Local minimizers of the Ginzburg–Landau functional with prescribed degrees
We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2 subject to prescribed degree conditions on each component of ∂ D . In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Gi...
Saved in:
Published in | Journal of functional analysis Vol. 257; no. 4; pp. 1053 - 1091 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.08.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-1236 1096-0783 |
DOI | 10.1016/j.jfa.2009.02.023 |
Cover
Abstract | We consider, in a smooth bounded multiply connected domain
D
⊂
R
2
, the Ginzburg–Landau energy
E
ε
(
u
)
=
1
2
∫
D
|
∇
u
|
2
+
1
4
ε
2
∫
D
(
1
−
|
u
|
2
)
2
subject to prescribed degree conditions on each component of
∂
D
. In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When
D
has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008,
http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small
ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008,
http://www.math.psu.edu/berlyand/publications/publications.html]:
E
ε
(
u
)
has, in domains
D
with
2
,
3
,
…
holes and for small
ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008,
http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control. |
---|---|
AbstractList | We consider, in a smooth bounded multiply connected domain $\dom\subset\R^2$, the Ginzburg-Landau energy $\d E_\v(u)=\frac{1}{2}\int_\dom{|\n u|^2}+\frac{1}{4\v^2}\int_\dom{(1-|u|^2)^2}$ subject to prescribed degree conditions on each component of $\p\dom$. In general, minimal energy maps do not exist \cite{BeMi1}. When $\dom$ has a single hole, Berlyand and Rybalko \cite{BeRy1} proved that for small $\v$ local minimizers do exist. We extend the result in \cite{BeRy1}: $\d E_\v(u)$ has, in domains $\dom$ with $2,3,...$ holes and for small $\v$, local minimizers. Our approach is very similar to the one in \cite{BeRy1}; the main difference stems in the construction of test functions with energy control. We consider, in a smooth bounded multiply connected domain D ⊂ R 2 , the Ginzburg–Landau energy E ε ( u ) = 1 2 ∫ D | ∇ u | 2 + 1 4 ε 2 ∫ D ( 1 − | u | 2 ) 2 subject to prescribed degree conditions on each component of ∂ D . In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: E ε ( u ) has, in domains D with 2 , 3 , … holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control. |
Author | Dos Santos, Mickaël |
Author_xml | – sequence: 1 givenname: Mickaël surname: Dos Santos fullname: Dos Santos, Mickaël email: dossantos@math.univ-lyon1.fr organization: Université de Lyon, Université Lyon 1, INSA de Lyon, F-69621, Ecole Centrale de Lyon, CNRS, UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne cedex, France |
BackLink | https://hal.science/hal-00368162$$DView record in HAL |
BookMark | eNp9kM9KAzEQh4NUsK0-gLe9etg6SfZPiqdStBUWvOg5ZJNJm2W7W5JtxZ58B9_QJ3FLxYOHwg8Ghu8bmN-IDJq2QUJuKUwo0Oy-mlRWTRjAdAKsD78gQwrTLIZc8AEZAjAWU8azKzIKoQKgNEvSISmKVqs62rjGbdwBfYhaG3VrjBauOZQ7v_r-_CpUY9QusrtGd65tevzddeto6zFo70o0kcGVRwzX5NKqOuDN7xyTt6fH1_kyLl4Wz_NZEWvOaRdjlqepLS0DBjYRORcqT6bGJKXgVBhFeQIlTbhNQaQCqRYqUT1mdF6ahOZ8TO5Od9eqllvvNsp_yFY5uZwV8rgD4JmgGduznqUnVvs2BI_2T6Agj9XJSvbVyWN1Elgf3jv5P0e7Th1_77xy9Vnz4WRi__7eoZdBO2w0GudRd9K07oz9A906iuQ |
CitedBy_id | crossref_primary_10_1080_03605302_2013_851214 crossref_primary_10_1007_s00526_016_1059_7 crossref_primary_10_1007_s10958_014_2073_y crossref_primary_10_1016_j_eswa_2024_124767 crossref_primary_10_15407_mag10_01_134 crossref_primary_10_1142_S0219199716500176 crossref_primary_10_1016_j_matpur_2013_11_014 crossref_primary_10_1016_j_jfa_2009_08_017 crossref_primary_10_3233_ASY_211712 |
Cites_doi | 10.1007/s005260050106 10.1016/j.crma.2006.05.013 10.57262/ade/1355867927 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.jfa.2009.02.023 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0783 |
EndPage | 1091 |
ExternalDocumentID | oai_HAL_hal_00368162v2 10_1016_j_jfa_2009_02_023 S0022123609000937 |
GroupedDBID | --K --M --Z -ET -~X .~1 0R~ 186 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 WUQ XOL XPP YQT ZCG ZMT ZU3 ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c331t-e6755fbf2020f48738a749dd4b8318da1340b143f50858e1c8a4a873dc7bd4173 |
IEDL.DBID | .~1 |
ISSN | 0022-1236 |
IngestDate | Sat Jul 26 06:31:10 EDT 2025 Tue Jul 01 04:15:00 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 23 02:23:46 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Ginzburg–Landau functional Prescribed degrees Local minimizers Ginzburg-Landau functional local minimizers prescribed degrees |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-e6755fbf2020f48738a749dd4b8318da1340b143f50858e1c8a4a873dc7bd4173 |
ORCID | 0000-0003-3094-9084 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022123609000937 |
PageCount | 39 |
ParticipantIDs | hal_primary_oai_HAL_hal_00368162v2 crossref_primary_10_1016_j_jfa_2009_02_023 crossref_citationtrail_10_1016_j_jfa_2009_02_023 elsevier_sciencedirect_doi_10_1016_j_jfa_2009_02_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-15 |
PublicationDateYYYYMMDD | 2009-08-15 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Journal of functional analysis |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | André, Shafrir (bib001) 1998; 7 André, Shafrir (bib002) 2004; 9 L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008 Brezis, Bethuel, Hélein (bib007) 1994 Berlyand, Golovaty, Rybalko (bib003) 2006; 343 L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004 Sandier, Serfaty (bib009) 2007 Tinkham (bib010) 1996 Mironescu (bib008) 1996; 41 Brezis (bib006) 2006; vol. 244 Berlyand (10.1016/j.jfa.2009.02.023_bib003) 2006; 343 André (10.1016/j.jfa.2009.02.023_bib001) 1998; 7 10.1016/j.jfa.2009.02.023_bib005 10.1016/j.jfa.2009.02.023_bib004 Brezis (10.1016/j.jfa.2009.02.023_bib006) 2006; vol. 244 Sandier (10.1016/j.jfa.2009.02.023_bib009) 2007 Mironescu (10.1016/j.jfa.2009.02.023_bib008) 1996; 41 Tinkham (10.1016/j.jfa.2009.02.023_bib010) 1996 Brezis (10.1016/j.jfa.2009.02.023_bib007) 1994 André (10.1016/j.jfa.2009.02.023_bib002) 2004; 9 |
References_xml | – year: 1996 ident: bib010 article-title: Introduction to Superconductivity – year: 1994 ident: bib007 article-title: Ginzburg–Landau Vortices – volume: 7 start-page: 191 year: 1998 end-page: 217 ident: bib001 article-title: Minimisation of a Ginzburg–Landau type functional with boundary condition which is not publication-title: Calc. Var. Partial Differential Equations – volume: 9 start-page: 891 year: 2004 end-page: 960 ident: bib002 article-title: On the minimizers of a Ginzburg–Landau type energy when the boundary condition has zeros publication-title: Adv. Differential Equations – volume: vol. 244 year: 2006 ident: bib006 article-title: New questions related to the topological degree publication-title: The Unity of Mathematics – volume: 41 start-page: 263 year: 1996 end-page: 271 ident: bib008 article-title: Explicit bounds for solutions to a Ginzburg–Landau type equation publication-title: Rev. Roumaine Math. Pures Appl. – reference: L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, – volume: 343 start-page: 63 year: 2006 end-page: 68 ident: bib003 article-title: Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain publication-title: C. R. Math. Acad. Sci. Paris – year: 2007 ident: bib009 article-title: Vortices in the Magnetic Ginzburg–Landau Model – reference: L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004 – volume: 7 start-page: 191 year: 1998 ident: 10.1016/j.jfa.2009.02.023_bib001 article-title: Minimisation of a Ginzburg–Landau type functional with boundary condition which is not S1-valued publication-title: Calc. Var. Partial Differential Equations doi: 10.1007/s005260050106 – ident: 10.1016/j.jfa.2009.02.023_bib005 – year: 1996 ident: 10.1016/j.jfa.2009.02.023_bib010 – volume: vol. 244 year: 2006 ident: 10.1016/j.jfa.2009.02.023_bib006 article-title: New questions related to the topological degree – year: 2007 ident: 10.1016/j.jfa.2009.02.023_bib009 – volume: 41 start-page: 263 year: 1996 ident: 10.1016/j.jfa.2009.02.023_bib008 article-title: Explicit bounds for solutions to a Ginzburg–Landau type equation publication-title: Rev. Roumaine Math. Pures Appl. – volume: 343 start-page: 63 year: 2006 ident: 10.1016/j.jfa.2009.02.023_bib003 article-title: Nonexistence of Ginzburg–Landau minimizers with prescribed degree on the boundary of a doubly connected domain publication-title: C. R. Math. Acad. Sci. Paris doi: 10.1016/j.crma.2006.05.013 – volume: 9 start-page: 891 year: 2004 ident: 10.1016/j.jfa.2009.02.023_bib002 article-title: On the minimizers of a Ginzburg–Landau type energy when the boundary condition has zeros publication-title: Adv. Differential Equations doi: 10.57262/ade/1355867927 – ident: 10.1016/j.jfa.2009.02.023_bib004 – year: 1994 ident: 10.1016/j.jfa.2009.02.023_bib007 |
SSID | ssj0011645 |
Score | 1.9426819 |
Snippet | We consider, in a smooth bounded multiply connected domain
D
⊂
R
2
, the Ginzburg–Landau energy
E
ε
(
u
)
=
1
2
∫
D
|
∇
u
|
2
+
1
4
ε
2
∫
D
(
1
−
|
u
|
2
)
2... We consider, in a smooth bounded multiply connected domain $\dom\subset\R^2$, the Ginzburg-Landau energy $\d E_\v(u)=\frac{1}{2}\int_\dom{|\n... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1053 |
SubjectTerms | Analysis of PDEs Ginzburg–Landau functional Local minimizers Mathematics Prescribed degrees |
Title | Local minimizers of the Ginzburg–Landau functional with prescribed degrees |
URI | https://dx.doi.org/10.1016/j.jfa.2009.02.023 https://hal.science/hal-00368162 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zXvQgfuL8GEE8CdWmTZvuOIez020nB7uVpEmxQ7fhNg87iP-D_6F_ie_1Y-DBHYRQaJqE8pq-7_cLIZdKSy2kx6zY1g2Lo7mjQGxaIEo8E_tKmsyh3-v74YA_DL1hhbTKWhhMqyx4f87TM25d9NwU1LyZpinW-DrId327kdnlWFHOucC9fv2xSvNgYA54JWI4ji4jm1mO1yiRBWSlA839SzZtPJde1kzqtHfJTqEu0mb-RnukYsb7ZLu3wlqdHZBuF8URRYyQ13QJ2hydJBSe0_t0vMQgyvfnVxf9BQuKQiz3_VH0v1JMggWuoYym2oDhbWaHZNC-e2qFVnFGghW7LptbBhR-L1GJA2pfAsaHG0jBG1pzFcDfqiVzua1AJ0pAEfMCw-JAcgnDdCyU5ky4R6Q6nozNMaFC-RgV5dwwxQVcgHJMSJGBrscyqRG7pE4UFwDieI7FS1Rmio0iICgebNmIbAeaWyNXqynTHD1j3WBekjz6tQUi4O7rpl3A51ktj3DZYbMbYR-C7QTMd96dk_-tfUq28ugRWNreGanO3xbmHJSQuapnu6xONpudx7APd53h7Q_LWNqY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELbaMgAD4inK00JMSFHzcOJ0LBUlhbRTK3WL7NgRrSCtaMvQif_AP-SXcJdHJQY6IEUZHNuKLs7ddw9_JuRWKqG4cC0jNlXTYOjuSDCbBpgSV8eeFDoL6Pf6XjBkTyN3VCHtci8MllUWuj_X6Zm2LloahTQbs_EY9_jaqHc9s5n55bxKtgANeEig3x3dr1MJ4A-4JWU4di9Tm1mR1yQRBWelDZfzl3GqvpRh1szsdPbJXoEXaSt_pQNS0ekh2e2tyVbnRyQM0R5RJAl5G68AztFpQuE5fRynK8yifH9-hRgwWFK0Ynnwj2IAlmIVLKgNqRVVGjxvPT8mw87DoB0YxSEJRuw41sLQgPjdRCY24L4EvA_HF5w1lWLSh99VCcthpgRQlAASc31txb5gArqpmEvFLO6ckFo6TfUpoVx6mBZlTFuScbiB5CwueMa6HoukTsxSOlFcMIjjQRavUVkqNolAoHiyZTMybbicOrlbD5nl9BmbOrNS5NGvNRCBet807AY-z3p65MsOWmGEbci241ue_WGf_W_ua7IdDHphFHb7z-dkJ08lgdvtXpDa4n2pLwGRLORVtuJ-AOfc2zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+minimizers+of+the+Ginzburg%E2%80%93Landau+functional+with+prescribed+degrees&rft.jtitle=Journal+of+functional+analysis&rft.au=Dos+Santos%2C+Micka%C3%ABl&rft.date=2009-08-15&rft.issn=0022-1236&rft.volume=257&rft.issue=4&rft.spage=1053&rft.epage=1091&rft_id=info:doi/10.1016%2Fj.jfa.2009.02.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2009_02_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon |