Automatic blur type classification via ensemble SVM
Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur typ...
Saved in:
Published in | Signal processing. Image communication Vol. 71; pp. 24 - 35 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods.
•An ensemble SVM classifier is first applied to blur image classification.•SVR is adopted to rank the significance of the extracted blur features.•The haze blur images is considered for the first time in blur image classification. |
---|---|
AbstractList | Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods.
•An ensemble SVM classifier is first applied to blur image classification.•SVR is adopted to rank the significance of the extracted blur features.•The haze blur images is considered for the first time in blur image classification. Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods. |
Author | Li, Wei Zhang, Liang Li, Rui Wang, Rui |
Author_xml | – sequence: 1 givenname: Rui orcidid: 0000-0002-4813-8514 surname: Wang fullname: Wang, Rui organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China – sequence: 2 givenname: Wei surname: Li fullname: Li, Wei email: liwei_beihang@buaa.edu.cn organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China – sequence: 3 givenname: Rui surname: Li fullname: Li, Rui organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China – sequence: 4 givenname: Liang surname: Zhang fullname: Zhang, Liang organization: University of Connecticut, Department of Electrical and Computer Engineering, 371 Fairfield Way, U-4157, Storrs, Connecticut 06269, United States |
BookMark | eNqFkEtrwzAQhEVpoUnaX9CLoWe7K8sP6dBDCH1BSg99XIUsrYuCY6eSHMi_r5L01EMLAwvLfLvMTMlpP_RIyBWFjAKtblaZXatPzHKgPIMoYCdkQnkt0ryq61MyAZGztBRVeU6m3q8AIC9ATAibj2FYq2B10nSjS8Jug4nulPe2tTruhz7ZWpVg73HddJi8fjxfkLNWdR4vf-aMvN_fvS0e0-XLw9Nivkw1YzSkphWlUo3AHAXXraCV4HlTllyg1oUuhKmYMUAVKxQIqkpjGl4JJgwznKuazcj18e7GDV8j-iBXw-j6-FLmtKa0roEW0cWOLu0G7x22cuNiG24nKch9O3IlD-3IfTsSooBFSvyitA2HuMEp2_3D3h5ZjOG3Fp302mKv0ViHOkgz2D_5b4Ahgsw |
CitedBy_id | crossref_primary_10_3390_computers13100268 crossref_primary_10_1080_21681163_2021_2024088 crossref_primary_10_1142_S0219477523500347 crossref_primary_10_1186_s13007_021_00813_7 crossref_primary_10_1155_2019_5736104 crossref_primary_10_1111_mice_12533 crossref_primary_10_1177_00202940221092040 crossref_primary_10_1109_TVT_2021_3118452 crossref_primary_10_2478_amns_2023_2_00055 crossref_primary_10_1109_ACCESS_2020_2972586 crossref_primary_10_15407_kvt214_04_040 crossref_primary_10_1007_s00521_019_04627_6 crossref_primary_10_3390_electronics12194139 crossref_primary_10_3390_jimaging9080156 crossref_primary_10_1177_0954405420958842 crossref_primary_10_1080_00051144_2024_2326383 crossref_primary_10_1142_S0217984919503032 crossref_primary_10_1109_ACCESS_2022_3209825 crossref_primary_10_1155_2019_2048934 crossref_primary_10_1007_s11270_021_04989_5 crossref_primary_10_1109_ACCESS_2019_2924445 crossref_primary_10_3390_app13084949 |
Cites_doi | 10.1109/CVPR.2009.5206515 10.1109/TSP.2004.831119 10.1109/ICIP.2014.7025113 10.1016/j.rse.2012.08.017 10.1016/j.image.2012.07.004 10.1023/A:1012487302797 10.1109/CVPR.2008.4587465 10.1145/2072298.2072024 10.1109/CJECE.2017.2751623 10.1109/34.689301 10.1016/j.ejrad.2009.01.024 10.1109/ICCV.2011.6126278 10.1016/j.compag.2012.06.001 10.1109/TIP.2009.2031231 10.1016/j.sigpro.2008.03.016 10.1016/j.patcog.2011.09.021 10.1016/j.jag.2014.06.016 10.1109/IDAACS.2011.6072795 10.1016/j.image.2006.07.001 10.3233/BME-151392 10.1016/j.sigpro.2008.03.005 10.1007/978-3-642-15549-9_1 10.1016/j.image.2012.01.002 10.1109/TGRS.2009.2027895 10.1364/OE.20.016584 10.1111/j.1475-1313.1992.tb00296.x 10.1364/JOSAA.19.001096 10.1109/TIP.2010.2053549 10.1109/MSP.2008.930649 10.1145/1618452.1618491 10.1016/j.sigpro.2012.05.012 10.1016/j.sigpro.2016.02.003 |
ContentType | Journal Article |
Copyright | 2018 Copyright Elsevier BV Feb 2019 |
Copyright_xml | – notice: 2018 – notice: Copyright Elsevier BV Feb 2019 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.image.2018.08.003 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Computer Science |
EISSN | 1879-2677 |
EndPage | 35 |
ExternalDocumentID | 10_1016_j_image_2018_08_003 S0923596518300146 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-df95aab9e2e98cf916982b5589ecc4c49d63dd01a34a091a5ddb86939d3d88a73 |
IEDL.DBID | .~1 |
ISSN | 0923-5965 |
IngestDate | Wed Aug 13 05:00:00 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Thu Jul 10 07:51:35 EDT 2025 Fri Feb 23 02:28:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ensemble SVM classifier Support vector machine-recursive feature elimination (SVM-RFE) Feature selection Support vector rate (SVR) Feature ranking Blur image classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-df95aab9e2e98cf916982b5589ecc4c49d63dd01a34a091a5ddb86939d3d88a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4813-8514 |
PQID | 2171177014 |
PQPubID | 2045400 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2171177014 crossref_primary_10_1016_j_image_2018_08_003 crossref_citationtrail_10_1016_j_image_2018_08_003 elsevier_sciencedirect_doi_10_1016_j_image_2018_08_003 |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Signal processing. Image communication |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Aizenberg, Butakoff, Karnaukhov (b17) 2002 Wang, Guo, Jia (b27) 2010; 74 Fernandez-Delgado, Cernadas, Barro, Amorim (b37) 2014; 15 Tuia, Pacifici, Kanevski (b41) 2009; 47 Elder, Zucker (b1) 1998; 20 V. Kanchev, K. Tonchev, O. Boumbarov, Blurred image regions detection using wavelet-based histograms and SVM, in: IDAACS (1). 2011, pp. 457-461. K. He, J. Sun, X. Tang, Guided image filtering, in: European conference on computer vision, 2010, pp. 1–14. Prishchepov, Radeloff, Dubinin (b20) 2012; 126 Ciancio, da Costa, da Silva (b19) 2011; 20 Zhang, Song, Liu (b40) 2013; 93 Wang, Li, Qin, Wu (b12) 2017 Cho, Lee (b4) 2009; 28 Maret, Dufaux, Ebrahimi (b26) 2006; 21 D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in: 2011 International Conference on Computer Vision, 2011, pp. 479-486. Hong, Shi (b6) 2017; 40 Da Rugna, Konik (b14) 2003 Likas, Galatsanos (b8) 2004; 52 Niu, Suen (b36) 2012; 45 Turker, Koc-San (b32) 2015; 34 Qiao, Liu (b23) 2006; 4252 Almeida, Almeida (b7) 2010; 19 H. Kaiming, S. Jian, T. Xiaoou, Single image haze removal using dark channel prior, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963. Guyon, Weston, Barnhill (b39) 2002; 46 (b38) 2012 Li, Di (b11) 2016 Luo, Wang, Wang (b28) 2008; 88 Tao, Feng, Xu (b10) 2012; 20 Wang, Li, Lei (b43) 2015; 26 Y.R., S.L., Image blur classification and parameter identification using two-stage deep belief networks, in: BMVC 2013. Wang, Bovik (b29) 2009; 26 Charrier, Lézoray, Lebrun (b24) 2012; 27 D. Krishnan, R. Fergus, Fast image deconvolution using hyper-laplacian priors, supplementary material, in: Neural Information Pro-cessing Systems Conference. 2009. B. Su, S. Lu, C.L. Tan, Blurred image region detection and classification, in: Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 1397–1400. Wang, Li, Sun (b2) 2016; 127 Yang, Qin (b13) 2015 Tolhurst, Tadmor, Chao (b33) 1992; 12 R. Liu, Z. Li, J. Jia, Image partial blur detection and classification, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8. Rehman, Gao, Wang (b31) 2013; 28 Wang, Yang, Cui (b35) 2008; 88 E. Mavridaki, V. Mezaris, No-reference blur assessment in natural images using fourier transform and spatial pyramids, in: 2014 IEEE International Conference on Image Processing, ICIP, 2014, pp. 566-570. Bex, Makous (b30) 2002; 19 Vapnik, Vapnik (b34) 1998 Atas, Yardimci, Temizel (b42) 2012; 87 Hong (10.1016/j.image.2018.08.003_b6) 2017; 40 Ciancio (10.1016/j.image.2018.08.003_b19) 2011; 20 Qiao (10.1016/j.image.2018.08.003_b23) 2006; 4252 Tuia (10.1016/j.image.2018.08.003_b41) 2009; 47 Wang (10.1016/j.image.2018.08.003_b2) 2016; 127 Luo (10.1016/j.image.2018.08.003_b28) 2008; 88 Tao (10.1016/j.image.2018.08.003_b10) 2012; 20 Guyon (10.1016/j.image.2018.08.003_b39) 2002; 46 Bex (10.1016/j.image.2018.08.003_b30) 2002; 19 10.1016/j.image.2018.08.003_b25 Li (10.1016/j.image.2018.08.003_b11) 2016 10.1016/j.image.2018.08.003_b22 Cho (10.1016/j.image.2018.08.003_b4) 2009; 28 10.1016/j.image.2018.08.003_b21 Zhang (10.1016/j.image.2018.08.003_b40) 2013; 93 Charrier (10.1016/j.image.2018.08.003_b24) 2012; 27 Atas (10.1016/j.image.2018.08.003_b42) 2012; 87 Wang (10.1016/j.image.2018.08.003_b12) 2017 Turker (10.1016/j.image.2018.08.003_b32) 2015; 34 Prishchepov (10.1016/j.image.2018.08.003_b20) 2012; 126 Maret (10.1016/j.image.2018.08.003_b26) 2006; 21 Wang (10.1016/j.image.2018.08.003_b35) 2008; 88 Elder (10.1016/j.image.2018.08.003_b1) 1998; 20 Wang (10.1016/j.image.2018.08.003_b29) 2009; 26 (10.1016/j.image.2018.08.003_b38) 2012 Yang (10.1016/j.image.2018.08.003_b13) 2015 Niu (10.1016/j.image.2018.08.003_b36) 2012; 45 Tolhurst (10.1016/j.image.2018.08.003_b33) 1992; 12 10.1016/j.image.2018.08.003_b3 Likas (10.1016/j.image.2018.08.003_b8) 2004; 52 Wang (10.1016/j.image.2018.08.003_b27) 2010; 74 10.1016/j.image.2018.08.003_b5 10.1016/j.image.2018.08.003_b9 10.1016/j.image.2018.08.003_b18 Wang (10.1016/j.image.2018.08.003_b43) 2015; 26 10.1016/j.image.2018.08.003_b15 10.1016/j.image.2018.08.003_b16 Rehman (10.1016/j.image.2018.08.003_b31) 2013; 28 Vapnik (10.1016/j.image.2018.08.003_b34) 1998 Almeida (10.1016/j.image.2018.08.003_b7) 2010; 19 Da Rugna (10.1016/j.image.2018.08.003_b14) 2003 Aizenberg (10.1016/j.image.2018.08.003_b17) 2002 Fernandez-Delgado (10.1016/j.image.2018.08.003_b37) 2014; 15 |
References_xml | – volume: 19 start-page: 36 year: 2010 end-page: 52 ident: b7 article-title: Blind and semi-blind deblurring of natural images publication-title: IEEE Trans. Image Process. – start-page: 1 year: 2017 end-page: 6 ident: b12 article-title: Blur classification based on deep learning publication-title: Imaging Systems and Techniques, IST, 2017 IEEE International Conference on – volume: 88 start-page: 2138 year: 2008 end-page: 2157 ident: b28 article-title: A review on blind detection for image steganography publication-title: Signal Process. – start-page: 285 year: 2003 end-page: 294 ident: b14 article-title: Automatic blur detection for meta-data extraction in content-based retrieval context publication-title: Electronic Imaging 2004 – volume: 19 start-page: 1096 year: 2002 end-page: 1106 ident: b30 article-title: Spatial frequency phase and the contrast of natural images publication-title: J. Opt. Soc. Amer. A. – volume: 26 start-page: S975 year: 2015 end-page: 981 ident: b43 article-title: Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging publication-title: Bio-Med. Mater. Eng. – volume: 126 start-page: 195-209 year: 2012 ident: b20 article-title: The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe publication-title: Remote Sens. Environ. – year: 1998 ident: b34 article-title: Statistical Learning Theory – volume: 12 start-page: 229 year: 1992 end-page: 232 ident: b33 article-title: Amplitude spectra of natural images publication-title: Ophthal Physl. Opt. – reference: D. Krishnan, R. Fergus, Fast image deconvolution using hyper-laplacian priors, supplementary material, in: Neural Information Pro-cessing Systems Conference. 2009. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: b37 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: JMLR – volume: 20 start-page: 16584 year: 2012 end-page: 16595 ident: b10 article-title: Image degradation and recovery based on multiple scattering in remote sensing and bad weather condition publication-title: Opt. Express – volume: 47 start-page: 3866 year: 2009 end-page: 3879 ident: b41 article-title: Classification of very high spatial resolution imagery using mathematical morphology and support vector machines publication-title: IEEE Trans. Geosci. Remote – volume: 4252 start-page: 28 year: 2006 end-page: 35 ident: b23 article-title: A SVM-based blur identification algorithm for image restoration and resolution enhancement publication-title: Lect. Notes Artif. Intell. – reference: B. Su, S. Lu, C.L. Tan, Blurred image region detection and classification, in: Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 1397–1400. – reference: V. Kanchev, K. Tonchev, O. Boumbarov, Blurred image regions detection using wavelet-based histograms and SVM, in: IDAACS (1). 2011, pp. 457-461. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: b39 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – reference: R. Liu, Z. Li, J. Jia, Image partial blur detection and classification, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8. – volume: 88 start-page: 2193 year: 2008 end-page: 2205 ident: b35 article-title: An SVM-based robust digital image watermarking against desynchronization attacks publication-title: Signal Process. – start-page: 2414 year: 2015 end-page: 2419 ident: b13 article-title: Restoration of degraded image with partial blurred regions based on blur detection and classification publication-title: Mechatronics and Automation, ICMA, 2015 IEEE International Conference on – volume: 20 start-page: 699 year: 1998 end-page: 716 ident: b1 article-title: Local scale control for edge detection and blur estimation publication-title: IEEE Trans. Pattern Anal. – year: 2012 ident: b38 publication-title: Ensemble Machine Learning: Methods and Applications – reference: Y.R., S.L., Image blur classification and parameter identification using two-stage deep belief networks, in: BMVC 2013. – volume: 93 start-page: 1597 year: 2013 end-page: 1607 ident: b40 article-title: Fast multi-view segment graph kernel for object classification publication-title: Signal Process. – volume: 52 start-page: 2222 year: 2004 end-page: 2233 ident: b8 article-title: A variational approach for bayesian blind image deconvolution publication-title: IEEE Trans Signal Process. – start-page: 460 year: 2002 end-page: 471 ident: b17 article-title: Blurred image restoration using the type of blur and blur parameter identification on the neural network publication-title: Electronic Imaging 2002 – reference: D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in: 2011 International Conference on Computer Vision, 2011, pp. 479-486. – volume: 28 start-page: 984 year: 2013 end-page: 992 ident: b31 article-title: Image classification based on complex wavelet structural similarity publication-title: Signal Process., Image Commun. – volume: 28 start-page: 145 year: 2009 ident: b4 article-title: Fast motion deblurring publication-title: ACM Trans. Graph. – volume: 40 start-page: 266 year: 2017 end-page: 274 ident: b6 article-title: Fast deconvolution for motion blur along the blurring paths publication-title: Canad. J. Electr. Comput. Eng. – volume: 74 start-page: 124 year: 2010 end-page: 129 ident: b27 article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image publication-title: Eur. J. Radiol. – volume: 34 start-page: 58 year: 2015 end-page: 69 ident: b32 article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping publication-title: Int. J. Appl. Earth Obs. Geoinform. – volume: 45 start-page: 1318 year: 2012 end-page: 1325 ident: b36 article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits publication-title: Pattern Recognit. – reference: H. Kaiming, S. Jian, T. Xiaoou, Single image haze removal using dark channel prior, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963. – volume: 26 start-page: 98 year: 2009 end-page: 117 ident: b29 article-title: Mean squared error: love it or leave it, a new look at signal fidelity measures publication-title: IEEE Signal Process. Mag. – volume: 87 start-page: 129 year: 2012 end-page: 141 ident: b42 article-title: A new approach to aflatoxin detection in chili pepper by machine vision publication-title: Comput. Electron Agric. – volume: 21 start-page: 688 year: 2006 end-page: 703 ident: b26 article-title: Adaptive image replica detection based on support vector classifiers publication-title: Signal Process., Image Commun. – reference: K. He, J. Sun, X. Tang, Guided image filtering, in: European conference on computer vision, 2010, pp. 1–14. – volume: 20 start-page: 64 year: 2011 end-page: 75 ident: b19 article-title: No-reference blur assessment of digital pictures based on multifeature classifiers publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 209 year: 2012 end-page: 219 ident: b24 article-title: Machine learning to design full-reference image quality assessment algorithm publication-title: Signal Process., Image Commun. – volume: 127 start-page: 24 year: 2016 end-page: 36 ident: b2 article-title: Haze removal based on multiple scattering model with superpixel algorithm publication-title: Signal Process. – reference: E. Mavridaki, V. Mezaris, No-reference blur assessment in natural images using fourier transform and spatial pyramids, in: 2014 IEEE International Conference on Image Processing, ICIP, 2014, pp. 566-570. – start-page: 4809 year: 2016 end-page: 4814 ident: b11 article-title: Image mixed blur classification and parameter identification based on cepstrum peak detection publication-title: Control Conference, CCC, 2016 35th Chinese – ident: 10.1016/j.image.2018.08.003_b25 doi: 10.1109/CVPR.2009.5206515 – volume: 52 start-page: 2222 issue: 8 year: 2004 ident: 10.1016/j.image.2018.08.003_b8 article-title: A variational approach for bayesian blind image deconvolution publication-title: IEEE Trans Signal Process. doi: 10.1109/TSP.2004.831119 – ident: 10.1016/j.image.2018.08.003_b21 doi: 10.1109/ICIP.2014.7025113 – start-page: 1 year: 2017 ident: 10.1016/j.image.2018.08.003_b12 article-title: Blur classification based on deep learning – start-page: 285 year: 2003 ident: 10.1016/j.image.2018.08.003_b14 article-title: Automatic blur detection for meta-data extraction in content-based retrieval context – volume: 126 start-page: 195-209 year: 2012 ident: 10.1016/j.image.2018.08.003_b20 article-title: The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.08.017 – volume: 28 start-page: 984 issue: 8 year: 2013 ident: 10.1016/j.image.2018.08.003_b31 article-title: Image classification based on complex wavelet structural similarity publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2012.07.004 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.image.2018.08.003_b39 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: 10.1016/j.image.2018.08.003_b15 doi: 10.1109/CVPR.2008.4587465 – start-page: 460 year: 2002 ident: 10.1016/j.image.2018.08.003_b17 article-title: Blurred image restoration using the type of blur and blur parameter identification on the neural network – ident: 10.1016/j.image.2018.08.003_b16 doi: 10.1145/2072298.2072024 – volume: 40 start-page: 266 issue: 4 year: 2017 ident: 10.1016/j.image.2018.08.003_b6 article-title: Fast deconvolution for motion blur along the blurring paths publication-title: Canad. J. Electr. Comput. Eng. doi: 10.1109/CJECE.2017.2751623 – start-page: 2414 year: 2015 ident: 10.1016/j.image.2018.08.003_b13 article-title: Restoration of degraded image with partial blurred regions based on blur detection and classification – volume: 4252 start-page: 28 year: 2006 ident: 10.1016/j.image.2018.08.003_b23 article-title: A SVM-based blur identification algorithm for image restoration and resolution enhancement publication-title: Lect. Notes Artif. Intell. – volume: 20 start-page: 699 issue: 7 year: 1998 ident: 10.1016/j.image.2018.08.003_b1 article-title: Local scale control for edge detection and blur estimation publication-title: IEEE Trans. Pattern Anal. doi: 10.1109/34.689301 – volume: 74 start-page: 124 issue: 1 year: 2010 ident: 10.1016/j.image.2018.08.003_b27 article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.01.024 – ident: 10.1016/j.image.2018.08.003_b5 doi: 10.1109/ICCV.2011.6126278 – volume: 87 start-page: 129 year: 2012 ident: 10.1016/j.image.2018.08.003_b42 article-title: A new approach to aflatoxin detection in chili pepper by machine vision publication-title: Comput. Electron Agric. doi: 10.1016/j.compag.2012.06.001 – volume: 19 start-page: 36 issue: 1 year: 2010 ident: 10.1016/j.image.2018.08.003_b7 article-title: Blind and semi-blind deblurring of natural images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2031231 – volume: 88 start-page: 2138 issue: 9 year: 2008 ident: 10.1016/j.image.2018.08.003_b28 article-title: A review on blind detection for image steganography publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.03.016 – volume: 45 start-page: 1318 issue: 4 year: 2012 ident: 10.1016/j.image.2018.08.003_b36 article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.09.021 – volume: 34 start-page: 58 year: 2015 ident: 10.1016/j.image.2018.08.003_b32 article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping publication-title: Int. J. Appl. Earth Obs. Geoinform. doi: 10.1016/j.jag.2014.06.016 – ident: 10.1016/j.image.2018.08.003_b18 – ident: 10.1016/j.image.2018.08.003_b22 doi: 10.1109/IDAACS.2011.6072795 – start-page: 4809 year: 2016 ident: 10.1016/j.image.2018.08.003_b11 article-title: Image mixed blur classification and parameter identification based on cepstrum peak detection – ident: 10.1016/j.image.2018.08.003_b3 – volume: 21 start-page: 688 issue: 8 year: 2006 ident: 10.1016/j.image.2018.08.003_b26 article-title: Adaptive image replica detection based on support vector classifiers publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2006.07.001 – year: 1998 ident: 10.1016/j.image.2018.08.003_b34 – volume: 26 start-page: S975 issue: Suppl 1 year: 2015 ident: 10.1016/j.image.2018.08.003_b43 article-title: Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging publication-title: Bio-Med. Mater. Eng. doi: 10.3233/BME-151392 – volume: 88 start-page: 2193 issue: 9 year: 2008 ident: 10.1016/j.image.2018.08.003_b35 article-title: An SVM-based robust digital image watermarking against desynchronization attacks publication-title: Signal Process. doi: 10.1016/j.sigpro.2008.03.005 – ident: 10.1016/j.image.2018.08.003_b9 doi: 10.1007/978-3-642-15549-9_1 – volume: 27 start-page: 209 issue: 3 year: 2012 ident: 10.1016/j.image.2018.08.003_b24 article-title: Machine learning to design full-reference image quality assessment algorithm publication-title: Signal Process., Image Commun. doi: 10.1016/j.image.2012.01.002 – volume: 47 start-page: 3866 issue: 11 year: 2009 ident: 10.1016/j.image.2018.08.003_b41 article-title: Classification of very high spatial resolution imagery using mathematical morphology and support vector machines publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2009.2027895 – volume: 20 start-page: 16584 issue: 15 year: 2012 ident: 10.1016/j.image.2018.08.003_b10 article-title: Image degradation and recovery based on multiple scattering in remote sensing and bad weather condition publication-title: Opt. Express doi: 10.1364/OE.20.016584 – volume: 12 start-page: 229 issue: 2 year: 1992 ident: 10.1016/j.image.2018.08.003_b33 article-title: Amplitude spectra of natural images publication-title: Ophthal Physl. Opt. doi: 10.1111/j.1475-1313.1992.tb00296.x – volume: 19 start-page: 1096 issue: 6 year: 2002 ident: 10.1016/j.image.2018.08.003_b30 article-title: Spatial frequency phase and the contrast of natural images publication-title: J. Opt. Soc. Amer. A. doi: 10.1364/JOSAA.19.001096 – year: 2012 ident: 10.1016/j.image.2018.08.003_b38 – volume: 20 start-page: 64 issue: 1 year: 2011 ident: 10.1016/j.image.2018.08.003_b19 article-title: No-reference blur assessment of digital pictures based on multifeature classifiers publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2010.2053549 – volume: 26 start-page: 98 issue: 1 year: 2009 ident: 10.1016/j.image.2018.08.003_b29 article-title: Mean squared error: love it or leave it, a new look at signal fidelity measures publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.930649 – volume: 28 start-page: 145 issue: 5 year: 2009 ident: 10.1016/j.image.2018.08.003_b4 article-title: Fast motion deblurring publication-title: ACM Trans. Graph. doi: 10.1145/1618452.1618491 – volume: 93 start-page: 1597 issue: 6 year: 2013 ident: 10.1016/j.image.2018.08.003_b40 article-title: Fast multi-view segment graph kernel for object classification publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.05.012 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.image.2018.08.003_b37 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: JMLR – volume: 127 start-page: 24 year: 2016 ident: 10.1016/j.image.2018.08.003_b2 article-title: Haze removal based on multiple scattering model with superpixel algorithm publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.02.003 |
SSID | ssj0002409 |
Score | 2.3960261 |
Snippet | Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24 |
SubjectTerms | Basis functions Blur image classification Classifiers Communication Computer simulation Digital imaging Domains Ensemble SVM classifier Feature ranking Feature selection Flicker Haze Image classification Image restoration Optimization Radial basis function Random sampling Recursive methods Signal processing State of the art Support vector machine-recursive feature elimination (SVM-RFE) Support vector machines Support vector rate (SVR) Websites |
Title | Automatic blur type classification via ensemble SVM |
URI | https://dx.doi.org/10.1016/j.image.2018.08.003 https://www.proquest.com/docview/2171177014 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8MgFCfLvOjBj6lxOhcOHq1rC-3guCwuU7Nd5sxuBApNZvaVrfPo3y5Q8DPZwWMJkOa9x-NH-fX3ALjBbR6Hgqf6bJKKACsUBiLK8iCOVaaQioi0tQ4Hw7Q_xo-TZFIBXf8vjKFVutxf5nSbrV1Ly1mztZpOW6NQY5OEpokOSgP0jew2xm0T5XfvXzQPvWOVensxCkxvrzxkOV7TuV60ht9FrI6nr5z1d3f6laft5tM7BocONcJO-WInoKIWNXDkECR063Ojm3yRBt9WAwffFAdPAepsi6VVaYVitl1D8wUWZgZBG8qQ9RJ8m3KoD7dqLmYKjl4GZ2Dcu3_u9gNXNyHIEIqKQOY04VxQFStKslwDQEpikSSEan_hDFOZIinDiCPMNVzgiZSCpBRRiSQhvI3OQXWxXKgLAENEQixUjnOlcKTny4SSMWrzPE-iXIZ1EHt7scyJipvaFjPm2WOvzBqZGSMzU_EyRHVw-zloVWpq7O6eekewH6HBdNbfPbDh3cbcytwwfQQz99Q6YC7_O-8V2NdPtORuN0C1WG_VtYYmhWja2GuCvc7DU3_4ATPh4nA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADjwHiTQ4cqdY2SZccp4lpPLbLNrRblDSpNLQNBBu_n6RNEA9pB65uHVW243xu3c8A16Qp01jJzNYmmYqIwXGkkryI0tTkBpuE6XLWYa-fdUfkfkzHa9AO_8K4tkqf-6ucXmZrL2l4azZeJ5PGILbYhPKM2qB0QD9bhw3HTkVrsNG6e-j2vxKyPbQqyr0UR04hkA-VbV6Tmd23rsWLlVSeYXjW3wPqV6ouz5_OHux44Iha1bPtw5qZ12HXg0jkt-i7FYU5DUFWh-1vpIMHgFvLxUtJ1IrUdPmG3EtYlDsQ7bqGSkehj4lEtr41MzU1aPDUO4RR53bY7kZ-dEKUY5wsIl1wKqXiJjWc5YXFgJylilLGrctITrjOsNZxIjGRFjFIqrViGcdcY82YbOIjqM1f5uYYUIxZTJQpSGEMSex6uTI6xU1ZFDQpdHwCabCXyD2vuBtvMRWhgexZlEYWzsjCDb2M8QncfCm9VrQaq2_PgiPEj-gQNvGvVjwPbhN-c74LW4W5T9U2Zk7_u-4VbHaHvUfxeNd_OIMte4VXrdznUFu8Lc2FRSoLdekj8RMAw-Uh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+blur+type+classification+via+ensemble+SVM&rft.jtitle=Signal+processing.+Image+communication&rft.au=Wang%2C+Rui&rft.au=Li%2C+Wei&rft.au=Li%2C+Rui&rft.au=Zhang%2C+Liang&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0923-5965&rft.eissn=1879-2677&rft.volume=71&rft.spage=24&rft.epage=35&rft_id=info:doi/10.1016%2Fj.image.2018.08.003&rft.externalDocID=S0923596518300146 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon |