Bénard convection in a slowly rotating penny-shaped cylinder subject to constant heat flux boundary conditions
We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of in...
Saved in:
Published in | Journal of fluid mechanics Vol. 951; no. A5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.11.2022
Cambridge University Press (CUP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$. As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. (J. Fluid Mech., vol. 812, 2017, pp. 890–904). |
---|---|
AbstractList | We consider axisymmetric Boussinesq convection in a shallow cylinder radius, L, and depth, H (<< L), which rotates with angular velocity Ω about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that Ω is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number, σ. As σ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small σ, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction ψ derived from the asymptotics. With ψ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity v by DNS. Our "hybrid" methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba, Davidson & Dormy (J. Fluid Mech.,vol. 812, 2017, pp. 890-904). We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$. As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$, exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. (J. Fluid Mech., vol. 812, 2017, pp. 890–904). We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$ , which rotates with angular velocity $\varOmega$ about its axis of symmetry aligned to the vertical. Constant heat flux boundary conditions, top and bottom, are adopted, for which the onset of instability occurs on a long horizontal length scale provided that $\varOmega$ is sufficiently small. We investigate the nonlinear development by well-established two-scale asymptotic expansion methods. Comparisons of the results with the direct numerical simulations (DNS) of the primitive governing equations are good at sufficiently large Prandtl number $\sigma$ . As $\sigma$ is reduced, the finite amplitude range of applicability of the asymptotics reduces in concert. Though the large meridional convective cell, predicted by the DNS, is approximated adequately by the asymptotics, the azimuthal flow fails almost catastrophically, because of significant angular momentum transport at small $\sigma$ , exacerbated by the cylindrical geometry. To appraise the situation, we propose hybrid methods that build on the meridional streamfunction $\psi$ derived from the asymptotics. With $\psi$ given, we solve the now linear azimuthal equation of motion for the azimuthal velocity $v$ by DNS. Our ‘hybrid’ methods enable us to explain features of the flow at large Rayleigh number, found previously by Oruba et al. ( J. Fluid Mech. , vol. 812, 2017, pp. 890–904). |
ArticleNumber | A5 |
Author | Oruba, L. Dormy, E. Soward, A.M. |
Author_xml | – sequence: 1 givenname: A.M. orcidid: 0000-0001-5536-5718 surname: Soward fullname: Soward, A.M. email: andrew.soward@ncl.ac.uk organization: 1School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK – sequence: 2 givenname: L. orcidid: 0000-0003-0230-8634 surname: Oruba fullname: Oruba, L. email: andrew.soward@ncl.ac.uk organization: 2Laboratoire Atmosphères Milieux Observations Spatiales (LATMOS/IPSL), Sorbonne Université, UVSQ, CNRS, Paris, France – sequence: 3 givenname: E. orcidid: 0000-0002-9683-6173 surname: Dormy fullname: Dormy, E. email: andrew.soward@ncl.ac.uk organization: 3Département de Mathématiques et Applications, UMR-8553, École Normale Supérieure, CNRS, PSL University, 75005 Paris, France |
BackLink | https://hal.science/hal-03767406$$DView record in HAL |
BookMark | eNptkMtKAzEUhoNUsF52PkDAleDUk7kknWUVb1Bwo-uQ27RTpklNMtU-ks_hi5mhohtXB875_o_Df4xG1lmD0DmBCQHCrlfNepJDnk8YJQdoTEpaZ4yW1QiNIa0zQnI4QschrABIATUbI3fz9WmF11g5uzUqts7i1mKBQ-feux32LorY2gXeGGt3WViKjUnwrmutNh6HXq5SCkc3CEIUNuKlERE3Xf-BpeutFn433HQ7uMMpOmxEF8zZzzxBr_d3L7eP2fz54el2Ns9UUZCYacNAiRJA10pqNZXCVJJSVjSynBLFSG1yUYlpJY2utU7HMtdUMiWVYlVTFSfocu9dio5vfLtOb3AnWv44m_NhBwWjrAS6JYm92LMb7956EyJfud7b9B7PWUGgAgY0UVd7SnkXgjfNr5YAH-rnqX4-1M9T_Qmf_OBiLX2rF-bP-m_gG15EjFM |
Cites_doi | 10.1086/112908 10.1016/0167-2789(85)90181-2 10.1017/jfm.2016.846 10.1080/0309192021000036996 10.1017/S0022112092003355 10.1103/RevModPhys.65.851 10.1103/PhysRevE.70.066304 10.1016/0012-821X(80)90217-4 10.1017/S0022112069001327 10.1088/0951-7715/13/4/317 10.1103/PhysRevFluids.3.013502 10.1017/S0022112080001917 10.1080/03091929908203705 10.1017/jfm.2014.542 10.1137/S0036139996314003 10.1016/0167-2789(82)90063-X 10.1007/978-1-4612-1140-2 10.1017/jfm.2015.606 |
ContentType | Journal Article |
Copyright | The Author(s), 2022. Published by Cambridge University Press Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), 2022. Published by Cambridge University Press – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W 1XC VOOES |
DOI | 10.1017/jfm.2022.761 |
DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Proquest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
ExternalDocumentID | oai_HAL_hal_03767406v1 10_1017_jfm_2022_761 |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFZFC AKMAY CITATION DC4 PHGZM PHGZT 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U -1F -2P -2V -~6 -~N 1XC 6TJ 6~7 8WZ 9M5 A6W AATMM ABDMP ABDPE ABFSI ABKAW ABVFV ABZUI ACETC ACKIV ACRPL ADNMO ADOVH AEBPU AEHGV AEMFK AENCP AGLWM AGQPQ AI. ALEEW BESQT BQFHP CAG CCUQV CDIZJ COF EJD H~9 I.7 I.9 KAFGG LHUNA NMFBF RIG VH1 VOH VOOES ZE2 ZJOSE ZMEZD ZY4 ~V1 |
ID | FETCH-LOGICAL-c331t-de70ca400d9cbdc8bae5b6673fb481c719e2a5a85bed9dde5b42d6b7cbcc75f53 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Fri May 09 12:23:30 EDT 2025 Sat Aug 16 15:52:13 EDT 2025 Tue Jul 01 03:01:34 EDT 2025 Wed Mar 13 05:55:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | A5 |
Keywords | rotating flows atmospheric flows Bénard convection |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-de70ca400d9cbdc8bae5b6673fb481c719e2a5a85bed9dde5b42d6b7cbcc75f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5536-5718 0000-0003-0230-8634 0000-0002-9683-6173 |
OpenAccessLink | https://hal.science/hal-03767406 |
PQID | 2731050706 |
PQPubID | 34769 |
PageCount | 36 |
ParticipantIDs | hal_primary_oai_HAL_hal_03767406v1 proquest_journals_2731050706 crossref_primary_10_1017_jfm_2022_761 cambridge_journals_10_1017_jfm_2022_761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-25 |
PublicationDateYYYYMMDD | 2022-11-25 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2022 |
Publisher | Cambridge University Press Cambridge University Press (CUP) |
Publisher_xml | – name: Cambridge University Press – name: Cambridge University Press (CUP) |
References | 2017; 812 2018; 3 2014; 758 2004; 70 2002; 96 2015; 784 2000; 13 1993; 65 1980; 54 1982; 4 1992; 237 1969; 35 1999; 91 1980; 101 1981; 86 1998; 58 1985; 14 S0022112022007613_ref8 S0022112022007613_ref9 S0022112022007613_ref6 S0022112022007613_ref7 S0022112022007613_ref12 S0022112022007613_ref11 S0022112022007613_ref10 S0022112022007613_ref16 S0022112022007613_ref15 S0022112022007613_ref14 S0022112022007613_ref13 S0022112022007613_ref19 S0022112022007613_ref18 S0022112022007613_ref17 S0022112022007613_ref1 S0022112022007613_ref4 S0022112022007613_ref5 S0022112022007613_ref2 S0022112022007613_ref3 |
References_xml | – volume: 758 start-page: 407 year: 2014 end-page: 435 article-title: Large-scale vortices in rapidly rotating Rayleigh–Bénard convection publication-title: J. Fluid Mech. – volume: 784 start-page: R2 year: 2015 article-title: The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection publication-title: J. Fluid Mech. – volume: 237 start-page: 57 year: 1992 end-page: 71 article-title: Fixed-flux convection in a tilted slot publication-title: J. Fluid Mech. – volume: 14 start-page: 227 issue: 2 year: 1985 end-page: 241 article-title: Bifurcation and stability of finite amplitude convection in a rotating layer publication-title: Physica D – volume: 70 start-page: 066304 year: 2004 article-title: Chemoconvection patterns in the methylene-blue–glucose system: weakly nonlinear analysis publication-title: Phys. Rev. E – volume: 101 start-page: 759 issue: 4 year: 1980 end-page: 782 article-title: Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries publication-title: J. Fluid Mech. – volume: 13 start-page: 1293 year: 2000 end-page: 1320 article-title: Pattern formation with a conservation law publication-title: Nonlinearity – volume: 3 start-page: 013502 year: 2018 article-title: Formation of eyes in large-scale cyclonic vortices publication-title: Phys. Rev. Fluids – volume: 96 start-page: 439 issue: 6 year: 2002 end-page: 459 article-title: Linear instability of thermal convection in rotating systems with fixed heat flux boundaries publication-title: Geophys. Astrophys. Fluid Dyn. – volume: 65 start-page: 851 year: 1993 article-title: Pattern formation outside of equilibrium publication-title: Rev. Mod. Phys. – volume: 35 start-page: 609 year: 1969 end-page: 620 article-title: Transition from laminar convection to thermal turbulence in a rotating fluid layer publication-title: J. Fluid Mech. – volume: 58 start-page: 1338 issue: 4 year: 1998 end-page: 1364 article-title: Long-wavelength rotating convection between poorly conducting boundaries publication-title: SIAM J. Appl. Maths – volume: 86 start-page: 496 issue: 3 year: 1981 end-page: 512 article-title: The large-scale structure of compressible convection publication-title: Astron. J. – volume: 812 start-page: 890 year: 2017 end-page: 904 article-title: Eye formation in rotating convection publication-title: J. Fluid Mech. – volume: 91 start-page: 223 year: 1999 end-page: 250 article-title: Thermal convection in a layer bounded by uniform heat flux: application of a strongly nonlinear analytic solution publication-title: Geophys. Astrophys. Fluid Dyn. – volume: 4 start-page: 227 issue: 2 year: 1982 end-page: 235 article-title: Large cells in nonlinear Marangoni convection publication-title: Physica D – volume: 54 start-page: 362 year: 1980 end-page: 369 article-title: Long wavelength thermal convection between non-conducting boundaries publication-title: Earth Planet. Sci. Lett. – ident: S0022112022007613_ref7 doi: 10.1086/112908 – ident: S0022112022007613_ref18 doi: 10.1016/0167-2789(85)90181-2 – ident: S0022112022007613_ref14 doi: 10.1017/jfm.2016.846 – ident: S0022112022007613_ref19 doi: 10.1080/0309192021000036996 – ident: S0022112022007613_ref2 doi: 10.1017/S0022112092003355 – ident: S0022112022007613_ref6 doi: 10.1103/RevModPhys.65.851 – ident: S0022112022007613_ref16 doi: 10.1103/PhysRevE.70.066304 – ident: S0022112022007613_ref3 doi: 10.1016/0012-821X(80)90217-4 – ident: S0022112022007613_ref12 doi: 10.1017/S0022112069001327 – ident: S0022112022007613_ref13 doi: 10.1088/0951-7715/13/4/317 – ident: S0022112022007613_ref15 doi: 10.1103/PhysRevFluids.3.013502 – ident: S0022112022007613_ref4 doi: 10.1017/S0022112080001917 – ident: S0022112022007613_ref9 doi: 10.1080/03091929908203705 – ident: S0022112022007613_ref11 doi: 10.1017/jfm.2014.542 – ident: S0022112022007613_ref5 doi: 10.1137/S0036139996314003 – ident: S0022112022007613_ref8 – ident: S0022112022007613_ref17 doi: 10.1016/0167-2789(82)90063-X – ident: S0022112022007613_ref10 doi: 10.1007/978-1-4612-1140-2 – ident: S0022112022007613_ref1 doi: 10.1017/jfm.2015.606 |
SSID | ssj0013097 |
Score | 2.4043934 |
Snippet | We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$, which rotates with angular velocity $\varOmega$ about... We consider axisymmetric Boussinesq convection in a shallow cylinder of radius $L$ and depth $H (\ll L)$ , which rotates with angular velocity $\varOmega$... We consider axisymmetric Boussinesq convection in a shallow cylinder of radius \(L\) and depth \(H (\ll L)\), which rotates with angular velocity \(\varOmega\)... We consider axisymmetric Boussinesq convection in a shallow cylinder radius, L, and depth, H (<< L), which rotates with angular velocity Ω about its axis of... |
SourceID | hal proquest crossref cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
SubjectTerms | Angular momentum Angular velocity Asymptotic methods Asymptotic series Atmospheric and Oceanic Physics Boundary conditions Boussinesq approximation Boussinesq equations Convection Cylinders Direct numerical simulation Equations of motion Fluid Dynamics Heat Heat flux Heat transfer JFM Papers Methods Momentum Photosystem I Physics Prandtl number Rayleigh number Rotating cylinders Symmetry Velocity |
Title | Bénard convection in a slowly rotating penny-shaped cylinder subject to constant heat flux boundary conditions |
URI | https://www.cambridge.org/core/product/identifier/S0022112022007613/type/journal_article https://www.proquest.com/docview/2731050706 https://hal.science/hal-03767406 |
Volume | 951 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFL1aVyGxBxiFicFWWQjEkyFfbpKnqWMrFdomBEzaW-SvbENV0jXpRn_Sfsf-2O5N3BWQ4DW2bCnn-vja9_pcgLc2jHUihc9VOlA80p7m0pKKaC5TYZSvo4jeOx-fDMan0ZczceYu3CqXVrnkxIaoTanpjvwjbrPoCqCBDvamV5yqRlF01ZXQ6EAXKTjBw1d3__Dk67dVHMFL46VeOHoWnkt9J9Honzk9RA-CDzEJZK-EFf7YoDoXlB75F0s3W89oE544n5ENW5CfwZotevDU-Y_Mrc6qBxu_iQv24FGT3Kmr51Du390WaAmsSTFvHjKwy4JJVk3Km8mCzUqKxxfnbIqsu-DVhZziuHoxISnFGavmii5rWF3SAORN1owonOWT-S-mmrpMswW1mTb_6wWcjg5_fBpzV2iB6zD0a25s7GmJq9mkWhmdKGmFonqguYoSX8d-agMpZCKUNSnyoVBRYAYq1krrWOQi3IL1oizsS2Ch8Cn0J6RvQjxpGuTSSOSh0okIjB-ZbXj_8Kczt1yqrE01izPEJCNMMsRkG94tccimrfLGP_q9QZAeupBc9nh4lNE3j6Rq0GO5xk47SwxXs65M6tX_m1_D46C1IB6IHVivZ3O7i75IrfrQSUaf-9AdHhwffe8787sH8kDiIg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQ5FFiKKBSwEBUn08SJN8kBofJYtnTbUyv1FvwKLVolyyZLyU_qhT_BH2Mmjy4gwa3X2HKkfJ9nxvHMNwDPXRCZWEmf62SoeWg8w5UjFdFMJdJq34Qh1TsfHA7Hx-HHE3myAj_6WhhKq-xtYmOobWHoH_kOulkMBZCgw9ezr5y6RtHtat9Co6XFvqvP8chWvtp7h_huCzF6f_R2zLuuAtwEgV9x6yLPKKSuTYy2JtbKSU3NLzMdxr6J_MQJJVUstbMJbn6pQ2GHOjLamEhm1CUCTf71MAgS2lHx6MPy1sJLol6dHOMYr0u0J4nqLxmVvQvxMiI57qWMwx_u8NopJWP-5RMaRze6A-tdhMp2W0rdhRWXD-B2F62yzhaUA7j1m5ThAG40qaSmvAfFm58XOfKONQntTdkEO8uZYuW0OJ_WbF7Q7X_-mc3Qxte8PFUzXNfUUxJunLNyoenXEKsKWoBi14qRw2DZdPGd6aYL1LymMdtmm23A8ZUAcB9W8yJ3D4AF0qeLRql8G-C51qLlDmUWaBNLYf3QbsKLyy-ddpuzTNvEtihFTFLCJEVMNmG7xyGdtTof_5j3DEG6nELi3OPdSUrPPBLGwfjoG07a6jFcvnVJ4If_H34KN8dHB5N0sne4_wjWRMsmLuQWrFbzhXuMUVClnzTUY_Dpqrn-C1NWHlM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B%C3%A9nard+convection+in+a+slowly+rotating+penny-shaped+cylinder+subject+to+constant+heat+flux+boundary+conditions&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Soward%2C+A.M.&rft.au=Oruba%2C+L.&rft.au=Dormy%2C+E.&rft.date=2022-11-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=951&rft_id=info:doi/10.1017%2Fjfm.2022.761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2022_761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |