Bénard convection in a slowly rotating penny-shaped cylinder subject to constant heat flux boundary conditions

We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of in...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 951; no. A5
Main Authors Soward, A.M., Oruba, L., Dormy, E.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.11.2022
Cambridge University Press (CUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$. As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. (J. Fluid Mech., vol. 812, 2017, pp. 890–904).
AbstractList We consider axisymmetric Boussinesq convection in a shallow cylinder radius, L, and depth, H (<< L), which rotates with angular velocity Ω about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that Ω is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number, σ. As σ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small σ, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction ψ derived from the asymptotics. With ψ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity v by DNS. Our "hybrid" methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba, Davidson & Dormy (J. Fluid Mech.,vol. 812, 2017, pp. 890-904).
We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$. As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. (J. Fluid Mech., vol. 812, 2017, pp. 890–904).
We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$ , which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$ . As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$ , exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. ( J. Fluid Mech. , vol. 812, 2017, pp. 890–904).
ArticleNumber A5
Author Oruba, L.
Dormy, E.
Soward, A.M.
Author_xml – sequence: 1
  givenname: A.M.
  orcidid: 0000-0001-5536-5718
  surname: Soward
  fullname: Soward, A.M.
  email: andrew.soward@ncl.ac.uk
  organization: 1School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
– sequence: 2
  givenname: L.
  orcidid: 0000-0003-0230-8634
  surname: Oruba
  fullname: Oruba, L.
  email: andrew.soward@ncl.ac.uk
  organization: 2Laboratoire Atmosphères Milieux Observations Spatiales (LATMOS/IPSL), Sorbonne Université, UVSQ, CNRS, Paris, France
– sequence: 3
  givenname: E.
  orcidid: 0000-0002-9683-6173
  surname: Dormy
  fullname: Dormy, E.
  email: andrew.soward@ncl.ac.uk
  organization: 3Département de Mathématiques et Applications, UMR-8553, École Normale Supérieure, CNRS, PSL University, 75005 Paris, France
BackLink https://hal.science/hal-03767406$$DView record in HAL
BookMark eNptkMtKAzEUhoNUsF52PkDAleDUk7kknWUVb1Bwo-uQ27RTpklNMtU-ks_hi5mhohtXB875_o_Df4xG1lmD0DmBCQHCrlfNepJDnk8YJQdoTEpaZ4yW1QiNIa0zQnI4QschrABIATUbI3fz9WmF11g5uzUqts7i1mKBQ-feux32LorY2gXeGGt3WViKjUnwrmutNh6HXq5SCkc3CEIUNuKlERE3Xf-BpeutFn433HQ7uMMpOmxEF8zZzzxBr_d3L7eP2fz54el2Ns9UUZCYacNAiRJA10pqNZXCVJJSVjSynBLFSG1yUYlpJY2utU7HMtdUMiWVYlVTFSfocu9dio5vfLtOb3AnWv44m_NhBwWjrAS6JYm92LMb7956EyJfud7b9B7PWUGgAgY0UVd7SnkXgjfNr5YAH-rnqX4-1M9T_Qmf_OBiLX2rF-bP-m_gG15EjFM
Cites_doi 10.1086/112908
10.1016/0167-2789(85)90181-2
10.1017/jfm.2016.846
10.1080/0309192021000036996
10.1017/S0022112092003355
10.1103/RevModPhys.65.851
10.1103/PhysRevE.70.066304
10.1016/0012-821X(80)90217-4
10.1017/S0022112069001327
10.1088/0951-7715/13/4/317
10.1103/PhysRevFluids.3.013502
10.1017/S0022112080001917
10.1080/03091929908203705
10.1017/jfm.2014.542
10.1137/S0036139996314003
10.1016/0167-2789(82)90063-X
10.1007/978-1-4612-1140-2
10.1017/jfm.2015.606
ContentType Journal Article
Copyright The Author(s), 2022. Published by Cambridge University Press
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), 2022. Published by Cambridge University Press
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
1XC
VOOES
DOI 10.1017/jfm.2022.761
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Proquest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList

Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID oai_HAL_hal_03767406v1
10_1017_jfm_2022_761
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFZFC
AKMAY
CITATION
DC4
PHGZM
PHGZT
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
-1F
-2P
-2V
-~6
-~N
1XC
6TJ
6~7
8WZ
9M5
A6W
AATMM
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABZUI
ACETC
ACKIV
ACRPL
ADNMO
ADOVH
AEBPU
AEHGV
AEMFK
AENCP
AGLWM
AGQPQ
AI.
ALEEW
BESQT
BQFHP
CAG
CCUQV
CDIZJ
COF
EJD
H~9
I.7
I.9
KAFGG
LHUNA
NMFBF
RIG
VH1
VOH
VOOES
ZE2
ZJOSE
ZMEZD
ZY4
~V1
ID FETCH-LOGICAL-c331t-de70ca400d9cbdc8bae5b6673fb481c719e2a5a85bed9dde5b42d6b7cbcc75f53
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Fri May 09 12:23:30 EDT 2025
Sat Aug 16 15:52:13 EDT 2025
Tue Jul 01 03:01:34 EDT 2025
Wed Mar 13 05:55:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue A5
Keywords rotating flows
atmospheric flows
Bénard convection
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-de70ca400d9cbdc8bae5b6673fb481c719e2a5a85bed9dde5b42d6b7cbcc75f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5536-5718
0000-0003-0230-8634
0000-0002-9683-6173
OpenAccessLink https://hal.science/hal-03767406
PQID 2731050706
PQPubID 34769
PageCount 36
ParticipantIDs hal_primary_oai_HAL_hal_03767406v1
proquest_journals_2731050706
crossref_primary_10_1017_jfm_2022_761
cambridge_journals_10_1017_jfm_2022_761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-25
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2022
Publisher Cambridge University Press
Cambridge University Press (CUP)
Publisher_xml – name: Cambridge University Press
– name: Cambridge University Press (CUP)
References 2017; 812
2018; 3
2014; 758
2004; 70
2002; 96
2015; 784
2000; 13
1993; 65
1980; 54
1982; 4
1992; 237
1969; 35
1999; 91
1980; 101
1981; 86
1998; 58
1985; 14
S0022112022007613_ref8
S0022112022007613_ref9
S0022112022007613_ref6
S0022112022007613_ref7
S0022112022007613_ref12
S0022112022007613_ref11
S0022112022007613_ref10
S0022112022007613_ref16
S0022112022007613_ref15
S0022112022007613_ref14
S0022112022007613_ref13
S0022112022007613_ref19
S0022112022007613_ref18
S0022112022007613_ref17
S0022112022007613_ref1
S0022112022007613_ref4
S0022112022007613_ref5
S0022112022007613_ref2
S0022112022007613_ref3
References_xml – volume: 758
  start-page: 407
  year: 2014
  end-page: 435
  article-title: Large-scale vortices in rapidly rotating Rayleigh–Bénard convection
  publication-title: J. Fluid Mech.
– volume: 784
  start-page: R2
  year: 2015
  article-title: The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection
  publication-title: J. Fluid Mech.
– volume: 237
  start-page: 57
  year: 1992
  end-page: 71
  article-title: Fixed-flux convection in a tilted slot
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 227
  issue: 2
  year: 1985
  end-page: 241
  article-title: Bifurcation and stability of finite amplitude convection in a rotating layer
  publication-title: Physica D
– volume: 70
  start-page: 066304
  year: 2004
  article-title: Chemoconvection patterns in the methylene-blue–glucose system: weakly nonlinear analysis
  publication-title: Phys. Rev. E
– volume: 101
  start-page: 759
  issue: 4
  year: 1980
  end-page: 782
  article-title: Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 1293
  year: 2000
  end-page: 1320
  article-title: Pattern formation with a conservation law
  publication-title: Nonlinearity
– volume: 3
  start-page: 013502
  year: 2018
  article-title: Formation of eyes in large-scale cyclonic vortices
  publication-title: Phys. Rev. Fluids
– volume: 96
  start-page: 439
  issue: 6
  year: 2002
  end-page: 459
  article-title: Linear instability of thermal convection in rotating systems with fixed heat flux boundaries
  publication-title: Geophys. Astrophys. Fluid Dyn.
– volume: 65
  start-page: 851
  year: 1993
  article-title: Pattern formation outside of equilibrium
  publication-title: Rev. Mod. Phys.
– volume: 35
  start-page: 609
  year: 1969
  end-page: 620
  article-title: Transition from laminar convection to thermal turbulence in a rotating fluid layer
  publication-title: J. Fluid Mech.
– volume: 58
  start-page: 1338
  issue: 4
  year: 1998
  end-page: 1364
  article-title: Long-wavelength rotating convection between poorly conducting boundaries
  publication-title: SIAM J. Appl. Maths
– volume: 86
  start-page: 496
  issue: 3
  year: 1981
  end-page: 512
  article-title: The large-scale structure of compressible convection
  publication-title: Astron. J.
– volume: 812
  start-page: 890
  year: 2017
  end-page: 904
  article-title: Eye formation in rotating convection
  publication-title: J. Fluid Mech.
– volume: 91
  start-page: 223
  year: 1999
  end-page: 250
  article-title: Thermal convection in a layer bounded by uniform heat flux: application of a strongly nonlinear analytic solution
  publication-title: Geophys. Astrophys. Fluid Dyn.
– volume: 4
  start-page: 227
  issue: 2
  year: 1982
  end-page: 235
  article-title: Large cells in nonlinear Marangoni convection
  publication-title: Physica D
– volume: 54
  start-page: 362
  year: 1980
  end-page: 369
  article-title: Long wavelength thermal convection between non-conducting boundaries
  publication-title: Earth Planet. Sci. Lett.
– ident: S0022112022007613_ref7
  doi: 10.1086/112908
– ident: S0022112022007613_ref18
  doi: 10.1016/0167-2789(85)90181-2
– ident: S0022112022007613_ref14
  doi: 10.1017/jfm.2016.846
– ident: S0022112022007613_ref19
  doi: 10.1080/0309192021000036996
– ident: S0022112022007613_ref2
  doi: 10.1017/S0022112092003355
– ident: S0022112022007613_ref6
  doi: 10.1103/RevModPhys.65.851
– ident: S0022112022007613_ref16
  doi: 10.1103/PhysRevE.70.066304
– ident: S0022112022007613_ref3
  doi: 10.1016/0012-821X(80)90217-4
– ident: S0022112022007613_ref12
  doi: 10.1017/S0022112069001327
– ident: S0022112022007613_ref13
  doi: 10.1088/0951-7715/13/4/317
– ident: S0022112022007613_ref15
  doi: 10.1103/PhysRevFluids.3.013502
– ident: S0022112022007613_ref4
  doi: 10.1017/S0022112080001917
– ident: S0022112022007613_ref9
  doi: 10.1080/03091929908203705
– ident: S0022112022007613_ref11
  doi: 10.1017/jfm.2014.542
– ident: S0022112022007613_ref5
  doi: 10.1137/S0036139996314003
– ident: S0022112022007613_ref8
– ident: S0022112022007613_ref17
  doi: 10.1016/0167-2789(82)90063-X
– ident: S0022112022007613_ref10
  doi: 10.1007/978-1-4612-1140-2
– ident: S0022112022007613_ref1
  doi: 10.1017/jfm.2015.606
SSID ssj0013097
Score 2.4043934
Snippet We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about...
We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$ , which rotates with angular velocity $\varOmega$...
We consider axisymmetric Boussinesq convection in a shallow cylinder of radius \(L\) and depth \(H (\ll L)\), which rotates with angular velocity \(\varOmega\)...
We consider axisymmetric Boussinesq convection in a shallow cylinder radius, L, and depth, H (<< L), which rotates with angular velocity Ω about its axis of...
SourceID hal
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Angular momentum
Angular velocity
Asymptotic methods
Asymptotic series
Atmospheric and Oceanic Physics
Boundary conditions
Boussinesq approximation
Boussinesq equations
Convection
Cylinders
Direct numerical simulation
Equations of motion
Fluid Dynamics
Heat
Heat flux
Heat transfer
JFM Papers
Methods
Momentum
Photosystem I
Physics
Prandtl number
Rayleigh number
Rotating cylinders
Symmetry
Velocity
Title Bénard convection in a slowly rotating penny-shaped cylinder subject to constant heat flux boundary conditions
URI https://www.cambridge.org/core/product/identifier/S0022112022007613/type/journal_article
https://www.proquest.com/docview/2731050706
https://hal.science/hal-03767406
Volume 951
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL1aVyGxBxiFicFWWQjEkyFfbpKnqWMrFdomBEzaW-SvbENV0jXpRn_Sfsf-2O5N3BWQ4DW2bCnn-vja9_pcgLc2jHUihc9VOlA80p7m0pKKaC5TYZSvo4jeOx-fDMan0ZczceYu3CqXVrnkxIaoTanpjvwjbrPoCqCBDvamV5yqRlF01ZXQ6EAXKTjBw1d3__Dk67dVHMFL46VeOHoWnkt9J9Honzk9RA-CDzEJZK-EFf7YoDoXlB75F0s3W89oE544n5ENW5CfwZotevDU-Y_Mrc6qBxu_iQv24FGT3Kmr51Du390WaAmsSTFvHjKwy4JJVk3Km8mCzUqKxxfnbIqsu-DVhZziuHoxISnFGavmii5rWF3SAORN1owonOWT-S-mmrpMswW1mTb_6wWcjg5_fBpzV2iB6zD0a25s7GmJq9mkWhmdKGmFonqguYoSX8d-agMpZCKUNSnyoVBRYAYq1krrWOQi3IL1oizsS2Ch8Cn0J6RvQjxpGuTSSOSh0okIjB-ZbXj_8Kczt1yqrE01izPEJCNMMsRkG94tccimrfLGP_q9QZAeupBc9nh4lNE3j6Rq0GO5xk47SwxXs65M6tX_m1_D46C1IB6IHVivZ3O7i75IrfrQSUaf-9AdHhwffe8787sH8kDiIg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5FFiKKBSwEBUn08SJN8kBofJYtnTbUyv1FvwKLVolyyZLyU_qhT_BH2Mmjy4gwa3X2HKkfJ9nxvHMNwDPXRCZWEmf62SoeWg8w5UjFdFMJdJq34Qh1TsfHA7Hx-HHE3myAj_6WhhKq-xtYmOobWHoH_kOulkMBZCgw9ezr5y6RtHtat9Co6XFvqvP8chWvtp7h_huCzF6f_R2zLuuAtwEgV9x6yLPKKSuTYy2JtbKSU3NLzMdxr6J_MQJJVUstbMJbn6pQ2GHOjLamEhm1CUCTf71MAgS2lHx6MPy1sJLol6dHOMYr0u0J4nqLxmVvQvxMiI57qWMwx_u8NopJWP-5RMaRze6A-tdhMp2W0rdhRWXD-B2F62yzhaUA7j1m5ThAG40qaSmvAfFm58XOfKONQntTdkEO8uZYuW0OJ_WbF7Q7X_-mc3Qxte8PFUzXNfUUxJunLNyoenXEKsKWoBi14qRw2DZdPGd6aYL1LymMdtmm23A8ZUAcB9W8yJ3D4AF0qeLRql8G-C51qLlDmUWaBNLYf3QbsKLyy-ddpuzTNvEtihFTFLCJEVMNmG7xyGdtTof_5j3DEG6nELi3OPdSUrPPBLGwfjoG07a6jFcvnVJ4If_H34KN8dHB5N0sne4_wjWRMsmLuQWrFbzhXuMUVClnzTUY_Dpqrn-C1NWHlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B%C3%A9nard+convection+in+a+slowly+rotating+penny-shaped+cylinder+subject+to+constant+heat+flux+boundary+conditions&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Soward%2C+A.M.&rft.au=Oruba%2C+L.&rft.au=Dormy%2C+E.&rft.date=2022-11-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=951&rft_id=info:doi/10.1017%2Fjfm.2022.761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2022_761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon