The applications and prospects of big data in perioperative anesthetic management
Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and dynamic execution of precise decisions which poses significant challenges. In the age of big data, the exponential growth in data volume from diverse...
Saved in:
Published in | ANESTHESIOLOGY AND PERIOPERATIVE SCIENCE Vol. 2; no. 3; pp. 1 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
26.08.2024
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and dynamic execution of precise decisions which poses significant challenges. In the age of big data, the exponential growth in data volume from diverse sources has revolutionized many fields, including healthcare, finance, and marketing. Machine learning has emerged as a powerful tool for analyzing big data, enabling the handling of large datasets and uncovering intricate patterns and relationships. The application of big data and artificial intelligence algorithms is gradually being integrated, enabling effective task completion in various stages of perioperative management, including risk prediction, decision support, and auxiliary examination. Through in-depth analysis of big data, healthcare professionals can gain insights into patient prognoses. This review provides a comprehensive overview of the distinctive features of perioperative big data and its applications in anesthesia management during the perioperative period. |
---|---|
AbstractList | Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and dynamic execution of precise decisions which poses significant challenges. In the age of big data, the exponential growth in data volume from diverse sources has revolutionized many fields, including healthcare, finance, and marketing. Machine learning has emerged as a powerful tool for analyzing big data, enabling the handling of large datasets and uncovering intricate patterns and relationships. The application of big data and artificial intelligence algorithms is gradually being integrated, enabling effective task completion in various stages of perioperative management, including risk prediction, decision support, and auxiliary examination. Through in-depth analysis of big data, healthcare professionals can gain insights into patient prognoses. This review provides a comprehensive overview of the distinctive features of perioperative big data and its applications in anesthesia management during the perioperative period. Abstract Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and dynamic execution of precise decisions which poses significant challenges. In the age of big data, the exponential growth in data volume from diverse sources has revolutionized many fields, including healthcare, finance, and marketing. Machine learning has emerged as a powerful tool for analyzing big data, enabling the handling of large datasets and uncovering intricate patterns and relationships. The application of big data and artificial intelligence algorithms is gradually being integrated, enabling effective task completion in various stages of perioperative management, including risk prediction, decision support, and auxiliary examination. Through in-depth analysis of big data, healthcare professionals can gain insights into patient prognoses. This review provides a comprehensive overview of the distinctive features of perioperative big data and its applications in anesthesia management during the perioperative period. |
ArticleNumber | 30 |
Author | Yi, Bin Liu, Xiang Zhu, Yiziting Li, Yujie |
Author_xml | – sequence: 1 givenname: Yiziting surname: Zhu fullname: Zhu, Yiziting organization: Department of Anesthesiology, Southwest Hospital, Third Military Medical University – sequence: 2 givenname: Xiang surname: Liu fullname: Liu, Xiang organization: Department of Anesthesiology, Southwest Hospital, Third Military Medical University – sequence: 3 givenname: Yujie surname: Li fullname: Li, Yujie organization: Department of Anesthesiology, Southwest Hospital, Third Military Medical University – sequence: 4 givenname: Bin orcidid: 0000-0001-5840-2086 surname: Yi fullname: Yi, Bin email: yibin1974@163.com organization: Department of Anesthesiology, Southwest Hospital, Third Military Medical University |
BookMark | eNp9kMtKAzEUhoNUUKsv4CovMJrbJJmliJdCQYS6DpnMmZrSJkMSBd_e2CqICxe5EP7v5-Q7Q7MQAyB0SckVJURdZyFYKxrC6iJE6oYcoVOmOG00193s1_0EXeS8qSHWMa6YOEXPq1fAdpq23tniY8jYhgFPKeYJXMk4jrj3azzYYrEPeILkY91q9r1yAXJ5heId3tlg17CDUM7R8Wi3GS6-zzl6ub9b3T42y6eHxe3NsnGc09IA6QXVUgkgjPWuJ50ksuedFnRoheSEWU6kUqMSSjKteu141_fWcRjatu34HC0OvUO0GzMlv7Ppw0Trzf4hprWxqY62BaM7RUcmR634V31nudOEUccAVCu4rF360OXqx3OC0Thf9j5Ksn5rKDFfps3BtKmmzd60IRVlf9CfUf6F-AHKNRzWkMwmvqVQdf1HfQJ7FJEq |
CitedBy_id | crossref_primary_10_2196_57486 crossref_primary_10_1007_s44254_024_00085_z crossref_primary_10_1007_s44254_025_00086_6 |
Cites_doi | 10.1109/bibm.2011.79 10.1213/ane.0000000000004208 10.21037/hbsn-23-46 10.1186/s13054-015-0827-7 10.1097/aln.0000000000002581 10.3399/bjgp18X695213 10.1093/bja/aet001 10.3350/cmh.2023.0089 10.1001/jamanetworkopen.2022.46637 10.1007/s12630-010-9335-z 10.1016/j.heliyon.2022.e12481 10.1177/0310057x0703500306 10.1213/01.ane.0000287269.06170.0f 10.1016/j.jbi.2022.104267 10.1016/j.bja.2020.12.035 10.1007/s00145-023-09467-1 10.1001/jamasurg.2019.0995 10.1007/s10916-019-1481-4 10.1007/s10877-020-00553-4 10.1161/circulationaha.115.001593 10.1038/s41551-018-0304-0 10.1109/tbme.2018.2880927 10.1016/j.bja.2022.06.031 10.1016/j.mbs.2019.01.012 10.2196/25658 10.1038/s41597-022-01899-x 10.1109/tbcas.2019.2921875 10.1186/s12871-021-01466-8 10.1016/j.artmed.2023.102726 10.1186/s12911-019-0763-6 10.1109/TNN.1998.712192 10.1016/j.jtcvs.2022.09.045 10.1002/mp.12979 10.1038/s41591-018-0213-5 10.1097/eja.0000000000000827 10.3389/fmed.2023.1203023 10.1016/j.surg.2020.11.005 10.1007/s10877-016-9883-z 10.1097/00000542-200107000-00007 10.1038/s41551-018-0305-z 10.1213/ane.0000000000001974 10.1007/s00268-016-3460-y 10.1109/tmi.2017.2739110 10.1016/j.compbiomed.2021.104737 10.1213/ANE.0b013e31820334a7 10.1097/ccm.0000000000001571 10.1109/ACCESS.2022.3149798 10.1001/jama.2012.5502 10.1097/00000542-200604000-00012 10.1038/s41591-018-0316-z 10.1213/ane.0000000000004636 10.1038/sdata.2018.178 10.3389/fmed.2022.1005901 10.1007/s10877-013-9451-8 10.1109/tbcas.2020.2998172 10.1016/j.comnet.2023.109828 10.1056/NEJMra1502824 10.1186/s12911-020-1120-5 10.1001/jamanetworkopen.2023.22285 10.1007/s10877-017-9981-6 10.1007/s10877-018-0234-0 10.1016/j.jclinane.2023.111194 10.1177/0272989x09353194 10.1093/bja/aev002 10.1093/ageing/afad086 10.3390/healthcare11020184 10.1016/B978-0-08-051489-5.50008-4 10.3390/jcm12206611 10.3390/jcm7110428 10.48550/arXiv.2401.06091 10.48550/arXiv.2306.02754 10.1109/GPECOM58364.2023.10175760 10.1109/tnnls.2023.3273187 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1007/s44254-024-00068-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2731-8389 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_8971f26f873841d9a3c8021c2ee75436 10_1007_s44254_024_00068_0 |
GroupedDBID | 0R~ AAKKN AAYZJ ABEEZ ACACY ACULB AFGXO ALMA_UNASSIGNED_HOLDINGS C24 C6C EBS GROUPED_DOAJ M~E RSV SOJ AAYXX CITATION |
ID | FETCH-LOGICAL-c331t-e0b418674e022bcb09606b39841d546302a30677f7476287b8c39bbac3ed55593 |
IEDL.DBID | DOA |
ISSN | 2731-8389 |
IngestDate | Wed Aug 27 01:29:27 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Tue Jul 01 04:24:35 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Big data Perioperative management Machine learning Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-e0b418674e022bcb09606b39841d546302a30677f7476287b8c39bbac3ed55593 |
ORCID | 0000-0001-5840-2086 |
OpenAccessLink | https://doaj.org/article/8971f26f873841d9a3c8021c2ee75436 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8971f26f873841d9a3c8021c2ee75436 crossref_citationtrail_10_1007_s44254_024_00068_0 crossref_primary_10_1007_s44254_024_00068_0 springer_journals_10_1007_s44254_024_00068_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240826 |
PublicationDateYYYYMMDD | 2024-08-26 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240826 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | ANESTHESIOLOGY AND PERIOPERATIVE SCIENCE |
PublicationTitleAbbrev | APS |
PublicationYear | 2024 |
Publisher | Springer Nature Singapore Springer |
Publisher_xml | – name: Springer Nature Singapore – name: Springer |
References | Kyburg (CR36) 1988; 88 Bernstein (CR76) 2023; 37 Hemmerling, Arbeid, Wehbe, Cyr, Taddei, Zaouter (CR52) 2013; 110 Puri, Kumar, Aveek (CR48) 2007; 35 CR35 CR34 Mohan, Blough, Kurc, Post, Saltz (CR8) 2012; 2011 Huang, Luo, Jiang, Du, Tao, Chen (CR38) 2022; 8 Esteva, Robicquet, Ramsundar, Kuleshov, DePristo, Chou (CR1) 2019; 25 Joosten, Delaporte, Alexander, Su, Creteur, Vincent (CR61) 2019; 130 Struys, De Smet, Versichelen, Van De Velde, Van den Broecke, Mortier (CR45) 2001; 95 CR30 Sutton, Barto (CR12) 1998; 9 Lundberg, Nair, Vavilala, Horibe, Eisses, Adams (CR21) 2018; 2 Hargrave, Deegan, Bednarz, Poulsen, Harden, Mengersen (CR37) 2018; 45 Rinehart, Lilot, Lee, Joosten, Huynh, Canales (CR56) 2015; 19 Alagoz, Hsu, Schaefer, Roberts (CR40) 2010; 30 Yu, Ren, Dong (CR44) 2020; 20 Matava, Pankiv, Raisbeck, Caldeira, Alam (CR73) 2020; 44 Jin, Bighamian, Hahn (CR58) 2018 CR2 Dubost, Humbert, Oudre, Labourdette, Vayatis, Vidal (CR18) 2021; 35 CR5 Yu, Beam, Kohane (CR11) 2018; 2 Kiyatkin, Aasman, Fazzari, Rudolph, Vidal Melo, Eikermann (CR27) 2023; 90 Yu, Liu, Zhao (CR43) 2019; 19 Brennan, Hagan, Giordano, Loftus, Price, Aytug (CR33) 2021; 170 Lee, Lee, Kim, Le, Hao, Jung (CR23) 2022; 5 Ngan Kee, Tam, Khaw, Ng, Lee (CR60) 2017; 125 Samant, Bachute, Gite, Kotecha (CR13) 2022; 10 Park, Han, Byun, Kim, Lee, Kim (CR17) 2020; 14 Saadeh, Khan, Altaf (CR16) 2019; 13 Anzabi Zadeh, Street, Thomas (CR75) 2023; 137 Joosten, Coeckelenbergh, Delaporte, Ickx, Closset, Roumeguere (CR55) 2018; 35 Li, Lai, Zhou, Yang, Wu, Fang (CR77) 2023; 231 Rinehart, Joosten, Ma, Calderon, Cannesson (CR63) 2019; 33 Pollard, Johnson, Raffa, Celi, Mark, Badawi (CR32) 2018; 5 Devereaux, Sessler (CR26) 2015; 373 Lee, Lee, Chu, Song, Ahn, Lee (CR20) 2021; 126 CR19 Hemmerling, Charabati, Zaouter, Minardi, Mathieu (CR49) 2010; 57 CR14 Pesteie, Lessoway, Abolmaesumi, Rohling (CR69) 2018; 37 Buch, Ahmed, Maruthappu (CR3) 2018; 68 Tavolara, Gurcan, Segal, Niazi (CR71) 2021; 136 CR10 Yeo, Samaan, Ng, Ting, Trivedi, Vipani (CR15) 2023; 29 CR54 Ryan, Zeng, Chatterjee, Wall, Moon, Coselli (CR28) 2022 Xia, Ma, Zuo, Deng, Xue, Battaglini (CR70) 2023; 12 Liu, Xie, Shu, Chen, Sun, Zhong (CR74) 2024; 147 Padmanabhan, Meskin, Haddad (CR41) 2019; 309 Bowness, Burckett-St Laurent, Hernandez, Keane, Lobo, Margetts (CR67) 2023; 130 In Chan, Ma, Leng, Tan, Tan, Sultana (CR68) 2021; 21 Ripollés-Melchor, Ramírez-Rodríguez, Casans-Francés, Aldecoa, Abad-Motos, Logroño-Egea (CR7) 2019; 154 De Smet, Struys, Greenwald, Mortier, Shafer (CR46) 2007; 105 Deo (CR9) 2015; 132 Devereaux, Chan, Alonso-Coello, Walsh, Berwanger, Villar (CR25) 2012; 307 Joosten, Huynh, Suehiro, Canales, Cannesson, Rinehart (CR57) 2015; 114 Mahajan, Esper, Oo, McKibben, Garver, Artman (CR29) 2023; 6 Ren, Chen, Liu, Fu, Yao, Chen (CR64) 2023; 9 Chen, Zhu, Zhong, Yang, Li, Shu (CR39) 2022; 9 Johnson, Bulgarelli, Shen, Gayles, Shammout, Horng (CR31) 2023; 10 Moore, Doufas, Pyeatt (CR50) 2011; 112 CR24 Liu, Chazot, Genty, Landais, Restoux, McGee (CR47) 2006; 104 CR65 Bowness, Macfarlane, Noble, Higham, Burckett-St (CR66) 2021; 408 Wehbe, Arbeid, Cyr, Mathieu, Taddei, Morse (CR53) 2014; 28 Pei, Jin, Cao, Ji, Xia, Jiang (CR72) 2023; 10 Gustafsson, Oppelstrup, Thorell, Nygren, Ljungqvist (CR6) 2016; 40 Komorowski, Celi, Badawi, Gordon, Faisal (CR42) 2018; 24 Rinehart, Ma, Calderon, Cannesson (CR62) 2018; 32 Ngan Kee, Khaw, Tam, Ng, Lee (CR59) 2017; 31 Neckebroek, Boldingh, De Smet, Struys (CR51) 2020; 130 Churpek, Yuen, Winslow, Meltzer, Kattan, Edelson (CR4) 2016; 44 Solomon, Saxena, Neradilek, Hau, Fong, Lang (CR22) 2020; 130 C Yu (68_CR43) 2019; 19 MM Struys (68_CR45) 2001; 95 KH Yu (68_CR11) 2018; 2 Y Huang (68_CR38) 2022; 8 X Jin (68_CR58) 2018 SM Lundberg (68_CR21) 2018; 2 A Mahajan (68_CR29) 2023; 6 A Joosten (68_CR57) 2015; 114 BL Moore (68_CR50) 2011; 112 Y Park (68_CR17) 2020; 14 AEW Johnson (68_CR31) 2023; 10 M Brennan (68_CR33) 2021; 170 68_CR30 VH Buch (68_CR3) 2018; 68 68_CR35 SM Lee (68_CR23) 2022; 5 J Rinehart (68_CR56) 2015; 19 68_CR34 A Mohan (68_CR8) 2012; 2011 M Pesteie (68_CR69) 2018; 37 C Dubost (68_CR18) 2021; 35 C Hargrave (68_CR37) 2018; 45 GD Puri (68_CR48) 2007; 35 WD Ngan Kee (68_CR59) 2017; 31 HE Kyburg (68_CR36) 1988; 88 M Xia (68_CR70) 2023; 12 MM Churpek (68_CR4) 2016; 44 C Yu (68_CR44) 2020; 20 J Bowness (68_CR66) 2021; 408 68_CR65 J Rinehart (68_CR63) 2019; 33 68_CR24 JS Bowness (68_CR67) 2023; 130 M Komorowski (68_CR42) 2018; 24 A Joosten (68_CR61) 2019; 130 A Joosten (68_CR55) 2018; 35 68_CR2 S Anzabi Zadeh (68_CR75) 2023; 137 N Liu (68_CR47) 2006; 104 J Rinehart (68_CR62) 2018; 32 W Ren (68_CR64) 2023; 9 ME Kiyatkin (68_CR27) 2023; 90 UO Gustafsson (68_CR6) 2016; 40 DJ Bernstein (68_CR76) 2023; 37 JJ In Chan (68_CR68) 2021; 21 68_CR5 68_CR19 C Matava (68_CR73) 2020; 44 68_CR10 68_CR54 RS Sutton (68_CR12) 1998; 9 68_CR14 YH Yeo (68_CR15) 2023; 29 P Li (68_CR77) 2023; 231 J Ripollés-Melchor (68_CR7) 2019; 154 J Liu (68_CR74) 2024; 147 O Alagoz (68_CR40) 2010; 30 M Wehbe (68_CR53) 2014; 28 WD Ngan Kee (68_CR60) 2017; 125 CT Ryan (68_CR28) 2022 TJ Pollard (68_CR32) 2018; 5 PJ Devereaux (68_CR25) 2012; 307 T De Smet (68_CR46) 2007; 105 M Neckebroek (68_CR51) 2020; 130 RM Samant (68_CR13) 2022; 10 S Lee (68_CR20) 2021; 126 PJ Devereaux (68_CR26) 2015; 373 SC Solomon (68_CR22) 2020; 130 B Pei (68_CR72) 2023; 10 TE Tavolara (68_CR71) 2021; 136 R Padmanabhan (68_CR41) 2019; 309 Y Chen (68_CR39) 2022; 9 RC Deo (68_CR9) 2015; 132 TM Hemmerling (68_CR52) 2013; 110 A Esteva (68_CR1) 2019; 25 W Saadeh (68_CR16) 2019; 13 TM Hemmerling (68_CR49) 2010; 57 |
References_xml | – volume: 2011 start-page: 590 year: 2012 end-page: 594 ident: CR8 article-title: Detection of conflicts and inconsistencies in taxonomy-based authorization policies publication-title: Proc (IEEE Int Conf Bioinform Biomed) doi: 10.1109/bibm.2011.79 – volume: 130 start-page: 1661 issue: 6 year: 2020 end-page: 1669 ident: CR51 article-title: Influence of remifentanil on the control performance of the bispectral index controlled Bayesian-based closed-loop system for propofol administration publication-title: Anesth Analg doi: 10.1213/ane.0000000000004208 – volume: 12 start-page: 545 issue: 4 year: 2023 end-page: 66 ident: CR70 article-title: Expert consensus on difficult airway assessment publication-title: Hepatobiliary Surg Nutr. doi: 10.21037/hbsn-23-46 – volume: 19 start-page: 94 issue: 1 year: 2015 ident: CR56 article-title: Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case-control study with propensity matching publication-title: Crit Care doi: 10.1186/s13054-015-0827-7 – volume: 130 start-page: 394 issue: 3 year: 2019 end-page: 403 ident: CR61 article-title: Automated titration of vasopressor infusion using a closed-loop controller: in vivo feasibility study using a swine model publication-title: Anesthesiology. doi: 10.1097/aln.0000000000002581 – volume: 68 start-page: 143 issue: 668 year: 2018 end-page: 144 ident: CR3 article-title: Artificial intelligence in medicine: current trends and future possibilities publication-title: Br J Gen Pract doi: 10.3399/bjgp18X695213 – volume: 110 start-page: 1031 issue: 6 year: 2013 end-page: 1039 ident: CR52 article-title: Evaluation of a novel closed-loop total intravenous anaesthesia drug delivery system: a randomized controlled trial publication-title: Br J Anaesth doi: 10.1093/bja/aet001 – volume: 29 start-page: 721 issue: 3 year: 2023 end-page: 732 ident: CR15 article-title: Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma publication-title: Clin Mol Hepatol doi: 10.3350/cmh.2023.0089 – volume: 5 start-page: e2246637 issue: 12 year: 2022 ident: CR23 article-title: Development and validation of a prediction model for need for massive transfusion during surgery using intraoperative hemodynamic monitoring data publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2022.46637 – volume: 88 start-page: 434 issue: 8 year: 1988 end-page: 437 ident: CR36 article-title: Probabilistic reasoning in intelligent systems publication-title: J Philos – volume: 57 start-page: 725 issue: 8 year: 2010 end-page: 735 ident: CR49 article-title: A randomized controlled trial demonstrates that a novel closed-loop propofol system performs better hypnosis control than manual administration publication-title: Can J Anaesth doi: 10.1007/s12630-010-9335-z – ident: CR35 – ident: CR54 – volume: 9 start-page: e12481 issue: 1 year: 2023 ident: CR64 article-title: Feasibility of intelligent drug control in the maintenance phase of general anesthesia based on convolutional neural network publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12481 – volume: 35 start-page: 357 issue: 3 year: 2007 end-page: 362 ident: CR48 article-title: Closed-loop anaesthesia delivery system (CLADS) using bispectral index: a performance assessment study publication-title: Anaesth Intensive Care doi: 10.1177/0310057x0703500306 – volume: 105 start-page: 1629 issue: 6 year: 2007 end-page: 38 ident: CR46 article-title: Estimation of optimal modeling weights for a Bayesian-based closed-loop system for propofol administration using the bispectral index as a controlled variable: a simulation study publication-title: Anesth Analg. doi: 10.1213/01.ane.0000287269.06170.0f – volume: 137 start-page: 104267 year: 2023 ident: CR75 article-title: Optimizing warfarin dosing using deep reinforcement learning publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104267 – volume: 126 start-page: 808 issue: 4 year: 2021 end-page: 817 ident: CR20 article-title: Deep learning models for the prediction of intraoperative hypotension publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.12.035 – volume: 37 start-page: 7 issue: 1 year: 2023 ident: CR76 article-title: Cryptographic Competitions publication-title: J Cryptol doi: 10.1007/s00145-023-09467-1 – volume: 154 start-page: 725 issue: 8 year: 2019 end-page: 736 ident: CR7 article-title: Association between use of enhanced recovery after surgery protocol and postoperative complications in colorectal surgery: the Postoperative Outcomes Within Enhanced Recovery after surgery protocol (POWER) study publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.0995 – volume: 44 start-page: 44 issue: 2 year: 2020 ident: CR73 article-title: A convolutional neural network for real time classification, identification, and labelling of vocal cord and tracheal using laryngoscopy and bronchoscopy video publication-title: J Med Syst doi: 10.1007/s10916-019-1481-4 – volume: 35 start-page: 993 issue: 5 year: 2021 end-page: 1005 ident: CR18 article-title: Quantitative assessment of consciousness during anesthesia without EEG data publication-title: J Clin Monit Comput. doi: 10.1007/s10877-020-00553-4 – ident: CR19 – volume: 132 start-page: 1920 issue: 20 year: 2015 end-page: 1930 ident: CR9 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/circulationaha.115.001593 – volume: 2 start-page: 749 issue: 10 year: 2018 end-page: 760 ident: CR21 article-title: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0304-0 – volume: 408 start-page: 4 year: 2021 end-page: 6 ident: CR66 article-title: Anaesthesia, nerve blocks and artificial intelligence publication-title: Anaesthesia News – year: 2018 ident: CR58 article-title: Development and in silico evaluation of a model-based closed-loop fluid resuscitation control algorithm publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2018.2880927 – volume: 130 start-page: 217 issue: 2 year: 2023 end-page: 225 ident: CR67 article-title: Assistive artificial intelligence for ultrasound image interpretation in regional anaesthesia: an external validation study publication-title: Br J Anaesth doi: 10.1016/j.bja.2022.06.031 – volume: 309 start-page: 131 year: 2019 end-page: 142 ident: CR41 article-title: Optimal adaptive control of drug dosing using integral reinforcement learning publication-title: Math Biosci doi: 10.1016/j.mbs.2019.01.012 – ident: CR5 – volume: 8 start-page: e25658 issue: 3 year: 2022 ident: CR38 article-title: A Bayesian network to predict the risk of post influenza vaccination Guillain-Barré syndrome: development and validation study publication-title: JMIR Public Health Surveill doi: 10.2196/25658 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: CR31 article-title: MIMIC-IV, a freely accessible electronic health record dataset publication-title: Sci Data doi: 10.1038/s41597-022-01899-x – volume: 13 start-page: 658 issue: 4 year: 2019 end-page: 669 ident: CR16 article-title: Design and implementation of a machine learning based EEG processor for accurate estimation of depth of anesthesia publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/tbcas.2019.2921875 – volume: 21 start-page: 246 issue: 1 year: 2021 ident: CR68 article-title: Machine learning approach to needle insertion site identification for spinal anesthesia in obese patients publication-title: BMC Anesthesiol doi: 10.1186/s12871-021-01466-8 – volume: 147 year: 2024 ident: CR74 article-title: Value function assessment to different RL algorithms for heparin treatment policy of patients with sepsis in ICU publication-title: Artif Intell Med doi: 10.1016/j.artmed.2023.102726 – volume: 19 start-page: 57 issue: Suppl 2 year: 2019 ident: CR43 article-title: Inverse reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0763-6 – volume: 9 start-page: 1054 issue: 5 year: 1998 ident: CR12 article-title: Reinforcement learning: an Introduction publication-title: IEEE Transact Neur Netw. doi: 10.1109/TNN.1998.712192 – year: 2022 ident: CR28 article-title: Machine learning for dynamic and early prediction of acute kidney injury after cardiac surgery publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2022.09.045 – volume: 45 start-page: 2884 issue: 7 year: 2018 end-page: 2897 ident: CR37 article-title: An image-guided radiotherapy decision support framework incorporating a Bayesian network and visualization tool publication-title: Med Phys doi: 10.1002/mp.12979 – volume: 24 start-page: 1716 issue: 11 year: 2018 end-page: 1720 ident: CR42 article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care publication-title: Nat Med doi: 10.1038/s41591-018-0213-5 – volume: 35 start-page: 650 issue: 9 year: 2018 end-page: 658 ident: CR55 article-title: Implementation of closed-loop-assisted intra-operative goal-directed fluid therapy during major abdominal surgery: A case-control study with propensity matching publication-title: Eur J Anaesthesiol doi: 10.1097/eja.0000000000000827 – volume: 10 start-page: 1203023 year: 2023 ident: CR72 article-title: Geometric morphometrics and machine learning from three-dimensional facial scans for difficult mask ventilation prediction publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2023.1203023 – volume: 170 start-page: 320 issue: 1 year: 2021 end-page: 324 ident: CR33 article-title: Multiobjective optimization challenges in perioperative anesthesia: a review publication-title: Surgery doi: 10.1016/j.surg.2020.11.005 – ident: CR14 – ident: CR2 – volume: 31 start-page: 617 issue: 3 year: 2017 end-page: 623 ident: CR59 article-title: Performance of a closed-loop feedback computer-controlled infusion system for maintaining blood pressure during spinal anaesthesia for caesarean section: a randomized controlled comparison of norepinephrine versus phenylephrine publication-title: J Clin Monit Comput doi: 10.1007/s10877-016-9883-z – ident: CR30 – volume: 95 start-page: 6 issue: 1 year: 2001 end-page: 17 ident: CR45 article-title: Comparison of closed-loop controlled administration of propofol using Bispectral Index as the controlled variable versus “standard practice” controlled administration publication-title: Anesthesiology doi: 10.1097/00000542-200107000-00007 – ident: CR10 – volume: 2 start-page: 719 issue: 10 year: 2018 end-page: 731 ident: CR11 article-title: Artificial intelligence in healthcare publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0305-z – volume: 125 start-page: 117 issue: 1 year: 2017 end-page: 123 ident: CR60 article-title: Closed-loop feedback computer-controlled phenylephrine for maintenance of blood pressure during spinal anesthesia for cesarean delivery: a randomized trial comparing automated boluses versus infusion publication-title: Anesth Analg doi: 10.1213/ane.0000000000001974 – volume: 40 start-page: 1741 issue: 7 year: 2016 end-page: 1747 ident: CR6 article-title: Adherence to the ERAS protocol is associated with 5-year survival after colorectal cancer surgery: a retrospective cohort study publication-title: World J Surg doi: 10.1007/s00268-016-3460-y – volume: 37 start-page: 81 issue: 1 year: 2018 end-page: 92 ident: CR69 article-title: Automatic Localization of the Needle Target for Ultrasound-Guided Epidural Injections publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2017.2739110 – volume: 136 year: 2021 ident: CR71 article-title: Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104737 – volume: 112 start-page: 360 issue: 2 year: 2011 end-page: 367 ident: CR50 article-title: Reinforcement learning: a novel method for optimal control of propofol-induced hypnosis publication-title: Anesth Analg doi: 10.1213/ANE.0b013e31820334a7 – volume: 44 start-page: 368 issue: 2 year: 2016 end-page: 374 ident: CR4 article-title: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards publication-title: Crit Care Med doi: 10.1097/ccm.0000000000001571 – volume: 10 start-page: 17078 year: 2022 end-page: 17097 ident: CR13 article-title: Framework for deep learning-based language models using multi-task learning in natural language understanding: a systematic literature review and future directions publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149798 – volume: 307 start-page: 2295 issue: 21 year: 2012 end-page: 2304 ident: CR25 article-title: Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery publication-title: JAMA doi: 10.1001/jama.2012.5502 – volume: 104 start-page: 686 issue: 4 year: 2006 end-page: 695 ident: CR47 article-title: Titration of propofol for anesthetic induction and maintenance guided by the bispectral index: closed-loop versus manual control: a prospective, randomized, multicenter study publication-title: Anesthesiology doi: 10.1097/00000542-200604000-00012 – volume: 25 start-page: 24 issue: 1 year: 2019 end-page: 29 ident: CR1 article-title: A guide to deep learning in healthcare publication-title: Nat Med doi: 10.1038/s41591-018-0316-z – volume: 130 start-page: 1201 issue: 5 year: 2020 end-page: 1210 ident: CR22 article-title: Forecasting a crisis: machine-learning models predict occurrence of intraoperative bradycardia associated with hypotension publication-title: Anesth Analg doi: 10.1213/ane.0000000000004636 – volume: 5 start-page: 180178 year: 2018 ident: CR32 article-title: The eICU collaborative research database, a freely available multi-center database for critical care research publication-title: Sci Data doi: 10.1038/sdata.2018.178 – volume: 9 start-page: 1005901 year: 2022 ident: CR39 article-title: Optimization of anesthetic decision-making in ERAS using Bayesian network publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2022.1005901 – volume: 28 start-page: 27 issue: 1 year: 2014 end-page: 34 ident: CR53 article-title: A technical description of a novel pharmacological anesthesia robot publication-title: J Clin Monit Comput doi: 10.1007/s10877-013-9451-8 – ident: CR65 – volume: 14 start-page: 825 issue: 4 year: 2020 end-page: 837 ident: CR17 article-title: A real-time depth of anesthesia monitoring system based on deep neural network with large EDO tolerant EEG analog front-end publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/tbcas.2020.2998172 – volume: 231 start-page: 109828 year: 2023 ident: CR77 article-title: Multi-authority anonymous authentication with public accountability for incentive-based applications publication-title: Comput Netw doi: 10.1016/j.comnet.2023.109828 – volume: 373 start-page: 2258 issue: 23 year: 2015 end-page: 2269 ident: CR26 article-title: Cardiac complications in patients undergoing major noncardiac surgery publication-title: N Engl J Med doi: 10.1056/NEJMra1502824 – volume: 20 start-page: 124 issue: Suppl 3 year: 2020 ident: CR44 article-title: Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-020-1120-5 – volume: 6 start-page: e2322285 issue: 7 year: 2023 ident: CR29 article-title: Development and validation of a machine learning model to identify patients before surgery at high risk for postoperative adverse events publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2023.22285 – volume: 32 start-page: 5 issue: 1 year: 2018 end-page: 11 ident: CR62 article-title: Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller publication-title: J Clin Monit Comput doi: 10.1007/s10877-017-9981-6 – volume: 33 start-page: 795 issue: 5 year: 2019 end-page: 802 ident: CR63 article-title: Closed-loop vasopressor control: in-silico study of robustness against pharmacodynamic variability publication-title: J Clin Monit Comput doi: 10.1007/s10877-018-0234-0 – volume: 90 start-page: 111194 year: 2023 ident: CR27 article-title: Development of an automated, general-purpose prediction tool for postoperative respiratory failure using machine learning: A retrospective cohort study publication-title: J Clin Anesth doi: 10.1016/j.jclinane.2023.111194 – ident: CR34 – volume: 30 start-page: 474 issue: 4 year: 2010 end-page: 483 ident: CR40 article-title: Markov decision processes: a tool for sequential decision making under uncertainty publication-title: Med Decis Making doi: 10.1177/0272989x09353194 – volume: 114 start-page: 886 issue: 6 year: 2015 end-page: 892 ident: CR57 article-title: Goal-directed fluid therapy with closed-loop assistance during moderate risk surgery using noninvasive cardiac output monitoring: a pilot study publication-title: Br J Anaesth doi: 10.1093/bja/aev002 – ident: CR24 – volume: 126 start-page: 808 issue: 4 year: 2021 ident: 68_CR20 publication-title: Br J Anaesth doi: 10.1016/j.bja.2020.12.035 – volume: 90 start-page: 111194 year: 2023 ident: 68_CR27 publication-title: J Clin Anesth doi: 10.1016/j.jclinane.2023.111194 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 68_CR31 publication-title: Sci Data doi: 10.1038/s41597-022-01899-x – volume: 8 start-page: e25658 issue: 3 year: 2022 ident: 68_CR38 publication-title: JMIR Public Health Surveill doi: 10.2196/25658 – volume: 35 start-page: 993 issue: 5 year: 2021 ident: 68_CR18 publication-title: J Clin Monit Comput. doi: 10.1007/s10877-020-00553-4 – ident: 68_CR10 – volume: 5 start-page: 180178 year: 2018 ident: 68_CR32 publication-title: Sci Data doi: 10.1038/sdata.2018.178 – volume: 136 year: 2021 ident: 68_CR71 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104737 – volume: 12 start-page: 545 issue: 4 year: 2023 ident: 68_CR70 publication-title: Hepatobiliary Surg Nutr. doi: 10.21037/hbsn-23-46 – ident: 68_CR30 doi: 10.1093/ageing/afad086 – volume: 2 start-page: 719 issue: 10 year: 2018 ident: 68_CR11 publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0305-z – volume: 110 start-page: 1031 issue: 6 year: 2013 ident: 68_CR52 publication-title: Br J Anaesth doi: 10.1093/bja/aet001 – ident: 68_CR65 doi: 10.3390/healthcare11020184 – volume: 31 start-page: 617 issue: 3 year: 2017 ident: 68_CR59 publication-title: J Clin Monit Comput doi: 10.1007/s10877-016-9883-z – volume: 33 start-page: 795 issue: 5 year: 2019 ident: 68_CR63 publication-title: J Clin Monit Comput doi: 10.1007/s10877-018-0234-0 – volume: 44 start-page: 368 issue: 2 year: 2016 ident: 68_CR4 publication-title: Crit Care Med doi: 10.1097/ccm.0000000000001571 – volume: 88 start-page: 434 issue: 8 year: 1988 ident: 68_CR36 publication-title: J Philos – volume: 37 start-page: 81 issue: 1 year: 2018 ident: 68_CR69 publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2017.2739110 – volume: 307 start-page: 2295 issue: 21 year: 2012 ident: 68_CR25 publication-title: JAMA doi: 10.1001/jama.2012.5502 – volume: 68 start-page: 143 issue: 668 year: 2018 ident: 68_CR3 publication-title: Br J Gen Pract doi: 10.3399/bjgp18X695213 – volume: 30 start-page: 474 issue: 4 year: 2010 ident: 68_CR40 publication-title: Med Decis Making doi: 10.1177/0272989x09353194 – volume: 21 start-page: 246 issue: 1 year: 2021 ident: 68_CR68 publication-title: BMC Anesthesiol doi: 10.1186/s12871-021-01466-8 – volume: 45 start-page: 2884 issue: 7 year: 2018 ident: 68_CR37 publication-title: Med Phys doi: 10.1002/mp.12979 – volume: 2 start-page: 749 issue: 10 year: 2018 ident: 68_CR21 publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0304-0 – volume: 130 start-page: 1661 issue: 6 year: 2020 ident: 68_CR51 publication-title: Anesth Analg doi: 10.1213/ane.0000000000004208 – ident: 68_CR34 doi: 10.1016/B978-0-08-051489-5.50008-4 – year: 2018 ident: 68_CR58 publication-title: IEEE Trans Biomed Eng doi: 10.1109/tbme.2018.2880927 – volume: 231 start-page: 109828 year: 2023 ident: 68_CR77 publication-title: Comput Netw doi: 10.1016/j.comnet.2023.109828 – volume: 125 start-page: 117 issue: 1 year: 2017 ident: 68_CR60 publication-title: Anesth Analg doi: 10.1213/ane.0000000000001974 – volume: 309 start-page: 131 year: 2019 ident: 68_CR41 publication-title: Math Biosci doi: 10.1016/j.mbs.2019.01.012 – volume: 130 start-page: 1201 issue: 5 year: 2020 ident: 68_CR22 publication-title: Anesth Analg doi: 10.1213/ane.0000000000004636 – volume: 9 start-page: e12481 issue: 1 year: 2023 ident: 68_CR64 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12481 – volume: 130 start-page: 394 issue: 3 year: 2019 ident: 68_CR61 publication-title: Anesthesiology. doi: 10.1097/aln.0000000000002581 – volume: 32 start-page: 5 issue: 1 year: 2018 ident: 68_CR62 publication-title: J Clin Monit Comput doi: 10.1007/s10877-017-9981-6 – ident: 68_CR54 doi: 10.3390/jcm12206611 – volume: 19 start-page: 94 issue: 1 year: 2015 ident: 68_CR56 publication-title: Crit Care doi: 10.1186/s13054-015-0827-7 – volume: 24 start-page: 1716 issue: 11 year: 2018 ident: 68_CR42 publication-title: Nat Med doi: 10.1038/s41591-018-0213-5 – volume: 19 start-page: 57 issue: Suppl 2 year: 2019 ident: 68_CR43 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-019-0763-6 – volume: 95 start-page: 6 issue: 1 year: 2001 ident: 68_CR45 publication-title: Anesthesiology doi: 10.1097/00000542-200107000-00007 – volume: 29 start-page: 721 issue: 3 year: 2023 ident: 68_CR15 publication-title: Clin Mol Hepatol doi: 10.3350/cmh.2023.0089 – volume: 130 start-page: 217 issue: 2 year: 2023 ident: 68_CR67 publication-title: Br J Anaesth doi: 10.1016/j.bja.2022.06.031 – volume: 9 start-page: 1054 issue: 5 year: 1998 ident: 68_CR12 publication-title: IEEE Transact Neur Netw. doi: 10.1109/TNN.1998.712192 – ident: 68_CR35 – ident: 68_CR5 doi: 10.3390/jcm7110428 – ident: 68_CR24 doi: 10.48550/arXiv.2401.06091 – volume: 5 start-page: e2246637 issue: 12 year: 2022 ident: 68_CR23 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2022.46637 – volume: 105 start-page: 1629 issue: 6 year: 2007 ident: 68_CR46 publication-title: Anesth Analg. doi: 10.1213/01.ane.0000287269.06170.0f – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: 68_CR9 publication-title: Circulation doi: 10.1161/circulationaha.115.001593 – volume: 35 start-page: 650 issue: 9 year: 2018 ident: 68_CR55 publication-title: Eur J Anaesthesiol doi: 10.1097/eja.0000000000000827 – ident: 68_CR14 doi: 10.48550/arXiv.2306.02754 – volume: 147 year: 2024 ident: 68_CR74 publication-title: Artif Intell Med doi: 10.1016/j.artmed.2023.102726 – volume: 373 start-page: 2258 issue: 23 year: 2015 ident: 68_CR26 publication-title: N Engl J Med doi: 10.1056/NEJMra1502824 – volume: 112 start-page: 360 issue: 2 year: 2011 ident: 68_CR50 publication-title: Anesth Analg doi: 10.1213/ANE.0b013e31820334a7 – volume: 37 start-page: 7 issue: 1 year: 2023 ident: 68_CR76 publication-title: J Cryptol doi: 10.1007/s00145-023-09467-1 – volume: 10 start-page: 1203023 year: 2023 ident: 68_CR72 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2023.1203023 – ident: 68_CR2 doi: 10.1109/GPECOM58364.2023.10175760 – volume: 2011 start-page: 590 year: 2012 ident: 68_CR8 publication-title: Proc (IEEE Int Conf Bioinform Biomed) doi: 10.1109/bibm.2011.79 – volume: 6 start-page: e2322285 issue: 7 year: 2023 ident: 68_CR29 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2023.22285 – volume: 170 start-page: 320 issue: 1 year: 2021 ident: 68_CR33 publication-title: Surgery doi: 10.1016/j.surg.2020.11.005 – volume: 57 start-page: 725 issue: 8 year: 2010 ident: 68_CR49 publication-title: Can J Anaesth doi: 10.1007/s12630-010-9335-z – volume: 14 start-page: 825 issue: 4 year: 2020 ident: 68_CR17 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/tbcas.2020.2998172 – volume: 114 start-page: 886 issue: 6 year: 2015 ident: 68_CR57 publication-title: Br J Anaesth doi: 10.1093/bja/aev002 – volume: 104 start-page: 686 issue: 4 year: 2006 ident: 68_CR47 publication-title: Anesthesiology doi: 10.1097/00000542-200604000-00012 – volume: 13 start-page: 658 issue: 4 year: 2019 ident: 68_CR16 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/tbcas.2019.2921875 – volume: 137 start-page: 104267 year: 2023 ident: 68_CR75 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2022.104267 – volume: 25 start-page: 24 issue: 1 year: 2019 ident: 68_CR1 publication-title: Nat Med doi: 10.1038/s41591-018-0316-z – volume: 35 start-page: 357 issue: 3 year: 2007 ident: 68_CR48 publication-title: Anaesth Intensive Care doi: 10.1177/0310057x0703500306 – volume: 10 start-page: 17078 year: 2022 ident: 68_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3149798 – volume: 28 start-page: 27 issue: 1 year: 2014 ident: 68_CR53 publication-title: J Clin Monit Comput doi: 10.1007/s10877-013-9451-8 – volume: 44 start-page: 44 issue: 2 year: 2020 ident: 68_CR73 publication-title: J Med Syst doi: 10.1007/s10916-019-1481-4 – volume: 9 start-page: 1005901 year: 2022 ident: 68_CR39 publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2022.1005901 – volume: 40 start-page: 1741 issue: 7 year: 2016 ident: 68_CR6 publication-title: World J Surg doi: 10.1007/s00268-016-3460-y – ident: 68_CR19 doi: 10.1109/tnnls.2023.3273187 – volume: 154 start-page: 725 issue: 8 year: 2019 ident: 68_CR7 publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.0995 – volume: 408 start-page: 4 year: 2021 ident: 68_CR66 publication-title: Anaesthesia News – year: 2022 ident: 68_CR28 publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2022.09.045 – volume: 20 start-page: 124 issue: Suppl 3 year: 2020 ident: 68_CR44 publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-020-1120-5 |
SSID | ssj0002923724 |
Score | 2.3061566 |
SecondaryResourceType | review_article |
Snippet | Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and dynamic... Abstract Perioperative anesthetic management entails a multitude of decision-making processes within complex medical scenarios. These demand the continuous and... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Anesthesiology Big data Critical Care Medicine Intensive Machine learning Medicine Medicine & Public Health Neurosciences Perioperative management Pharmacology/Toxicology Prediction Review Article Surgery |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXwRP3F-kQfftNg2adI-6nAMYYLgYG-hSa860G24-f97l2XFLwa-lktL7_tyuV8Yu3A2zq0CQj7OXCQLR_1dmuQCVStVuDyuaB-y_6B6A3k_zIYBJodmYX70769nEpVKRhhJaP5Z4UvW2UaWCE3XNHRUp9lPSTFT0akMczF_L_0WezxE_6_-pw8r3R22HfJBfrMQ4C5bg_Ee2-yHjvc-e0Q58q9dZo6lP0e350ckZ3xSczt65nTQk4_GnHCLJ1NYwHkjKfr8FxpT5G_NMZcDNujePXV6UbgGIXJCJPMIYisJdk4CxluLzKWiw4oil0lFYPZxWlLer2usDBQWQDZ3orC2dAKqDAsGccha48kYjhgne9ZQagdFKZXTJVRSW6cghszKXLZZsmSQcQEjnK6qeDUNurFnqkGmGs9UE7fZZbNmukDIWEl9S3xvKAnd2j9AoZtgLCYvdFKnqs61oJ8sSoE6kyYuBdCZFKrNrpZSM8HkZiu-efw_8hO2lXqlQReiTllr_v4BZ5h5zO25V7lP8ZXMig priority: 102 providerName: Springer Nature |
Title | The applications and prospects of big data in perioperative anesthetic management |
URI | https://link.springer.com/article/10.1007/s44254-024-00068-0 https://doaj.org/article/8971f26f873841d9a3c8021c2ee75436 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-6kxdRVJwfIwdvWmyTNGmPOjaGMEFwsFtp0lcdaDfcvPq3-17alYkwL15yKAkJv5e8j-a9Xxi7cjZMrAZiPo5doFJH97tUyQW61Dp1SVjQf8jxox5N1MM0nm489UU5YTU9cA3cbZKaqBS6TIxMVFSkucTxInICwMRKerJttHkbwRTpYIF-ixGqqZLxtXIKd6cK0CRRIbXG1fywRJ6w_9dtqDcywwO233iH_K5e1SHbgeqIPaEo-eZFM8fon6Pm81WSSz4vuZ29cMr15LOKE3XxfAE1ozd2RbX_SpWK_L3NdDlmk-HguT8KmpcQAidltAogtIqY5xSgybWIL8UdVqaECPHZhyIn19-UGBxojIFs4mRqbe4kFDHGDPKEdap5BaeM05E2kBsHaa60MzkUylinIYTYqkR1WbRGJXMNTTi9VvGWtQTHHskMkcw8klnYZdftmEVNkrG19z2B3fYkgmv_AcWeNWLP_hJ7l92sRZU1p265Zc6z_5jznO0Jv39Qt-gL1ll9fMIluiQr22O7faGo1f2e34nYjr8G34jZ2qg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71IdFeEBQQW14-lBNESmzHTg4coFBtH1sJqZV6M7EzKZUgW3UXIf4PP5QZrzcCUVXqodfIcezxeGacme8zwE7weeUNMvNxGTJdB87vMpILTWdMHaq85f-Qk2MzPtUHZ-XZCvxeYmFitfsyJRkt9QB206ReOiOfwkhoQ92lUspD_PWTDmqzd_sfaVVfS7n36WR3nKW7BLKgVDHPMPeauds0ktPyNEKO3L2qK120zAify4aDZ9tReG3oFOGroGrvm6CwLSnqVtTvKqxrmgcXDu4mTAXbe0kxkpU6IXKuH-o_Xi9eDvBf5jU6tL0HcD9FouL9QnUewgr2W3BvknLtj-AzaZD4O78tmr4VZHAjOHMmpp3wF-eCS0zFRS-YMXl6iQsicWpK3uYrAyTF96HA5jGc3onQnsBaP-3xKQi2JBYbG7ButAm2wVZbHwzmWHpd6REUSwG5kNjJ-ZKMb27gVY5CdSRUF4Xq8hG8Gd65XHBz3Nj6A8t9aMm82vHB9OrcpW3qqtoWnTRdZRVPsm4UaassgkS0pVZmBG-Xq-bSZp_d8M3t2zV_BRvjk8mRO9o_PnwGmzIqEBky8xzW5lc_8AXFP3P_MqqfgC93re9_ANP_Cwk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RKqFeEPShbqHUB3pqIxLbsZNDD2VhxaOgVioSNzd2JhSpza7YrSr-FT-xM95s1KoIiQPXaOI447Fn7JnvM8B28GnhDTLzcR4SXQbO7zKSC01jTBmKtOZzyJNTc3Cmj87z8yW4WWBhYrX7IiU5xzQwS1M725nUzU4PfNNkajoh_8KoaENNd2WVx3j9mzZt0w-HezTCb6Uc7X8dHiTdvQJJUCqbJZh6zTxuGsmBeeotR_FelYXOamaHT2XFgbRtKNQ2tKPwRVCl91VQWOcUgStq9xE8pp1Rxtu9oRn2pzqS4iUrdYfOub2r_3jAeFHAf1nY6NxGa7DaRaXi49yM1mEJ26ewctLl3Z_BF7Im8XeuW1RtLWjxjUDNqRg3wl9eCC43FZetYPbk8QTnpOIkSp7nO4Mlxc--2OY5nD2I0l7Acjtu8SUIXlUsVjZgWWkTbIW1tj4YTDH3utADyBYKcqFjKucLM364nmM5KtWRUl1UqksH8K5_ZzLn6bhTepf13ksyx3Z8ML66cN2UdUVps0aaprCKf7KsFFmuzIJEtLlWZgDvF6Pmuok_veObr-4n_gZWPu-N3KfD0-MNeCKj_dCaZjZheXb1C19TKDTzW9H6BHx7aHP_AyG8D2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+applications+and+prospects+of+big+data+in+perioperative+anesthetic+management&rft.jtitle=ANESTHESIOLOGY+AND+PERIOPERATIVE+SCIENCE&rft.au=Zhu%2C+Yiziting&rft.au=Liu%2C+Xiang&rft.au=Li%2C+Yujie&rft.au=Yi%2C+Bin&rft.date=2024-08-26&rft.issn=2731-8389&rft.eissn=2731-8389&rft.volume=2&rft.issue=3&rft_id=info:doi/10.1007%2Fs44254-024-00068-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44254_024_00068_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2731-8389&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2731-8389&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2731-8389&client=summon |