dom$ with $2,3,...$ holes and for small $\v$, local minimizers. Our approach is very similar to the one in \cite{BeRy1}; the main difference stems in the construction of test functions with energy control.
We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2 subject to prescribed degree conditions on each component of ∂ D . In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: E ε ( u ) has, in domains D with 2 , 3 , … holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control.
Author Dos Santos, Mickaël
Author_xml – sequence: 1
  givenname: Mickaël
  surname: Dos Santos
  fullname: Dos Santos, Mickaël
  email: dossantos@math.univ-lyon1.fr
  organization: Université de Lyon, Université Lyon 1, INSA de Lyon, F-69621, Ecole Centrale de Lyon, CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne cedex, France
BackLink https://hal.science/hal-00368162$$DView record in HAL
BookMark eNp9kM9KAzEQh4NUsK0-gLe9etg6SfZPiqdStBUWvOg5ZJNJm2W7W5JtxZ58B9_QJ3FLxYOHwg8Ghu8bmN-IDJq2QUJuKUwo0Oy-mlRWTRjAdAKsD78gQwrTLIZc8AEZAjAWU8azKzIKoQKgNEvSISmKVqs62rjGbdwBfYhaG3VrjBauOZQ7v_r-_CpUY9QusrtGd65tevzddeto6zFo70o0kcGVRwzX5NKqOuDN7xyTt6fH1_kyLl4Wz_NZEWvOaRdjlqepLS0DBjYRORcqT6bGJKXgVBhFeQIlTbhNQaQCqRYqUT1mdF6ahOZ8TO5Od9eqllvvNsp_yFY5uZwV8rgD4JmgGduznqUnVvs2BI_2T6Agj9XJSvbVyWN1Elgf3jv5P0e7Th1_77xy9Vnz4WRi__7eoZdBO2w0GudRd9K07oz9A906iuQ
CitedBy_id crossref_primary_10_1080_03605302_2013_851214
crossref_primary_10_1007_s00526_016_1059_7
crossref_primary_10_1007_s10958_014_2073_y
crossref_primary_10_1016_j_eswa_2024_124767
crossref_primary_10_15407_mag10_01_134
crossref_primary_10_1142_S0219199716500176
crossref_primary_10_1016_j_matpur_2013_11_014
crossref_primary_10_1016_j_jfa_2009_08_017
crossref_primary_10_3233_ASY_211712
Cites_doi 10.1007/s005260050106
10.1016/j.crma.2006.05.013
10.57262/ade/1355867927
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.jfa.2009.02.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0783
EndPage 1091
ExternalDocumentID oai_HAL_hal_00368162v2
10_1016_j_jfa_2009_02_023
S0022123609000937
GroupedDBID --K
--M
--Z
-ET
-~X
.~1
0R~
186
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XOL
XPP
YQT
ZCG
ZMT
ZU3
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c331t-e6755fbf2020f48738a749dd4b8318da1340b143f50858e1c8a4a873dc7bd4173
IEDL.DBID .~1
ISSN 0022-1236
IngestDate Sat Jul 26 06:31:10 EDT 2025
Tue Jul 01 04:15:00 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 23 02:23:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ginzburg–Landau functional
Prescribed degrees
Local minimizers
Ginzburg-Landau functional
local minimizers
prescribed degrees
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-e6755fbf2020f48738a749dd4b8318da1340b143f50858e1c8a4a873dc7bd4173
ORCID 0000-0003-3094-9084
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022123609000937
PageCount 39
ParticipantIDs hal_primary_oai_HAL_hal_00368162v2
crossref_primary_10_1016_j_jfa_2009_02_023
crossref_citationtrail_10_1016_j_jfa_2009_02_023
elsevier_sciencedirect_doi_10_1016_j_jfa_2009_02_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-15
PublicationDateYYYYMMDD 2009-08-15
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-15
  day: 15
PublicationDecade 2000
PublicationTitle Journal of functional analysis
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References André, Shafrir (bib001) 1998; 7
André, Shafrir (bib002) 2004; 9
L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008
Brezis, Bethuel, Hélein (bib007) 1994
Berlyand, Golovaty, Rybalko (bib003) 2006; 343
L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004
Sandier, Serfaty (bib009) 2007
Tinkham (bib010) 1996
Mironescu (bib008) 1996; 41
Brezis (bib006) 2006; vol. 244
Berlyand (10.1016/j.jfa.2009.02.023_bib003) 2006; 343
André (10.1016/j.jfa.2009.02.023_bib001) 1998; 7
10.1016/j.jfa.2009.02.023_bib005
10.1016/j.jfa.2009.02.023_bib004
Brezis (10.1016/j.jfa.2009.02.023_bib006) 2006; vol. 244
Sandier (10.1016/j.jfa.2009.02.023_bib009) 2007
Mironescu (10.1016/j.jfa.2009.02.023_bib008) 1996; 41
Tinkham (10.1016/j.jfa.2009.02.023_bib010) 1996
Brezis (10.1016/j.jfa.2009.02.023_bib007) 1994
André (10.1016/j.jfa.2009.02.023_bib002) 2004; 9
References_xml – year: 1996
  ident: bib010
  article-title: Introduction to Superconductivity
– year: 1994
  ident: bib007
  article-title: Ginzburg–Landau Vortices
– volume: 7
  start-page: 191
  year: 1998
  end-page: 217
  ident: bib001
  article-title: Minimisation of a Ginzburg–Landau type functional with boundary condition which is not
  publication-title: Calc. Var. Partial Differential Equations
– volume: 9
  start-page: 891
  year: 2004
  end-page: 960
  ident: bib002
  article-title: On the minimizers of a Ginzburg–Landau type energy when the boundary condition has zeros
  publication-title: Adv. Differential Equations
– volume: vol. 244
  year: 2006
  ident: bib006
  article-title: New questions related to the topological degree
  publication-title: The Unity of Mathematics
– volume: 41
  start-page: 263
  year: 1996
  end-page: 271
  ident: bib008
  article-title: Explicit bounds for solutions to a Ginzburg–Landau type equation
  publication-title: Rev. Roumaine Math. Pures Appl.
– reference: L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008,
– volume: 343
  start-page: 63
  year: 2006
  end-page: 68
  ident: bib003
  article-title: Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain
  publication-title: C. R. Math. Acad. Sci. Paris
– year: 2007
  ident: bib009
  article-title: Vortices in the Magnetic Ginzburg–Landau Model
– reference: L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004
– volume: 7
  start-page: 191
  year: 1998
  ident: 10.1016/j.jfa.2009.02.023_bib001
  article-title: Minimisation of a Ginzburg–Landau type functional with boundary condition which is not S1-valued
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s005260050106
– ident: 10.1016/j.jfa.2009.02.023_bib005
– year: 1996
  ident: 10.1016/j.jfa.2009.02.023_bib010
– volume: vol. 244
  year: 2006
  ident: 10.1016/j.jfa.2009.02.023_bib006
  article-title: New questions related to the topological degree
– year: 2007
  ident: 10.1016/j.jfa.2009.02.023_bib009
– volume: 41
  start-page: 263
  year: 1996
  ident: 10.1016/j.jfa.2009.02.023_bib008
  article-title: Explicit bounds for solutions to a Ginzburg–Landau type equation
  publication-title: Rev. Roumaine Math. Pures Appl.
– volume: 343
  start-page: 63
  year: 2006
  ident: 10.1016/j.jfa.2009.02.023_bib003
  article-title: Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain
  publication-title: C. R. Math. Acad. Sci. Paris
  doi: 10.1016/j.crma.2006.05.013
– volume: 9
  start-page: 891
  year: 2004
  ident: 10.1016/j.jfa.2009.02.023_bib002
  article-title: On the minimizers of a Ginzburg–Landau type energy when the boundary condition has zeros
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1355867927
– ident: 10.1016/j.jfa.2009.02.023_bib004
– year: 1994
  ident: 10.1016/j.jfa.2009.02.023_bib007
SSID ssj0011645
Score 1.9426819
Snippet We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2...
We consider, in a smooth bounded multiply connected domain $\dom\subset\R^2$, the Ginzburg-Landau energy $\d E_\v(u)=\frac{1}{2}\int_\dom{|\n...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1053
SubjectTerms Analysis of PDEs
Ginzburg–Landau functional
Local minimizers
Mathematics
Prescribed degrees
Title Local minimizers of the Ginzburg–Landau functional with prescribed degrees
URI https://dx.doi.org/10.1016/j.jfa.2009.02.023
https://hal.science/hal-00368162
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXvQgfuL8GEE8CdWmTZvuOIez020nB7uVpEmxQ7fhNg87iP-D_6F_ie_1Y-DBHYRQaJqE8pq-7_cLIZdKSy2kx6zY1g2Lo7mjQGxaIEo8E_tKmsyh3-v74YA_DL1hhbTKWhhMqyx4f87TM25d9NwU1LyZpinW-DrId327kdnlWFHOucC9fv2xSvNgYA54JWI4ji4jm1mO1yiRBWSlA839SzZtPJde1kzqtHfJTqEu0mb-RnukYsb7ZLu3wlqdHZBuF8URRYyQ13QJ2hydJBSe0_t0vMQgyvfnVxf9BQuKQiz3_VH0v1JMggWuoYym2oDhbWaHZNC-e2qFVnFGghW7LptbBhR-L1GJA2pfAsaHG0jBG1pzFcDfqiVzua1AJ0pAEfMCw-JAcgnDdCyU5ky4R6Q6nozNMaFC-RgV5dwwxQVcgHJMSJGBrscyqRG7pE4UFwDieI7FS1Rmio0iICgebNmIbAeaWyNXqynTHD1j3WBekjz6tQUi4O7rpl3A51ktj3DZYbMbYR-C7QTMd96dk_-tfUq28ugRWNreGanO3xbmHJSQuapnu6xONpudx7APd53h7Q_LWNqY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELbaMgAD4inK00JMSFHzcOJ0LBUlhbRTK3WL7NgRrSCtaMvQif_AP-SXcJdHJQY6IEUZHNuKLs7ddw9_JuRWKqG4cC0jNlXTYOjuSDCbBpgSV8eeFDoL6Pf6XjBkTyN3VCHtci8MllUWuj_X6Zm2LloahTQbs_EY9_jaqHc9s5n55bxKtgANeEig3x3dr1MJ4A-4JWU4di9Tm1mR1yQRBWelDZfzl3GqvpRh1szsdPbJXoEXaSt_pQNS0ekh2e2tyVbnRyQM0R5RJAl5G68AztFpQuE5fRynK8yifH9-hRgwWFK0Ynnwj2IAlmIVLKgNqRVVGjxvPT8mw87DoB0YxSEJRuw41sLQgPjdRCY24L4EvA_HF5w1lWLSh99VCcthpgRQlAASc31txb5gArqpmEvFLO6ckFo6TfUpoVx6mBZlTFuScbiB5CwueMa6HoukTsxSOlFcMIjjQRavUVkqNolAoHiyZTMybbicOrlbD5nl9BmbOrNS5NGvNRCBet807AY-z3p65MsOWmGEbci241ue_WGf_W_ua7IdDHphFHb7z-dkJ08lgdvtXpDa4n2pLwGRLORVtuJ-AOfc2zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+minimizers+of+the+Ginzburg%E2%80%93Landau+functional+with+prescribed+degrees&rft.jtitle=Journal+of+functional+analysis&rft.au=Dos+Santos%2C+Micka%C3%ABl&rft.date=2009-08-15&rft.issn=0022-1236&rft.volume=257&rft.issue=4&rft.spage=1053&rft.epage=1091&rft_id=info:doi/10.1016%2Fj.jfa.2009.02.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2009_02_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon