Automatic blur type classification via ensemble SVM

Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur typ...

Full description

Saved in:
Bibliographic Details
Published inSignal processing. Image communication Vol. 71; pp. 24 - 35
Main Authors Wang, Rui, Li, Wei, Li, Rui, Zhang, Liang
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods. •An ensemble SVM classifier is first applied to blur image classification.•SVR is adopted to rank the significance of the extracted blur features.•The haze blur images is considered for the first time in blur image classification.
AbstractList Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods. •An ensemble SVM classifier is first applied to blur image classification.•SVR is adopted to rank the significance of the extracted blur features.•The haze blur images is considered for the first time in blur image classification.
Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of digital images using ensemble Support Vector Machine (SVM) structure. It is assumed that each image is subject to at most one of three blur types: haze, motion, and defocus In the proposed technique, 35 blur features are first calculated from image spatial and transform domains, and then ranked using the SVM-Recursive Feature Elimination (SVM-RFE) method, which is also adopted to optimize the parameters of the Radial Basis Function (RBF) kernel of SVMs. Moreover, Support Vector Rate (SVR) is used to quantify the optimal number of features to be included in the classifiers. Finally, the bagging random sampling method is utilized to construct the ensemble SVM classifier based on a weighted voting mechanism to classify the types of blurred images. Numerical experiments are conducted over a sample dataset to be called Beihang Univ. Blur Image Database (BHBID) that consists of 1188 simulated blurred images and 1202 natural blurred images collected from popular national and international websites (Baidu.com, Flicker.com, Pabse.com, etc.). The experiments demonstrate the superior performance of the proposed ensemble SVM classifier by comparing it with single SVM classifiers as well as other state-of-the-art blur classification methods.
Author Li, Wei
Zhang, Liang
Li, Rui
Wang, Rui
Author_xml – sequence: 1
  givenname: Rui
  orcidid: 0000-0002-4813-8514
  surname: Wang
  fullname: Wang, Rui
  organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 2
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  email: liwei_beihang@buaa.edu.cn
  organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 3
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: Key Laboratory of Precision Opto-mechatronics Technology, Ministry of Education, School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, 100191, China
– sequence: 4
  givenname: Liang
  surname: Zhang
  fullname: Zhang, Liang
  organization: University of Connecticut, Department of Electrical and Computer Engineering, 371 Fairfield Way, U-4157, Storrs, Connecticut 06269, United States
BookMark eNqFkEtrwzAQhEVpoUnaX9CLoWe7K8sP6dBDCH1BSg99XIUsrYuCY6eSHMi_r5L01EMLAwvLfLvMTMlpP_RIyBWFjAKtblaZXatPzHKgPIMoYCdkQnkt0ryq61MyAZGztBRVeU6m3q8AIC9ATAibj2FYq2B10nSjS8Jug4nulPe2tTruhz7ZWpVg73HddJi8fjxfkLNWdR4vf-aMvN_fvS0e0-XLw9Nivkw1YzSkphWlUo3AHAXXraCV4HlTllyg1oUuhKmYMUAVKxQIqkpjGl4JJgwznKuazcj18e7GDV8j-iBXw-j6-FLmtKa0roEW0cWOLu0G7x22cuNiG24nKch9O3IlD-3IfTsSooBFSvyitA2HuMEp2_3D3h5ZjOG3Fp302mKv0ViHOkgz2D_5b4Ahgsw
CitedBy_id crossref_primary_10_3390_computers13100268
crossref_primary_10_1080_21681163_2021_2024088
crossref_primary_10_1142_S0219477523500347
crossref_primary_10_1186_s13007_021_00813_7
crossref_primary_10_1155_2019_5736104
crossref_primary_10_1111_mice_12533
crossref_primary_10_1177_00202940221092040
crossref_primary_10_1109_TVT_2021_3118452
crossref_primary_10_2478_amns_2023_2_00055
crossref_primary_10_1109_ACCESS_2020_2972586
crossref_primary_10_15407_kvt214_04_040
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_3390_electronics12194139
crossref_primary_10_3390_jimaging9080156
crossref_primary_10_1177_0954405420958842
crossref_primary_10_1080_00051144_2024_2326383
crossref_primary_10_1142_S0217984919503032
crossref_primary_10_1109_ACCESS_2022_3209825
crossref_primary_10_1155_2019_2048934
crossref_primary_10_1007_s11270_021_04989_5
crossref_primary_10_1109_ACCESS_2019_2924445
crossref_primary_10_3390_app13084949
Cites_doi 10.1109/CVPR.2009.5206515
10.1109/TSP.2004.831119
10.1109/ICIP.2014.7025113
10.1016/j.rse.2012.08.017
10.1016/j.image.2012.07.004
10.1023/A:1012487302797
10.1109/CVPR.2008.4587465
10.1145/2072298.2072024
10.1109/CJECE.2017.2751623
10.1109/34.689301
10.1016/j.ejrad.2009.01.024
10.1109/ICCV.2011.6126278
10.1016/j.compag.2012.06.001
10.1109/TIP.2009.2031231
10.1016/j.sigpro.2008.03.016
10.1016/j.patcog.2011.09.021
10.1016/j.jag.2014.06.016
10.1109/IDAACS.2011.6072795
10.1016/j.image.2006.07.001
10.3233/BME-151392
10.1016/j.sigpro.2008.03.005
10.1007/978-3-642-15549-9_1
10.1016/j.image.2012.01.002
10.1109/TGRS.2009.2027895
10.1364/OE.20.016584
10.1111/j.1475-1313.1992.tb00296.x
10.1364/JOSAA.19.001096
10.1109/TIP.2010.2053549
10.1109/MSP.2008.930649
10.1145/1618452.1618491
10.1016/j.sigpro.2012.05.012
10.1016/j.sigpro.2016.02.003
ContentType Journal Article
Copyright 2018
Copyright Elsevier BV Feb 2019
Copyright_xml – notice: 2018
– notice: Copyright Elsevier BV Feb 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.image.2018.08.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1879-2677
EndPage 35
ExternalDocumentID 10_1016_j_image_2018_08_003
S0923596518300146
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-df95aab9e2e98cf916982b5589ecc4c49d63dd01a34a091a5ddb86939d3d88a73
IEDL.DBID .~1
ISSN 0923-5965
IngestDate Wed Aug 13 05:00:00 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Thu Jul 10 07:51:35 EDT 2025
Fri Feb 23 02:28:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble SVM classifier
Support vector machine-recursive feature elimination (SVM-RFE)
Feature selection
Support vector rate (SVR)
Feature ranking
Blur image classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-df95aab9e2e98cf916982b5589ecc4c49d63dd01a34a091a5ddb86939d3d88a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4813-8514
PQID 2171177014
PQPubID 2045400
PageCount 12
ParticipantIDs proquest_journals_2171177014
crossref_primary_10_1016_j_image_2018_08_003
crossref_citationtrail_10_1016_j_image_2018_08_003
elsevier_sciencedirect_doi_10_1016_j_image_2018_08_003
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing. Image communication
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Aizenberg, Butakoff, Karnaukhov (b17) 2002
Wang, Guo, Jia (b27) 2010; 74
Fernandez-Delgado, Cernadas, Barro, Amorim (b37) 2014; 15
Tuia, Pacifici, Kanevski (b41) 2009; 47
Elder, Zucker (b1) 1998; 20
V. Kanchev, K. Tonchev, O. Boumbarov, Blurred image regions detection using wavelet-based histograms and SVM, in: IDAACS (1). 2011, pp. 457-461.
K. He, J. Sun, X. Tang, Guided image filtering, in: European conference on computer vision, 2010, pp. 1–14.
Prishchepov, Radeloff, Dubinin (b20) 2012; 126
Ciancio, da Costa, da Silva (b19) 2011; 20
Zhang, Song, Liu (b40) 2013; 93
Wang, Li, Qin, Wu (b12) 2017
Cho, Lee (b4) 2009; 28
Maret, Dufaux, Ebrahimi (b26) 2006; 21
D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in: 2011 International Conference on Computer Vision, 2011, pp. 479-486.
Hong, Shi (b6) 2017; 40
Da Rugna, Konik (b14) 2003
Likas, Galatsanos (b8) 2004; 52
Niu, Suen (b36) 2012; 45
Turker, Koc-San (b32) 2015; 34
Qiao, Liu (b23) 2006; 4252
Almeida, Almeida (b7) 2010; 19
H. Kaiming, S. Jian, T. Xiaoou, Single image haze removal using dark channel prior, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963.
Guyon, Weston, Barnhill (b39) 2002; 46
(b38) 2012
Li, Di (b11) 2016
Luo, Wang, Wang (b28) 2008; 88
Tao, Feng, Xu (b10) 2012; 20
Wang, Li, Lei (b43) 2015; 26
Y.R., S.L., Image blur classification and parameter identification using two-stage deep belief networks, in: BMVC 2013.
Wang, Bovik (b29) 2009; 26
Charrier, Lézoray, Lebrun (b24) 2012; 27
D. Krishnan, R. Fergus, Fast image deconvolution using hyper-laplacian priors, supplementary material, in: Neural Information Pro-cessing Systems Conference. 2009.
B. Su, S. Lu, C.L. Tan, Blurred image region detection and classification, in: Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 1397–1400.
Wang, Li, Sun (b2) 2016; 127
Yang, Qin (b13) 2015
Tolhurst, Tadmor, Chao (b33) 1992; 12
R. Liu, Z. Li, J. Jia, Image partial blur detection and classification, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8.
Rehman, Gao, Wang (b31) 2013; 28
Wang, Yang, Cui (b35) 2008; 88
E. Mavridaki, V. Mezaris, No-reference blur assessment in natural images using fourier transform and spatial pyramids, in: 2014 IEEE International Conference on Image Processing, ICIP, 2014, pp. 566-570.
Bex, Makous (b30) 2002; 19
Vapnik, Vapnik (b34) 1998
Atas, Yardimci, Temizel (b42) 2012; 87
Hong (10.1016/j.image.2018.08.003_b6) 2017; 40
Ciancio (10.1016/j.image.2018.08.003_b19) 2011; 20
Qiao (10.1016/j.image.2018.08.003_b23) 2006; 4252
Tuia (10.1016/j.image.2018.08.003_b41) 2009; 47
Wang (10.1016/j.image.2018.08.003_b2) 2016; 127
Luo (10.1016/j.image.2018.08.003_b28) 2008; 88
Tao (10.1016/j.image.2018.08.003_b10) 2012; 20
Guyon (10.1016/j.image.2018.08.003_b39) 2002; 46
Bex (10.1016/j.image.2018.08.003_b30) 2002; 19
10.1016/j.image.2018.08.003_b25
Li (10.1016/j.image.2018.08.003_b11) 2016
10.1016/j.image.2018.08.003_b22
Cho (10.1016/j.image.2018.08.003_b4) 2009; 28
10.1016/j.image.2018.08.003_b21
Zhang (10.1016/j.image.2018.08.003_b40) 2013; 93
Charrier (10.1016/j.image.2018.08.003_b24) 2012; 27
Atas (10.1016/j.image.2018.08.003_b42) 2012; 87
Wang (10.1016/j.image.2018.08.003_b12) 2017
Turker (10.1016/j.image.2018.08.003_b32) 2015; 34
Prishchepov (10.1016/j.image.2018.08.003_b20) 2012; 126
Maret (10.1016/j.image.2018.08.003_b26) 2006; 21
Wang (10.1016/j.image.2018.08.003_b35) 2008; 88
Elder (10.1016/j.image.2018.08.003_b1) 1998; 20
Wang (10.1016/j.image.2018.08.003_b29) 2009; 26
(10.1016/j.image.2018.08.003_b38) 2012
Yang (10.1016/j.image.2018.08.003_b13) 2015
Niu (10.1016/j.image.2018.08.003_b36) 2012; 45
Tolhurst (10.1016/j.image.2018.08.003_b33) 1992; 12
10.1016/j.image.2018.08.003_b3
Likas (10.1016/j.image.2018.08.003_b8) 2004; 52
Wang (10.1016/j.image.2018.08.003_b27) 2010; 74
10.1016/j.image.2018.08.003_b5
10.1016/j.image.2018.08.003_b9
10.1016/j.image.2018.08.003_b18
Wang (10.1016/j.image.2018.08.003_b43) 2015; 26
10.1016/j.image.2018.08.003_b15
10.1016/j.image.2018.08.003_b16
Rehman (10.1016/j.image.2018.08.003_b31) 2013; 28
Vapnik (10.1016/j.image.2018.08.003_b34) 1998
Almeida (10.1016/j.image.2018.08.003_b7) 2010; 19
Da Rugna (10.1016/j.image.2018.08.003_b14) 2003
Aizenberg (10.1016/j.image.2018.08.003_b17) 2002
Fernandez-Delgado (10.1016/j.image.2018.08.003_b37) 2014; 15
References_xml – volume: 19
  start-page: 36
  year: 2010
  end-page: 52
  ident: b7
  article-title: Blind and semi-blind deblurring of natural images
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2017
  end-page: 6
  ident: b12
  article-title: Blur classification based on deep learning
  publication-title: Imaging Systems and Techniques, IST, 2017 IEEE International Conference on
– volume: 88
  start-page: 2138
  year: 2008
  end-page: 2157
  ident: b28
  article-title: A review on blind detection for image steganography
  publication-title: Signal Process.
– start-page: 285
  year: 2003
  end-page: 294
  ident: b14
  article-title: Automatic blur detection for meta-data extraction in content-based retrieval context
  publication-title: Electronic Imaging 2004
– volume: 19
  start-page: 1096
  year: 2002
  end-page: 1106
  ident: b30
  article-title: Spatial frequency phase and the contrast of natural images
  publication-title: J. Opt. Soc. Amer. A.
– volume: 26
  start-page: S975
  year: 2015
  end-page: 981
  ident: b43
  article-title: Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging
  publication-title: Bio-Med. Mater. Eng.
– volume: 126
  start-page: 195-209
  year: 2012
  ident: b20
  article-title: The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe
  publication-title: Remote Sens. Environ.
– year: 1998
  ident: b34
  article-title: Statistical Learning Theory
– volume: 12
  start-page: 229
  year: 1992
  end-page: 232
  ident: b33
  article-title: Amplitude spectra of natural images
  publication-title: Ophthal Physl. Opt.
– reference: D. Krishnan, R. Fergus, Fast image deconvolution using hyper-laplacian priors, supplementary material, in: Neural Information Pro-cessing Systems Conference. 2009.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: b37
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: JMLR
– volume: 20
  start-page: 16584
  year: 2012
  end-page: 16595
  ident: b10
  article-title: Image degradation and recovery based on multiple scattering in remote sensing and bad weather condition
  publication-title: Opt. Express
– volume: 47
  start-page: 3866
  year: 2009
  end-page: 3879
  ident: b41
  article-title: Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
  publication-title: IEEE Trans. Geosci. Remote
– volume: 4252
  start-page: 28
  year: 2006
  end-page: 35
  ident: b23
  article-title: A SVM-based blur identification algorithm for image restoration and resolution enhancement
  publication-title: Lect. Notes Artif. Intell.
– reference: B. Su, S. Lu, C.L. Tan, Blurred image region detection and classification, in: Proceedings of the 19th ACM international conference on Multimedia, 2011, pp. 1397–1400.
– reference: V. Kanchev, K. Tonchev, O. Boumbarov, Blurred image regions detection using wavelet-based histograms and SVM, in: IDAACS (1). 2011, pp. 457-461.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: b39
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– reference: R. Liu, Z. Li, J. Jia, Image partial blur detection and classification, in: 2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008, pp. 1–8.
– volume: 88
  start-page: 2193
  year: 2008
  end-page: 2205
  ident: b35
  article-title: An SVM-based robust digital image watermarking against desynchronization attacks
  publication-title: Signal Process.
– start-page: 2414
  year: 2015
  end-page: 2419
  ident: b13
  article-title: Restoration of degraded image with partial blurred regions based on blur detection and classification
  publication-title: Mechatronics and Automation, ICMA, 2015 IEEE International Conference on
– volume: 20
  start-page: 699
  year: 1998
  end-page: 716
  ident: b1
  article-title: Local scale control for edge detection and blur estimation
  publication-title: IEEE Trans. Pattern Anal.
– year: 2012
  ident: b38
  publication-title: Ensemble Machine Learning: Methods and Applications
– reference: Y.R., S.L., Image blur classification and parameter identification using two-stage deep belief networks, in: BMVC 2013.
– volume: 93
  start-page: 1597
  year: 2013
  end-page: 1607
  ident: b40
  article-title: Fast multi-view segment graph kernel for object classification
  publication-title: Signal Process.
– volume: 52
  start-page: 2222
  year: 2004
  end-page: 2233
  ident: b8
  article-title: A variational approach for bayesian blind image deconvolution
  publication-title: IEEE Trans Signal Process.
– start-page: 460
  year: 2002
  end-page: 471
  ident: b17
  article-title: Blurred image restoration using the type of blur and blur parameter identification on the neural network
  publication-title: Electronic Imaging 2002
– reference: D. Zoran, Y. Weiss, From learning models of natural image patches to whole image restoration, in: 2011 International Conference on Computer Vision, 2011, pp. 479-486.
– volume: 28
  start-page: 984
  year: 2013
  end-page: 992
  ident: b31
  article-title: Image classification based on complex wavelet structural similarity
  publication-title: Signal Process., Image Commun.
– volume: 28
  start-page: 145
  year: 2009
  ident: b4
  article-title: Fast motion deblurring
  publication-title: ACM Trans. Graph.
– volume: 40
  start-page: 266
  year: 2017
  end-page: 274
  ident: b6
  article-title: Fast deconvolution for motion blur along the blurring paths
  publication-title: Canad. J. Electr. Comput. Eng.
– volume: 74
  start-page: 124
  year: 2010
  end-page: 129
  ident: b27
  article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
  publication-title: Eur. J. Radiol.
– volume: 34
  start-page: 58
  year: 2015
  end-page: 69
  ident: b32
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs. Geoinform.
– volume: 45
  start-page: 1318
  year: 2012
  end-page: 1325
  ident: b36
  article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits
  publication-title: Pattern Recognit.
– reference: H. Kaiming, S. Jian, T. Xiaoou, Single image haze removal using dark channel prior, in: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956–1963.
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  ident: b29
  article-title: Mean squared error: love it or leave it, a new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
– volume: 87
  start-page: 129
  year: 2012
  end-page: 141
  ident: b42
  article-title: A new approach to aflatoxin detection in chili pepper by machine vision
  publication-title: Comput. Electron Agric.
– volume: 21
  start-page: 688
  year: 2006
  end-page: 703
  ident: b26
  article-title: Adaptive image replica detection based on support vector classifiers
  publication-title: Signal Process., Image Commun.
– reference: K. He, J. Sun, X. Tang, Guided image filtering, in: European conference on computer vision, 2010, pp. 1–14.
– volume: 20
  start-page: 64
  year: 2011
  end-page: 75
  ident: b19
  article-title: No-reference blur assessment of digital pictures based on multifeature classifiers
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 209
  year: 2012
  end-page: 219
  ident: b24
  article-title: Machine learning to design full-reference image quality assessment algorithm
  publication-title: Signal Process., Image Commun.
– volume: 127
  start-page: 24
  year: 2016
  end-page: 36
  ident: b2
  article-title: Haze removal based on multiple scattering model with superpixel algorithm
  publication-title: Signal Process.
– reference: E. Mavridaki, V. Mezaris, No-reference blur assessment in natural images using fourier transform and spatial pyramids, in: 2014 IEEE International Conference on Image Processing, ICIP, 2014, pp. 566-570.
– start-page: 4809
  year: 2016
  end-page: 4814
  ident: b11
  article-title: Image mixed blur classification and parameter identification based on cepstrum peak detection
  publication-title: Control Conference, CCC, 2016 35th Chinese
– ident: 10.1016/j.image.2018.08.003_b25
  doi: 10.1109/CVPR.2009.5206515
– volume: 52
  start-page: 2222
  issue: 8
  year: 2004
  ident: 10.1016/j.image.2018.08.003_b8
  article-title: A variational approach for bayesian blind image deconvolution
  publication-title: IEEE Trans Signal Process.
  doi: 10.1109/TSP.2004.831119
– ident: 10.1016/j.image.2018.08.003_b21
  doi: 10.1109/ICIP.2014.7025113
– start-page: 1
  year: 2017
  ident: 10.1016/j.image.2018.08.003_b12
  article-title: Blur classification based on deep learning
– start-page: 285
  year: 2003
  ident: 10.1016/j.image.2018.08.003_b14
  article-title: Automatic blur detection for meta-data extraction in content-based retrieval context
– volume: 126
  start-page: 195-209
  year: 2012
  ident: 10.1016/j.image.2018.08.003_b20
  article-title: The effect of Landsat ETM/ETM+ image acquisition dates on the detection of agricultural land abandonment in Eastern Europe
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.08.017
– volume: 28
  start-page: 984
  issue: 8
  year: 2013
  ident: 10.1016/j.image.2018.08.003_b31
  article-title: Image classification based on complex wavelet structural similarity
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2012.07.004
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.image.2018.08.003_b39
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: 10.1016/j.image.2018.08.003_b15
  doi: 10.1109/CVPR.2008.4587465
– start-page: 460
  year: 2002
  ident: 10.1016/j.image.2018.08.003_b17
  article-title: Blurred image restoration using the type of blur and blur parameter identification on the neural network
– ident: 10.1016/j.image.2018.08.003_b16
  doi: 10.1145/2072298.2072024
– volume: 40
  start-page: 266
  issue: 4
  year: 2017
  ident: 10.1016/j.image.2018.08.003_b6
  article-title: Fast deconvolution for motion blur along the blurring paths
  publication-title: Canad. J. Electr. Comput. Eng.
  doi: 10.1109/CJECE.2017.2751623
– start-page: 2414
  year: 2015
  ident: 10.1016/j.image.2018.08.003_b13
  article-title: Restoration of degraded image with partial blurred regions based on blur detection and classification
– volume: 4252
  start-page: 28
  year: 2006
  ident: 10.1016/j.image.2018.08.003_b23
  article-title: A SVM-based blur identification algorithm for image restoration and resolution enhancement
  publication-title: Lect. Notes Artif. Intell.
– volume: 20
  start-page: 699
  issue: 7
  year: 1998
  ident: 10.1016/j.image.2018.08.003_b1
  article-title: Local scale control for edge detection and blur estimation
  publication-title: IEEE Trans. Pattern Anal.
  doi: 10.1109/34.689301
– volume: 74
  start-page: 124
  issue: 1
  year: 2010
  ident: 10.1016/j.image.2018.08.003_b27
  article-title: Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2009.01.024
– ident: 10.1016/j.image.2018.08.003_b5
  doi: 10.1109/ICCV.2011.6126278
– volume: 87
  start-page: 129
  year: 2012
  ident: 10.1016/j.image.2018.08.003_b42
  article-title: A new approach to aflatoxin detection in chili pepper by machine vision
  publication-title: Comput. Electron Agric.
  doi: 10.1016/j.compag.2012.06.001
– volume: 19
  start-page: 36
  issue: 1
  year: 2010
  ident: 10.1016/j.image.2018.08.003_b7
  article-title: Blind and semi-blind deblurring of natural images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2031231
– volume: 88
  start-page: 2138
  issue: 9
  year: 2008
  ident: 10.1016/j.image.2018.08.003_b28
  article-title: A review on blind detection for image steganography
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2008.03.016
– volume: 45
  start-page: 1318
  issue: 4
  year: 2012
  ident: 10.1016/j.image.2018.08.003_b36
  article-title: A novel hybrid CNN–SVM classifier for recognizing handwritten digits
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.09.021
– volume: 34
  start-page: 58
  year: 2015
  ident: 10.1016/j.image.2018.08.003_b32
  article-title: Building extraction from high-resolution optical spaceborne images using the integration of support vector machine (SVM) classification, Hough transformation and perceptual grouping
  publication-title: Int. J. Appl. Earth Obs. Geoinform.
  doi: 10.1016/j.jag.2014.06.016
– ident: 10.1016/j.image.2018.08.003_b18
– ident: 10.1016/j.image.2018.08.003_b22
  doi: 10.1109/IDAACS.2011.6072795
– start-page: 4809
  year: 2016
  ident: 10.1016/j.image.2018.08.003_b11
  article-title: Image mixed blur classification and parameter identification based on cepstrum peak detection
– ident: 10.1016/j.image.2018.08.003_b3
– volume: 21
  start-page: 688
  issue: 8
  year: 2006
  ident: 10.1016/j.image.2018.08.003_b26
  article-title: Adaptive image replica detection based on support vector classifiers
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2006.07.001
– year: 1998
  ident: 10.1016/j.image.2018.08.003_b34
– volume: 26
  start-page: S975
  issue: Suppl 1
  year: 2015
  ident: 10.1016/j.image.2018.08.003_b43
  article-title: Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging
  publication-title: Bio-Med. Mater. Eng.
  doi: 10.3233/BME-151392
– volume: 88
  start-page: 2193
  issue: 9
  year: 2008
  ident: 10.1016/j.image.2018.08.003_b35
  article-title: An SVM-based robust digital image watermarking against desynchronization attacks
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2008.03.005
– ident: 10.1016/j.image.2018.08.003_b9
  doi: 10.1007/978-3-642-15549-9_1
– volume: 27
  start-page: 209
  issue: 3
  year: 2012
  ident: 10.1016/j.image.2018.08.003_b24
  article-title: Machine learning to design full-reference image quality assessment algorithm
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2012.01.002
– volume: 47
  start-page: 3866
  issue: 11
  year: 2009
  ident: 10.1016/j.image.2018.08.003_b41
  article-title: Classification of very high spatial resolution imagery using mathematical morphology and support vector machines
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2009.2027895
– volume: 20
  start-page: 16584
  issue: 15
  year: 2012
  ident: 10.1016/j.image.2018.08.003_b10
  article-title: Image degradation and recovery based on multiple scattering in remote sensing and bad weather condition
  publication-title: Opt. Express
  doi: 10.1364/OE.20.016584
– volume: 12
  start-page: 229
  issue: 2
  year: 1992
  ident: 10.1016/j.image.2018.08.003_b33
  article-title: Amplitude spectra of natural images
  publication-title: Ophthal Physl. Opt.
  doi: 10.1111/j.1475-1313.1992.tb00296.x
– volume: 19
  start-page: 1096
  issue: 6
  year: 2002
  ident: 10.1016/j.image.2018.08.003_b30
  article-title: Spatial frequency phase and the contrast of natural images
  publication-title: J. Opt. Soc. Amer. A.
  doi: 10.1364/JOSAA.19.001096
– year: 2012
  ident: 10.1016/j.image.2018.08.003_b38
– volume: 20
  start-page: 64
  issue: 1
  year: 2011
  ident: 10.1016/j.image.2018.08.003_b19
  article-title: No-reference blur assessment of digital pictures based on multifeature classifiers
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2053549
– volume: 26
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.image.2018.08.003_b29
  article-title: Mean squared error: love it or leave it, a new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 28
  start-page: 145
  issue: 5
  year: 2009
  ident: 10.1016/j.image.2018.08.003_b4
  article-title: Fast motion deblurring
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1618452.1618491
– volume: 93
  start-page: 1597
  issue: 6
  year: 2013
  ident: 10.1016/j.image.2018.08.003_b40
  article-title: Fast multi-view segment graph kernel for object classification
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.05.012
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.image.2018.08.003_b37
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: JMLR
– volume: 127
  start-page: 24
  year: 2016
  ident: 10.1016/j.image.2018.08.003_b2
  article-title: Haze removal based on multiple scattering model with superpixel algorithm
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.02.003
SSID ssj0002409
Score 2.3960261
Snippet Automatic classification of blur type is critical to blind image restoration. In this paper, we propose an original solution for blur type classification of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Basis functions
Blur image classification
Classifiers
Communication
Computer simulation
Digital imaging
Domains
Ensemble SVM classifier
Feature ranking
Feature selection
Flicker
Haze
Image classification
Image restoration
Optimization
Radial basis function
Random sampling
Recursive methods
Signal processing
State of the art
Support vector machine-recursive feature elimination (SVM-RFE)
Support vector machines
Support vector rate (SVR)
Websites
Title Automatic blur type classification via ensemble SVM
URI https://dx.doi.org/10.1016/j.image.2018.08.003
https://www.proquest.com/docview/2171177014
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8MgFCfLvOjBj6lxOhcOHq1rC-3guCwuU7Nd5sxuBApNZvaVrfPo3y5Q8DPZwWMJkOa9x-NH-fX3ALjBbR6Hgqf6bJKKACsUBiLK8iCOVaaQioi0tQ4Hw7Q_xo-TZFIBXf8vjKFVutxf5nSbrV1Ly1mztZpOW6NQY5OEpokOSgP0jew2xm0T5XfvXzQPvWOVensxCkxvrzxkOV7TuV60ht9FrI6nr5z1d3f6laft5tM7BocONcJO-WInoKIWNXDkECR063Ojm3yRBt9WAwffFAdPAepsi6VVaYVitl1D8wUWZgZBG8qQ9RJ8m3KoD7dqLmYKjl4GZ2Dcu3_u9gNXNyHIEIqKQOY04VxQFStKslwDQEpikSSEan_hDFOZIinDiCPMNVzgiZSCpBRRiSQhvI3OQXWxXKgLAENEQixUjnOlcKTny4SSMWrzPE-iXIZ1EHt7scyJipvaFjPm2WOvzBqZGSMzU_EyRHVw-zloVWpq7O6eekewH6HBdNbfPbDh3cbcytwwfQQz99Q6YC7_O-8V2NdPtORuN0C1WG_VtYYmhWja2GuCvc7DU3_4ATPh4nA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIADjwHiTQ4cqdY2SZccp4lpPLbLNrRblDSpNLQNBBu_n6RNEA9pB65uHVW243xu3c8A16Qp01jJzNYmmYqIwXGkkryI0tTkBpuE6XLWYa-fdUfkfkzHa9AO_8K4tkqf-6ucXmZrL2l4azZeJ5PGILbYhPKM2qB0QD9bhw3HTkVrsNG6e-j2vxKyPbQqyr0UR04hkA-VbV6Tmd23rsWLlVSeYXjW3wPqV6ouz5_OHux44Iha1bPtw5qZ12HXg0jkt-i7FYU5DUFWh-1vpIMHgFvLxUtJ1IrUdPmG3EtYlDsQ7bqGSkehj4lEtr41MzU1aPDUO4RR53bY7kZ-dEKUY5wsIl1wKqXiJjWc5YXFgJylilLGrctITrjOsNZxIjGRFjFIqrViGcdcY82YbOIjqM1f5uYYUIxZTJQpSGEMSex6uTI6xU1ZFDQpdHwCabCXyD2vuBtvMRWhgexZlEYWzsjCDb2M8QncfCm9VrQaq2_PgiPEj-gQNvGvVjwPbhN-c74LW4W5T9U2Zk7_u-4VbHaHvUfxeNd_OIMte4VXrdznUFu8Lc2FRSoLdekj8RMAw-Uh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+blur+type+classification+via+ensemble+SVM&rft.jtitle=Signal+processing.+Image+communication&rft.au=Wang%2C+Rui&rft.au=Li%2C+Wei&rft.au=Li%2C+Rui&rft.au=Zhang%2C+Liang&rft.date=2019-02-01&rft.pub=Elsevier+B.V&rft.issn=0923-5965&rft.eissn=1879-2677&rft.volume=71&rft.spage=24&rft.epage=35&rft_id=info:doi/10.1016%2Fj.image.2018.08.003&rft.externalDocID=S0923596518300146
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon