Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods
•A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and desig...
Saved in:
Published in | Mechanical systems and signal processing Vol. 162; p. 107975 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and design schemes.
A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain. |
---|---|
AbstractList | A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain. •A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and design schemes. A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain. |
ArticleNumber | 107975 |
Author | Kougioumtzoglou, Ioannis A. dos Santos, Ketson R.M. Beer, Michael Pasparakis, George D. |
Author_xml | – sequence: 1 givenname: George D. surname: Pasparakis fullname: Pasparakis, George D. organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany – sequence: 2 givenname: Ketson R.M. surname: dos Santos fullname: dos Santos, Ketson R.M. organization: Earthquake Engineering and Structural Dynamics Laboratory (EESD), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland – sequence: 3 givenname: Ioannis A. surname: Kougioumtzoglou fullname: Kougioumtzoglou, Ioannis A. email: iak2115@columbia.edu organization: Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, United States – sequence: 4 givenname: Michael surname: Beer fullname: Beer, Michael organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany |
BookMark | eNqFkD1P5DAQhi0EEsvHL6CxdHUWfyR2UlyB0B0gIdGAKC3HnoCXJA622WM7fjreDRXFUY3mnfcde54jtD_6ERA6o2RJCRXnq-VmiHFaMsJoVmQjqz20oKQRBWVU7KMFqeu64EySQ3QU44oQ0pRELNDHoxsttjppDO8p6Mn3Ojk_Yp3lmLx51jE5gzsH_VbIw20fMeQyzNa109j4YQoQo1sDjnqYejc-7Xb0_h8OenzB2RzcOw5g_BrCBg-Qnr2NJ-ig032E0696jB7-_rm_vC5u765uLi9uC8M5TYVtaCkkE1qyWkpmiJRU8tJIygjpStl2tqw62RpBBac1iBaohaZlxHLRloIfo1_z3in417f8e7Xyb2HMTypW1WVVU16R7Gpmlwk-xgCdMi7trsxsXK8oUVvgaqV2wNUWuJqB5yz_lp1CRhQ2P6R-zynIx68dBBWNg9GAdRlVUta7_-Y_AXcOoBs |
CitedBy_id | crossref_primary_10_1016_j_ymssp_2024_112172 crossref_primary_10_1016_j_jweia_2022_105201 crossref_primary_10_1088_1361_6501_ace19f crossref_primary_10_1142_S021945542340028X crossref_primary_10_1016_j_cma_2022_115689 crossref_primary_10_1016_j_ymssp_2021_108613 crossref_primary_10_1016_j_ymssp_2023_110573 crossref_primary_10_1016_j_compstruc_2023_107070 crossref_primary_10_1016_j_ymssp_2022_109730 |
Cites_doi | 10.1090/mcom/3239 10.1007/s10208-009-9045-5 10.1016/j.jweia.2006.01.004 10.1002/we.1824 10.1016/j.compstruc.2016.11.012 10.1061/(ASCE)EM.1943-7889.0001525 10.1109/ACCESS.2018.2883677 10.1137/080714488 10.1002/cpa.20124 10.1016/j.measurement.2016.04.049 10.1016/j.jweia.2015.10.004 10.1137/1.9780898719512 10.1016/j.probengmech.2020.103082 10.1061/(ASCE)0733-9399(1989)115:12(2723) 10.1016/j.apor.2017.09.011 10.1109/CIES.2014.7011840 10.1016/j.strusafe.2016.01.003 10.1109/TIT.2006.871582 10.1016/j.ymssp.2017.08.017 10.1016/j.ymssp.2019.04.014 10.1016/j.jweia.2020.104340 10.1007/BFb0067703 10.1016/j.ymssp.2019.106610 10.1002/eqe.4290210406 10.1007/BF00934777 10.1016/j.oceaneng.2018.03.044 10.1023/A:1000676021745 10.1007/BF00927673 10.1175/JTECH-D-15-0010.1 10.1016/j.probengmech.2015.09.015 10.1137/S003614450037906X 10.1016/j.energy.2018.02.141 10.1002/stc.1737 10.1016/j.ymssp.2015.11.009 10.1137/080738970 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 1, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2022 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2021.107975 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2021_107975 S0888327021003708 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-d9146726a728772c0771734c71200f47bfd45f7bc616318e6be1de9b20d36b463 |
IEDL.DBID | .~1 |
ISSN | 0888-3270 |
IngestDate | Fri Jul 25 05:13:22 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Tue Jul 01 04:30:10 EDT 2025 Fri Feb 23 02:43:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Low-rank matrix Sparse representations Wind data Stochastic field Compressive sampling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-d9146726a728772c0771734c71200f47bfd45f7bc616318e6be1de9b20d36b463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2584581350 |
PQPubID | 2045429 |
ParticipantIDs | proquest_journals_2584581350 crossref_citationtrail_10_1016_j_ymssp_2021_107975 crossref_primary_10_1016_j_ymssp_2021_107975 elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107975 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Lin, Li (b0055) 2020; 205 Chen, Donoho, Saunders (b0145) 2001; 43 Rockafellar (b0195) 1973; 12 Benowitz, Deodatis (b0085) 2015; 147 Ni, Li (b0045) 2016; 88 Eldar, Kutyniok (b0125) 2012 Malara, Kougioumtzoglou, Arena (b0130) 2018; 157 C.D. Meyer, Matrix analysis and applied linear algebra, Vol. 71, Siam, 2000. Qin, Liu, Long, Shahzad, Schlaberg, Yan (b0035) 2018; 151 Friedland, Lim (b0160) 2018; 87 Comerford, Jensen, Mayorga, Beer, Kougioumtzoglou (b0020) 2017; 182 Deodatis, Shinozuka (b0100) 1989; 115 E. Simiu, R.H. Scanlan, Wind effects on structures: fundamentals and applications to design. Frehlich, Hannon, Henderson (b0005) 1998; 86 Comerford, Kougioumtzoglou, Beer (b0065) 2016; 44 Mitseas, Kougioumtzoglou, Beer (b0025) 2016; 60 Kougioumtzoglou, Petromichelakis, Psaros (b0080) 2020; 61 Laface, Kougioumtzoglou, Malara, Arena (b0070) 2017; 69 Carassale, Solari (b0015) 2006; 94 Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint L.A. Comerford, M. Beer, I.A. Kougioumtzoglou, Compressive sensing based power spectrum estimation from incomplete records by utilizing an adaptive basis, in: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), 2014, pp. 117–124. Cai, Candès, Shen (b0180) 2010; 20 M.J. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical analysis, Springer, 1978, pp. 144–157. Mohandes, Rehman (b0050) 2018; 6 Candès, Recht (b0165) 2009; 9 Van Den Berg, Friedlander (b0150) 2009; 31 Yang, Nagarajaiah, Ni (b0170) 2015; 22 . Yang, Nagarajaiah (b0175) 2016; 74 Dérian, Mauzey, Mayor (b0030) 2015; 32 Zhang, Comerford, Kougioumtzoglou, Beer (b0075) 2018; 101 Hestenes (b0190) 1969; 4 Candes, Romberg, Tao (b0115) 2006; 59 M. Shinozuka, G. Deodatis, Simulation of multi-dimensional gaussian stochastic fields by spectral representation. Chen, Song, Peng, Spanos (b0095) 2018; 144 Zerva (b0110) 1992; 21 Towers, Jones (b0060) 2016; 19 M. Harris, M. Hand, A. Wright, Lidar for turbine control, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154. Psaros, Petromichelakis, Kougioumtzoglou (b0140) 2019; 128 Donoho (b0120) 2006; 52 Qu, Liu, Ma, Zang, Fu (b0040) 2020; 139 Kougioumtzoglou (10.1016/j.ymssp.2021.107975_b0080) 2020; 61 Qu (10.1016/j.ymssp.2021.107975_b0040) 2020; 139 Mitseas (10.1016/j.ymssp.2021.107975_b0025) 2016; 60 Cai (10.1016/j.ymssp.2021.107975_b0180) 2010; 20 Comerford (10.1016/j.ymssp.2021.107975_b0020) 2017; 182 Donoho (10.1016/j.ymssp.2021.107975_b0120) 2006; 52 Chen (10.1016/j.ymssp.2021.107975_b0145) 2001; 43 10.1016/j.ymssp.2021.107975_b0185 Zhang (10.1016/j.ymssp.2021.107975_b0075) 2018; 101 Deodatis (10.1016/j.ymssp.2021.107975_b0100) 1989; 115 Van Den Berg (10.1016/j.ymssp.2021.107975_b0150) 2009; 31 Rockafellar (10.1016/j.ymssp.2021.107975_b0195) 1973; 12 10.1016/j.ymssp.2021.107975_b0155 10.1016/j.ymssp.2021.107975_b0010 Towers (10.1016/j.ymssp.2021.107975_b0060) 2016; 19 10.1016/j.ymssp.2021.107975_b0135 Yang (10.1016/j.ymssp.2021.107975_b0170) 2015; 22 Candes (10.1016/j.ymssp.2021.107975_b0115) 2006; 59 Carassale (10.1016/j.ymssp.2021.107975_b0015) 2006; 94 Eldar (10.1016/j.ymssp.2021.107975_b0125) 2012 Laface (10.1016/j.ymssp.2021.107975_b0070) 2017; 69 Hestenes (10.1016/j.ymssp.2021.107975_b0190) 1969; 4 Zerva (10.1016/j.ymssp.2021.107975_b0110) 1992; 21 Dérian (10.1016/j.ymssp.2021.107975_b0030) 2015; 32 Candès (10.1016/j.ymssp.2021.107975_b0165) 2009; 9 Benowitz (10.1016/j.ymssp.2021.107975_b0085) 2015; 147 10.1016/j.ymssp.2021.107975_b0090 Lin (10.1016/j.ymssp.2021.107975_b0055) 2020; 205 10.1016/j.ymssp.2021.107975_b0200 Chen (10.1016/j.ymssp.2021.107975_b0095) 2018; 144 Mohandes (10.1016/j.ymssp.2021.107975_b0050) 2018; 6 Psaros (10.1016/j.ymssp.2021.107975_b0140) 2019; 128 Frehlich (10.1016/j.ymssp.2021.107975_b0005) 1998; 86 10.1016/j.ymssp.2021.107975_b0105 Comerford (10.1016/j.ymssp.2021.107975_b0065) 2016; 44 Qin (10.1016/j.ymssp.2021.107975_b0035) 2018; 151 Friedland (10.1016/j.ymssp.2021.107975_b0160) 2018; 87 Malara (10.1016/j.ymssp.2021.107975_b0130) 2018; 157 Ni (10.1016/j.ymssp.2021.107975_b0045) 2016; 88 Yang (10.1016/j.ymssp.2021.107975_b0175) 2016; 74 |
References_xml | – reference: M. Harris, M. Hand, A. Wright, Lidar for turbine control, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154. – volume: 20 start-page: 1956 year: 2010 end-page: 1982 ident: b0180 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. – volume: 87 start-page: 1255 year: 2018 end-page: 1281 ident: b0160 article-title: Nuclear norm of higher-order tensors publication-title: Math. Comput. – volume: 9 start-page: 717 year: 2009 ident: b0165 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. – volume: 32 start-page: 1759 year: 2015 end-page: 1778 ident: b0030 article-title: Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data publication-title: J. Atmos. Ocean. Technol. – volume: 151 start-page: 272 year: 2018 end-page: 288 ident: b0035 article-title: Wind field reconstruction using dimension-reduction of cfd data with experimental validation publication-title: Energy – volume: 115 start-page: 2723 year: 1989 end-page: 2737 ident: b0100 article-title: Simulation of seismic ground motion using stochastic waves publication-title: J. Eng. Mech. – volume: 182 start-page: 26 year: 2017 end-page: 40 ident: b0020 article-title: Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data publication-title: Comput. Struct. – volume: 69 start-page: 1 year: 2017 end-page: 9 ident: b0070 article-title: Efficient processing of water wave records via compressive sensing and joint time-frequency analysis via harmonic wavelets publication-title: Appl. Ocean Res. – volume: 61 year: 2020 ident: b0080 article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications publication-title: Probab. Eng. Mech. – volume: 19 start-page: 133 year: 2016 end-page: 150 ident: b0060 article-title: Real-time wind field reconstruction from lidar measurements using a dynamic wind model and state estimation publication-title: Wind Energy – reference: C.D. Meyer, Matrix analysis and applied linear algebra, Vol. 71, Siam, 2000. – reference: L.A. Comerford, M. Beer, I.A. Kougioumtzoglou, Compressive sensing based power spectrum estimation from incomplete records by utilizing an adaptive basis, in: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), 2014, pp. 117–124. – volume: 88 start-page: 468 year: 2016 end-page: 476 ident: b0045 article-title: Wind pressure data reconstruction using neural network techniques: A comparison between bpnn and grnn publication-title: Measurement – volume: 128 start-page: 551 year: 2019 end-page: 571 ident: b0140 article-title: Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems publication-title: Mech. Syst. Sig. Process. – volume: 6 start-page: 77634 year: 2018 end-page: 77642 ident: b0050 article-title: Wind speed extrapolation using machine learning methods and lidar measurements publication-title: IEEE Access – year: 2012 ident: b0125 article-title: Compressed sensing: theory and applications – reference: M.J. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical analysis, Springer, 1978, pp. 144–157. – volume: 101 start-page: 361 year: 2018 end-page: 376 ident: b0075 article-title: -norm minimization for stochastic process power spectrum estimation subject to incomplete data publication-title: Mech. Syst. Sig. Process. – volume: 157 start-page: 87 year: 2018 end-page: 95 ident: b0130 article-title: Extrapolation of random wave field data via compressive sampling publication-title: Ocean Eng. – reference: E. Simiu, R.H. Scanlan, Wind effects on structures: fundamentals and applications to design. – volume: 12 start-page: 555 year: 1973 end-page: 562 ident: b0195 article-title: The multiplier method of hestenes and powell applied to convex programming publication-title: J. Optim. Theory Appl. – volume: 44 start-page: 66 year: 2016 end-page: 76 ident: b0065 article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data publication-title: Probab. Eng. Mech. – volume: 31 start-page: 890 year: 2009 end-page: 912 ident: b0150 article-title: Probing the pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. – volume: 86 start-page: 233 year: 1998 end-page: 256 ident: b0005 article-title: Coherent doppler lidar measurements of wind field statistics publication-title: Bound.-Layer Meteorol. – volume: 144 start-page: 04018100 year: 2018 ident: b0095 article-title: Simulation of homogeneous fluctuating wind field in two spatial dimensions via a joint wave number–frequency power spectrum publication-title: J. Eng. Mech. – volume: 22 start-page: 1119 year: 2015 end-page: 1131 ident: b0170 article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape publication-title: Struct. Control Health Monit. – volume: 94 start-page: 323 year: 2006 end-page: 339 ident: b0015 article-title: Monte carlo simulation of wind velocity fields on complex structures publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 139 year: 2020 ident: b0040 article-title: A novel wind turbine data imputation method with multiple optimizations based on gans publication-title: Mech. Syst. Sig. Process. – volume: 59 start-page: 1207 year: 2006 end-page: 1223 ident: b0115 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Commun. Pure Appl. Math. – volume: 43 start-page: 129 year: 2001 end-page: 159 ident: b0145 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. – volume: 205 year: 2020 ident: b0055 article-title: Kriging based sequence interpolation and probability distribution correction for gaussian wind field data reconstruction publication-title: J. Wind Eng. Ind. Aerodyn. – reference: . – volume: 74 start-page: 165 year: 2016 end-page: 182 ident: b0175 article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure publication-title: Mech. Syst. Sig. Process. – volume: 4 start-page: 303 year: 1969 end-page: 320 ident: b0190 article-title: Multiplier and gradient methods publication-title: J. Optim. Theory Appl. – reference: Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint – volume: 60 start-page: 67 year: 2016 end-page: 76 ident: b0025 article-title: An approximate stochastic dynamics approach for nonlinear structural system performance-based multi-objective optimum design publication-title: Struct. Saf. – reference: M. Shinozuka, G. Deodatis, Simulation of multi-dimensional gaussian stochastic fields by spectral representation. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b0120 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 147 start-page: 154 year: 2015 end-page: 163 ident: b0085 article-title: Simulation of wind velocities on long span structures: A novel stochastic wave based model publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 21 start-page: 351 year: 1992 end-page: 361 ident: b0110 article-title: Seismic ground motion simulations from a class of spatial variability models publication-title: Earthquake Eng. Struct. Dyn. – volume: 87 start-page: 1255 issue: 311 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0160 article-title: Nuclear norm of higher-order tensors publication-title: Math. Comput. doi: 10.1090/mcom/3239 – volume: 9 start-page: 717 issue: 6 year: 2009 ident: 10.1016/j.ymssp.2021.107975_b0165 article-title: Exact matrix completion via convex optimization publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9045-5 – ident: 10.1016/j.ymssp.2021.107975_b0010 – volume: 94 start-page: 323 issue: 5 year: 2006 ident: 10.1016/j.ymssp.2021.107975_b0015 article-title: Monte carlo simulation of wind velocity fields on complex structures publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2006.01.004 – volume: 19 start-page: 133 issue: 1 year: 2016 ident: 10.1016/j.ymssp.2021.107975_b0060 article-title: Real-time wind field reconstruction from lidar measurements using a dynamic wind model and state estimation publication-title: Wind Energy doi: 10.1002/we.1824 – volume: 182 start-page: 26 year: 2017 ident: 10.1016/j.ymssp.2021.107975_b0020 article-title: Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.11.012 – volume: 144 start-page: 04018100 issue: 11 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0095 article-title: Simulation of homogeneous fluctuating wind field in two spatial dimensions via a joint wave number–frequency power spectrum publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001525 – volume: 6 start-page: 77634 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0050 article-title: Wind speed extrapolation using machine learning methods and lidar measurements publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883677 – volume: 31 start-page: 890 issue: 2 year: 2009 ident: 10.1016/j.ymssp.2021.107975_b0150 article-title: Probing the pareto frontier for basis pursuit solutions publication-title: SIAM J. Sci. Comput. doi: 10.1137/080714488 – volume: 59 start-page: 1207 issue: 8 year: 2006 ident: 10.1016/j.ymssp.2021.107975_b0115 article-title: Stable signal recovery from incomplete and inaccurate measurements publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20124 – volume: 88 start-page: 468 year: 2016 ident: 10.1016/j.ymssp.2021.107975_b0045 article-title: Wind pressure data reconstruction using neural network techniques: A comparison between bpnn and grnn publication-title: Measurement doi: 10.1016/j.measurement.2016.04.049 – volume: 147 start-page: 154 year: 2015 ident: 10.1016/j.ymssp.2021.107975_b0085 article-title: Simulation of wind velocities on long span structures: A novel stochastic wave based model publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.10.004 – ident: 10.1016/j.ymssp.2021.107975_b0155 doi: 10.1137/1.9780898719512 – volume: 61 year: 2020 ident: 10.1016/j.ymssp.2021.107975_b0080 article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2020.103082 – volume: 115 start-page: 2723 issue: 12 year: 1989 ident: 10.1016/j.ymssp.2021.107975_b0100 article-title: Simulation of seismic ground motion using stochastic waves publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1989)115:12(2723) – volume: 69 start-page: 1 year: 2017 ident: 10.1016/j.ymssp.2021.107975_b0070 article-title: Efficient processing of water wave records via compressive sensing and joint time-frequency analysis via harmonic wavelets publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2017.09.011 – ident: 10.1016/j.ymssp.2021.107975_b0135 doi: 10.1109/CIES.2014.7011840 – volume: 60 start-page: 67 year: 2016 ident: 10.1016/j.ymssp.2021.107975_b0025 article-title: An approximate stochastic dynamics approach for nonlinear structural system performance-based multi-objective optimum design publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2016.01.003 – ident: 10.1016/j.ymssp.2021.107975_b0090 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.ymssp.2021.107975_b0120 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 101 start-page: 361 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0075 article-title: Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.08.017 – volume: 128 start-page: 551 year: 2019 ident: 10.1016/j.ymssp.2021.107975_b0140 article-title: Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.04.014 – volume: 205 year: 2020 ident: 10.1016/j.ymssp.2021.107975_b0055 article-title: Kriging based sequence interpolation and probability distribution correction for gaussian wind field data reconstruction publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2020.104340 – ident: 10.1016/j.ymssp.2021.107975_b0200 doi: 10.1007/BFb0067703 – volume: 139 year: 2020 ident: 10.1016/j.ymssp.2021.107975_b0040 article-title: A novel wind turbine data imputation method with multiple optimizations based on gans publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.106610 – volume: 21 start-page: 351 issue: 4 year: 1992 ident: 10.1016/j.ymssp.2021.107975_b0110 article-title: Seismic ground motion simulations from a class of spatial variability models publication-title: Earthquake Eng. Struct. Dyn. doi: 10.1002/eqe.4290210406 – volume: 12 start-page: 555 issue: 6 year: 1973 ident: 10.1016/j.ymssp.2021.107975_b0195 article-title: The multiplier method of hestenes and powell applied to convex programming publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934777 – volume: 157 start-page: 87 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0130 article-title: Extrapolation of random wave field data via compressive sampling publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2018.03.044 – volume: 86 start-page: 233 issue: 2 year: 1998 ident: 10.1016/j.ymssp.2021.107975_b0005 article-title: Coherent doppler lidar measurements of wind field statistics publication-title: Bound.-Layer Meteorol. doi: 10.1023/A:1000676021745 – volume: 4 start-page: 303 issue: 5 year: 1969 ident: 10.1016/j.ymssp.2021.107975_b0190 article-title: Multiplier and gradient methods publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00927673 – volume: 32 start-page: 1759 issue: 10 year: 2015 ident: 10.1016/j.ymssp.2021.107975_b0030 article-title: Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-15-0010.1 – volume: 44 start-page: 66 year: 2016 ident: 10.1016/j.ymssp.2021.107975_b0065 article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2015.09.015 – year: 2012 ident: 10.1016/j.ymssp.2021.107975_b0125 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 10.1016/j.ymssp.2021.107975_b0145 article-title: Atomic decomposition by basis pursuit publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – volume: 151 start-page: 272 year: 2018 ident: 10.1016/j.ymssp.2021.107975_b0035 article-title: Wind field reconstruction using dimension-reduction of cfd data with experimental validation publication-title: Energy doi: 10.1016/j.energy.2018.02.141 – ident: 10.1016/j.ymssp.2021.107975_b0105 – volume: 22 start-page: 1119 issue: 8 year: 2015 ident: 10.1016/j.ymssp.2021.107975_b0170 article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape publication-title: Struct. Control Health Monit. doi: 10.1002/stc.1737 – volume: 74 start-page: 165 year: 2016 ident: 10.1016/j.ymssp.2021.107975_b0175 article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.11.009 – ident: 10.1016/j.ymssp.2021.107975_b0185 – volume: 20 start-page: 1956 issue: 4 year: 2010 ident: 10.1016/j.ymssp.2021.107975_b0180 article-title: A singular value thresholding algorithm for matrix completion publication-title: SIAM J. Optim. doi: 10.1137/080738970 |
SSID | ssj0009406 |
Score | 2.4229045 |
Snippet | •A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis... A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107975 |
SubjectTerms | Compressive sampling Computing costs Design optimization Domains Environment models Extrapolation Low-rank matrix Methodology Missing data Power spectral density Reconstruction Sampling Sparse representations Stochastic field Time measurement Wavelengths Wind data Wind turbines |
Title | Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods |
URI | https://dx.doi.org/10.1016/j.ymssp.2021.107975 https://www.proquest.com/docview/2584581350 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQLDAgTnEU5IGR0MTx0YwIgQoIFkCwWbbjQBG0FSlHF8RP5z0n4RJiYLUcK_K7k-99j5CtJHUdVwgWMW5ExKGEiDKRiyhPpIH47ZQIjDcnp7J7wY-uxNUE2Wt6YRBWWfv-yqcHb12vtOvbbA97vfYZ2Aeoo8KiJU5VaPjlXKGW77x-wjwyHuZr4uYIdzfMQwHjNb4vSyStZAmsqAzBhr9Hpx9-OgSfgzkyW2eNdLd6sXky4fsLZOYLl-AiebuE6poi4JOCv30ww0GFcqMGliHDczcGKZlpgKxR7COqKJop0mxU_Yv0qWcoYswDNvbJ09Ig3rx_Hc64GzxTnPBO75HV_4ViKQ12MKbVEOpyiVwc7J_vdaN6vELk0jQZRXmGXpJJo6BqUszFCv_Ig3gSsJyCK1vkXBTKOgk5W9Lx0vok95llcZ5Ky2W6TCb7g75fIbTIhRXWmtgyz6WTNvYKckXPjYyx83WVsOZatau5x3EExp1uQGa3OshCoyx0JYtVsv3x0LCi3vh7u2zkpb9pkIbg8PeDrUa6ujbgUjNIzEQnSUW89t9z18k0w16J8L2mRSZHD49-AzKYkd0MKrpJpnYPj7un71jd8fI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQGYABcYobD4xETRwf7YgQqFxdAMFm2Y4DRaWtSLk2fjrvOQmXEAOrZVuWn9-VfO97hOwkqWu5XLCIcSMiDilE1BaZiLJEGvDfTonAeHPWlZ1LfnwtrifIfl0Lg7DKyvaXNj1Y62qkWd1mc9TrNc9BP-A5Kkxa4lRhwe8kslOJBpncOzrpdD-5d3losYnzI1xQkw8FmNfrfVEgbyVLYES1EW_4u4P6YaqD_zmcI7NV4Ej3yrPNkwk_WCAzX-gEF8nbFSTYFDGfFEzugxkNS6AbNTAMQZ67NcjKTANqjWIpUcnSTJFpoyxhpE89QxFmHuCxT54WBiHng5uwR3_4TLHJO71HYv8Xitk0qMIrLftQF0vk8vDgYr8TVR0WIpemyTjK2mgomTQKEifFXKzwpzxIKAHlybmyecZFrqyTELYlLS-tTzLftizOUmm5TJdJYzAc-BVC80xYYa2JLfNcOmljryBc9NzIGItfVwmrr1W7in4cu2D0dY0zu9NBFhploUtZrJLdj0Wjkn3j7-mylpf-9og0-Ie_F27U0tWVDheaQWwmWkkq4rX_7rtNpjoXZ6f69Kh7sk6mGZZOhM83G6Qxfnj0mxDQjO1W9WDfAZ6C9KM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+data+extrapolation+and+stochastic+field+statistics+estimation+via+compressive+sampling+and+low+rank+matrix+recovery+methods&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Pasparakis%2C+George+D&rft.au=dos+Santos%2C+Ketson+RM&rft.au=Kougioumtzoglou%2C+Ioannis+A&rft.au=Beer%2C+Michael&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=162&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107975&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |