Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods

•A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and desig...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 162; p. 107975
Main Authors Pasparakis, George D., dos Santos, Ketson R.M., Kougioumtzoglou, Ioannis A., Beer, Michael
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and design schemes. A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
AbstractList A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
•A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis scheme.•Higher-dimensional problems are addressed by nuclear norm minimization.•The approach can be integrated with structural system analysis and design schemes. A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l1-norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
ArticleNumber 107975
Author Kougioumtzoglou, Ioannis A.
dos Santos, Ketson R.M.
Beer, Michael
Pasparakis, George D.
Author_xml – sequence: 1
  givenname: George D.
  surname: Pasparakis
  fullname: Pasparakis, George D.
  organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany
– sequence: 2
  givenname: Ketson R.M.
  surname: dos Santos
  fullname: dos Santos, Ketson R.M.
  organization: Earthquake Engineering and Structural Dynamics Laboratory (EESD), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Ioannis A.
  surname: Kougioumtzoglou
  fullname: Kougioumtzoglou, Ioannis A.
  email: iak2115@columbia.edu
  organization: Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, United States
– sequence: 4
  givenname: Michael
  surname: Beer
  fullname: Beer, Michael
  organization: Institute for Risk and Reliability, Leibniz Universität Hannover, Hannover, Germany
BookMark eNqFkD1P5DAQhi0EEsvHL6CxdHUWfyR2UlyB0B0gIdGAKC3HnoCXJA622WM7fjreDRXFUY3mnfcde54jtD_6ERA6o2RJCRXnq-VmiHFaMsJoVmQjqz20oKQRBWVU7KMFqeu64EySQ3QU44oQ0pRELNDHoxsttjppDO8p6Mn3Ojk_Yp3lmLx51jE5gzsH_VbIw20fMeQyzNa109j4YQoQo1sDjnqYejc-7Xb0_h8OenzB2RzcOw5g_BrCBg-Qnr2NJ-ig032E0696jB7-_rm_vC5u765uLi9uC8M5TYVtaCkkE1qyWkpmiJRU8tJIygjpStl2tqw62RpBBac1iBaohaZlxHLRloIfo1_z3in417f8e7Xyb2HMTypW1WVVU16R7Gpmlwk-xgCdMi7trsxsXK8oUVvgaqV2wNUWuJqB5yz_lp1CRhQ2P6R-zynIx68dBBWNg9GAdRlVUta7_-Y_AXcOoBs
CitedBy_id crossref_primary_10_1016_j_ymssp_2024_112172
crossref_primary_10_1016_j_jweia_2022_105201
crossref_primary_10_1088_1361_6501_ace19f
crossref_primary_10_1142_S021945542340028X
crossref_primary_10_1016_j_cma_2022_115689
crossref_primary_10_1016_j_ymssp_2021_108613
crossref_primary_10_1016_j_ymssp_2023_110573
crossref_primary_10_1016_j_compstruc_2023_107070
crossref_primary_10_1016_j_ymssp_2022_109730
Cites_doi 10.1090/mcom/3239
10.1007/s10208-009-9045-5
10.1016/j.jweia.2006.01.004
10.1002/we.1824
10.1016/j.compstruc.2016.11.012
10.1061/(ASCE)EM.1943-7889.0001525
10.1109/ACCESS.2018.2883677
10.1137/080714488
10.1002/cpa.20124
10.1016/j.measurement.2016.04.049
10.1016/j.jweia.2015.10.004
10.1137/1.9780898719512
10.1016/j.probengmech.2020.103082
10.1061/(ASCE)0733-9399(1989)115:12(2723)
10.1016/j.apor.2017.09.011
10.1109/CIES.2014.7011840
10.1016/j.strusafe.2016.01.003
10.1109/TIT.2006.871582
10.1016/j.ymssp.2017.08.017
10.1016/j.ymssp.2019.04.014
10.1016/j.jweia.2020.104340
10.1007/BFb0067703
10.1016/j.ymssp.2019.106610
10.1002/eqe.4290210406
10.1007/BF00934777
10.1016/j.oceaneng.2018.03.044
10.1023/A:1000676021745
10.1007/BF00927673
10.1175/JTECH-D-15-0010.1
10.1016/j.probengmech.2015.09.015
10.1137/S003614450037906X
10.1016/j.energy.2018.02.141
10.1002/stc.1737
10.1016/j.ymssp.2015.11.009
10.1137/080738970
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2021.107975
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2021_107975
S0888327021003708
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-d9146726a728772c0771734c71200f47bfd45f7bc616318e6be1de9b20d36b463
IEDL.DBID .~1
ISSN 0888-3270
IngestDate Fri Jul 25 05:13:22 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Tue Jul 01 04:30:10 EDT 2025
Fri Feb 23 02:43:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Low-rank matrix
Sparse representations
Wind data
Stochastic field
Compressive sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-d9146726a728772c0771734c71200f47bfd45f7bc616318e6be1de9b20d36b463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2584581350
PQPubID 2045429
ParticipantIDs proquest_journals_2584581350
crossref_citationtrail_10_1016_j_ymssp_2021_107975
crossref_primary_10_1016_j_ymssp_2021_107975
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_107975
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lin, Li (b0055) 2020; 205
Chen, Donoho, Saunders (b0145) 2001; 43
Rockafellar (b0195) 1973; 12
Benowitz, Deodatis (b0085) 2015; 147
Ni, Li (b0045) 2016; 88
Eldar, Kutyniok (b0125) 2012
Malara, Kougioumtzoglou, Arena (b0130) 2018; 157
C.D. Meyer, Matrix analysis and applied linear algebra, Vol. 71, Siam, 2000.
Qin, Liu, Long, Shahzad, Schlaberg, Yan (b0035) 2018; 151
Friedland, Lim (b0160) 2018; 87
Comerford, Jensen, Mayorga, Beer, Kougioumtzoglou (b0020) 2017; 182
Deodatis, Shinozuka (b0100) 1989; 115
E. Simiu, R.H. Scanlan, Wind effects on structures: fundamentals and applications to design.
Frehlich, Hannon, Henderson (b0005) 1998; 86
Comerford, Kougioumtzoglou, Beer (b0065) 2016; 44
Mitseas, Kougioumtzoglou, Beer (b0025) 2016; 60
Kougioumtzoglou, Petromichelakis, Psaros (b0080) 2020; 61
Laface, Kougioumtzoglou, Malara, Arena (b0070) 2017; 69
Carassale, Solari (b0015) 2006; 94
Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint
L.A. Comerford, M. Beer, I.A. Kougioumtzoglou, Compressive sensing based power spectrum estimation from incomplete records by utilizing an adaptive basis, in: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), 2014, pp. 117–124.
Cai, Candès, Shen (b0180) 2010; 20
M.J. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical analysis, Springer, 1978, pp. 144–157.
Mohandes, Rehman (b0050) 2018; 6
Candès, Recht (b0165) 2009; 9
Van Den Berg, Friedlander (b0150) 2009; 31
Yang, Nagarajaiah, Ni (b0170) 2015; 22
.
Yang, Nagarajaiah (b0175) 2016; 74
Dérian, Mauzey, Mayor (b0030) 2015; 32
Zhang, Comerford, Kougioumtzoglou, Beer (b0075) 2018; 101
Hestenes (b0190) 1969; 4
Candes, Romberg, Tao (b0115) 2006; 59
M. Shinozuka, G. Deodatis, Simulation of multi-dimensional gaussian stochastic fields by spectral representation.
Chen, Song, Peng, Spanos (b0095) 2018; 144
Zerva (b0110) 1992; 21
Towers, Jones (b0060) 2016; 19
M. Harris, M. Hand, A. Wright, Lidar for turbine control, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154.
Psaros, Petromichelakis, Kougioumtzoglou (b0140) 2019; 128
Donoho (b0120) 2006; 52
Qu, Liu, Ma, Zang, Fu (b0040) 2020; 139
Kougioumtzoglou (10.1016/j.ymssp.2021.107975_b0080) 2020; 61
Qu (10.1016/j.ymssp.2021.107975_b0040) 2020; 139
Mitseas (10.1016/j.ymssp.2021.107975_b0025) 2016; 60
Cai (10.1016/j.ymssp.2021.107975_b0180) 2010; 20
Comerford (10.1016/j.ymssp.2021.107975_b0020) 2017; 182
Donoho (10.1016/j.ymssp.2021.107975_b0120) 2006; 52
Chen (10.1016/j.ymssp.2021.107975_b0145) 2001; 43
10.1016/j.ymssp.2021.107975_b0185
Zhang (10.1016/j.ymssp.2021.107975_b0075) 2018; 101
Deodatis (10.1016/j.ymssp.2021.107975_b0100) 1989; 115
Van Den Berg (10.1016/j.ymssp.2021.107975_b0150) 2009; 31
Rockafellar (10.1016/j.ymssp.2021.107975_b0195) 1973; 12
10.1016/j.ymssp.2021.107975_b0155
10.1016/j.ymssp.2021.107975_b0010
Towers (10.1016/j.ymssp.2021.107975_b0060) 2016; 19
10.1016/j.ymssp.2021.107975_b0135
Yang (10.1016/j.ymssp.2021.107975_b0170) 2015; 22
Candes (10.1016/j.ymssp.2021.107975_b0115) 2006; 59
Carassale (10.1016/j.ymssp.2021.107975_b0015) 2006; 94
Eldar (10.1016/j.ymssp.2021.107975_b0125) 2012
Laface (10.1016/j.ymssp.2021.107975_b0070) 2017; 69
Hestenes (10.1016/j.ymssp.2021.107975_b0190) 1969; 4
Zerva (10.1016/j.ymssp.2021.107975_b0110) 1992; 21
Dérian (10.1016/j.ymssp.2021.107975_b0030) 2015; 32
Candès (10.1016/j.ymssp.2021.107975_b0165) 2009; 9
Benowitz (10.1016/j.ymssp.2021.107975_b0085) 2015; 147
10.1016/j.ymssp.2021.107975_b0090
Lin (10.1016/j.ymssp.2021.107975_b0055) 2020; 205
10.1016/j.ymssp.2021.107975_b0200
Chen (10.1016/j.ymssp.2021.107975_b0095) 2018; 144
Mohandes (10.1016/j.ymssp.2021.107975_b0050) 2018; 6
Psaros (10.1016/j.ymssp.2021.107975_b0140) 2019; 128
Frehlich (10.1016/j.ymssp.2021.107975_b0005) 1998; 86
10.1016/j.ymssp.2021.107975_b0105
Comerford (10.1016/j.ymssp.2021.107975_b0065) 2016; 44
Qin (10.1016/j.ymssp.2021.107975_b0035) 2018; 151
Friedland (10.1016/j.ymssp.2021.107975_b0160) 2018; 87
Malara (10.1016/j.ymssp.2021.107975_b0130) 2018; 157
Ni (10.1016/j.ymssp.2021.107975_b0045) 2016; 88
Yang (10.1016/j.ymssp.2021.107975_b0175) 2016; 74
References_xml – reference: M. Harris, M. Hand, A. Wright, Lidar for turbine control, National Renewable Energy Laboratory, Golden, CO, Report No. NREL/TP-500-39154.
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: b0180
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
– volume: 87
  start-page: 1255
  year: 2018
  end-page: 1281
  ident: b0160
  article-title: Nuclear norm of higher-order tensors
  publication-title: Math. Comput.
– volume: 9
  start-page: 717
  year: 2009
  ident: b0165
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
– volume: 32
  start-page: 1759
  year: 2015
  end-page: 1778
  ident: b0030
  article-title: Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data
  publication-title: J. Atmos. Ocean. Technol.
– volume: 151
  start-page: 272
  year: 2018
  end-page: 288
  ident: b0035
  article-title: Wind field reconstruction using dimension-reduction of cfd data with experimental validation
  publication-title: Energy
– volume: 115
  start-page: 2723
  year: 1989
  end-page: 2737
  ident: b0100
  article-title: Simulation of seismic ground motion using stochastic waves
  publication-title: J. Eng. Mech.
– volume: 182
  start-page: 26
  year: 2017
  end-page: 40
  ident: b0020
  article-title: Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data
  publication-title: Comput. Struct.
– volume: 69
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0070
  article-title: Efficient processing of water wave records via compressive sensing and joint time-frequency analysis via harmonic wavelets
  publication-title: Appl. Ocean Res.
– volume: 61
  year: 2020
  ident: b0080
  article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
  publication-title: Probab. Eng. Mech.
– volume: 19
  start-page: 133
  year: 2016
  end-page: 150
  ident: b0060
  article-title: Real-time wind field reconstruction from lidar measurements using a dynamic wind model and state estimation
  publication-title: Wind Energy
– reference: C.D. Meyer, Matrix analysis and applied linear algebra, Vol. 71, Siam, 2000.
– reference: L.A. Comerford, M. Beer, I.A. Kougioumtzoglou, Compressive sensing based power spectrum estimation from incomplete records by utilizing an adaptive basis, in: 2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES), 2014, pp. 117–124.
– volume: 88
  start-page: 468
  year: 2016
  end-page: 476
  ident: b0045
  article-title: Wind pressure data reconstruction using neural network techniques: A comparison between bpnn and grnn
  publication-title: Measurement
– volume: 128
  start-page: 551
  year: 2019
  end-page: 571
  ident: b0140
  article-title: Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems
  publication-title: Mech. Syst. Sig. Process.
– volume: 6
  start-page: 77634
  year: 2018
  end-page: 77642
  ident: b0050
  article-title: Wind speed extrapolation using machine learning methods and lidar measurements
  publication-title: IEEE Access
– year: 2012
  ident: b0125
  article-title: Compressed sensing: theory and applications
– reference: M.J. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in: Numerical analysis, Springer, 1978, pp. 144–157.
– volume: 101
  start-page: 361
  year: 2018
  end-page: 376
  ident: b0075
  article-title: -norm minimization for stochastic process power spectrum estimation subject to incomplete data
  publication-title: Mech. Syst. Sig. Process.
– volume: 157
  start-page: 87
  year: 2018
  end-page: 95
  ident: b0130
  article-title: Extrapolation of random wave field data via compressive sampling
  publication-title: Ocean Eng.
– reference: E. Simiu, R.H. Scanlan, Wind effects on structures: fundamentals and applications to design.
– volume: 12
  start-page: 555
  year: 1973
  end-page: 562
  ident: b0195
  article-title: The multiplier method of hestenes and powell applied to convex programming
  publication-title: J. Optim. Theory Appl.
– volume: 44
  start-page: 66
  year: 2016
  end-page: 76
  ident: b0065
  article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data
  publication-title: Probab. Eng. Mech.
– volume: 31
  start-page: 890
  year: 2009
  end-page: 912
  ident: b0150
  article-title: Probing the pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
– volume: 86
  start-page: 233
  year: 1998
  end-page: 256
  ident: b0005
  article-title: Coherent doppler lidar measurements of wind field statistics
  publication-title: Bound.-Layer Meteorol.
– volume: 144
  start-page: 04018100
  year: 2018
  ident: b0095
  article-title: Simulation of homogeneous fluctuating wind field in two spatial dimensions via a joint wave number–frequency power spectrum
  publication-title: J. Eng. Mech.
– volume: 22
  start-page: 1119
  year: 2015
  end-page: 1131
  ident: b0170
  article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape
  publication-title: Struct. Control Health Monit.
– volume: 94
  start-page: 323
  year: 2006
  end-page: 339
  ident: b0015
  article-title: Monte carlo simulation of wind velocity fields on complex structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 139
  year: 2020
  ident: b0040
  article-title: A novel wind turbine data imputation method with multiple optimizations based on gans
  publication-title: Mech. Syst. Sig. Process.
– volume: 59
  start-page: 1207
  year: 2006
  end-page: 1223
  ident: b0115
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
– volume: 43
  start-page: 129
  year: 2001
  end-page: 159
  ident: b0145
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
– volume: 205
  year: 2020
  ident: b0055
  article-title: Kriging based sequence interpolation and probability distribution correction for gaussian wind field data reconstruction
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: .
– volume: 74
  start-page: 165
  year: 2016
  end-page: 182
  ident: b0175
  article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure
  publication-title: Mech. Syst. Sig. Process.
– volume: 4
  start-page: 303
  year: 1969
  end-page: 320
  ident: b0190
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
– reference: Z. Lin, M. Chen, Y. Ma, The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint
– volume: 60
  start-page: 67
  year: 2016
  end-page: 76
  ident: b0025
  article-title: An approximate stochastic dynamics approach for nonlinear structural system performance-based multi-objective optimum design
  publication-title: Struct. Saf.
– reference: M. Shinozuka, G. Deodatis, Simulation of multi-dimensional gaussian stochastic fields by spectral representation.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b0120
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 147
  start-page: 154
  year: 2015
  end-page: 163
  ident: b0085
  article-title: Simulation of wind velocities on long span structures: A novel stochastic wave based model
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 21
  start-page: 351
  year: 1992
  end-page: 361
  ident: b0110
  article-title: Seismic ground motion simulations from a class of spatial variability models
  publication-title: Earthquake Eng. Struct. Dyn.
– volume: 87
  start-page: 1255
  issue: 311
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0160
  article-title: Nuclear norm of higher-order tensors
  publication-title: Math. Comput.
  doi: 10.1090/mcom/3239
– volume: 9
  start-page: 717
  issue: 6
  year: 2009
  ident: 10.1016/j.ymssp.2021.107975_b0165
  article-title: Exact matrix completion via convex optimization
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-009-9045-5
– ident: 10.1016/j.ymssp.2021.107975_b0010
– volume: 94
  start-page: 323
  issue: 5
  year: 2006
  ident: 10.1016/j.ymssp.2021.107975_b0015
  article-title: Monte carlo simulation of wind velocity fields on complex structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2006.01.004
– volume: 19
  start-page: 133
  issue: 1
  year: 2016
  ident: 10.1016/j.ymssp.2021.107975_b0060
  article-title: Real-time wind field reconstruction from lidar measurements using a dynamic wind model and state estimation
  publication-title: Wind Energy
  doi: 10.1002/we.1824
– volume: 182
  start-page: 26
  year: 2017
  ident: 10.1016/j.ymssp.2021.107975_b0020
  article-title: Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.11.012
– volume: 144
  start-page: 04018100
  issue: 11
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0095
  article-title: Simulation of homogeneous fluctuating wind field in two spatial dimensions via a joint wave number–frequency power spectrum
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001525
– volume: 6
  start-page: 77634
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0050
  article-title: Wind speed extrapolation using machine learning methods and lidar measurements
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883677
– volume: 31
  start-page: 890
  issue: 2
  year: 2009
  ident: 10.1016/j.ymssp.2021.107975_b0150
  article-title: Probing the pareto frontier for basis pursuit solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/080714488
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: 10.1016/j.ymssp.2021.107975_b0115
  article-title: Stable signal recovery from incomplete and inaccurate measurements
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– volume: 88
  start-page: 468
  year: 2016
  ident: 10.1016/j.ymssp.2021.107975_b0045
  article-title: Wind pressure data reconstruction using neural network techniques: A comparison between bpnn and grnn
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.049
– volume: 147
  start-page: 154
  year: 2015
  ident: 10.1016/j.ymssp.2021.107975_b0085
  article-title: Simulation of wind velocities on long span structures: A novel stochastic wave based model
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.10.004
– ident: 10.1016/j.ymssp.2021.107975_b0155
  doi: 10.1137/1.9780898719512
– volume: 61
  year: 2020
  ident: 10.1016/j.ymssp.2021.107975_b0080
  article-title: Sparse representations and compressive sampling approaches in engineering mechanics: A review of theoretical concepts and diverse applications
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2020.103082
– volume: 115
  start-page: 2723
  issue: 12
  year: 1989
  ident: 10.1016/j.ymssp.2021.107975_b0100
  article-title: Simulation of seismic ground motion using stochastic waves
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1989)115:12(2723)
– volume: 69
  start-page: 1
  year: 2017
  ident: 10.1016/j.ymssp.2021.107975_b0070
  article-title: Efficient processing of water wave records via compressive sensing and joint time-frequency analysis via harmonic wavelets
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2017.09.011
– ident: 10.1016/j.ymssp.2021.107975_b0135
  doi: 10.1109/CIES.2014.7011840
– volume: 60
  start-page: 67
  year: 2016
  ident: 10.1016/j.ymssp.2021.107975_b0025
  article-title: An approximate stochastic dynamics approach for nonlinear structural system performance-based multi-objective optimum design
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2016.01.003
– ident: 10.1016/j.ymssp.2021.107975_b0090
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.ymssp.2021.107975_b0120
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 101
  start-page: 361
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0075
  article-title: Lp-norm minimization for stochastic process power spectrum estimation subject to incomplete data
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.08.017
– volume: 128
  start-page: 551
  year: 2019
  ident: 10.1016/j.ymssp.2021.107975_b0140
  article-title: Wiener path integrals and multi-dimensional global bases for non-stationary stochastic response determination of structural systems
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.04.014
– volume: 205
  year: 2020
  ident: 10.1016/j.ymssp.2021.107975_b0055
  article-title: Kriging based sequence interpolation and probability distribution correction for gaussian wind field data reconstruction
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2020.104340
– ident: 10.1016/j.ymssp.2021.107975_b0200
  doi: 10.1007/BFb0067703
– volume: 139
  year: 2020
  ident: 10.1016/j.ymssp.2021.107975_b0040
  article-title: A novel wind turbine data imputation method with multiple optimizations based on gans
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.106610
– volume: 21
  start-page: 351
  issue: 4
  year: 1992
  ident: 10.1016/j.ymssp.2021.107975_b0110
  article-title: Seismic ground motion simulations from a class of spatial variability models
  publication-title: Earthquake Eng. Struct. Dyn.
  doi: 10.1002/eqe.4290210406
– volume: 12
  start-page: 555
  issue: 6
  year: 1973
  ident: 10.1016/j.ymssp.2021.107975_b0195
  article-title: The multiplier method of hestenes and powell applied to convex programming
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934777
– volume: 157
  start-page: 87
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0130
  article-title: Extrapolation of random wave field data via compressive sampling
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2018.03.044
– volume: 86
  start-page: 233
  issue: 2
  year: 1998
  ident: 10.1016/j.ymssp.2021.107975_b0005
  article-title: Coherent doppler lidar measurements of wind field statistics
  publication-title: Bound.-Layer Meteorol.
  doi: 10.1023/A:1000676021745
– volume: 4
  start-page: 303
  issue: 5
  year: 1969
  ident: 10.1016/j.ymssp.2021.107975_b0190
  article-title: Multiplier and gradient methods
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
– volume: 32
  start-page: 1759
  issue: 10
  year: 2015
  ident: 10.1016/j.ymssp.2021.107975_b0030
  article-title: Wavelet-based optical flow for two-component wind field estimation from single aerosol lidar data
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-15-0010.1
– volume: 44
  start-page: 66
  year: 2016
  ident: 10.1016/j.ymssp.2021.107975_b0065
  article-title: Compressive sensing based stochastic process power spectrum estimation subject to missing data
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2015.09.015
– year: 2012
  ident: 10.1016/j.ymssp.2021.107975_b0125
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 10.1016/j.ymssp.2021.107975_b0145
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– volume: 151
  start-page: 272
  year: 2018
  ident: 10.1016/j.ymssp.2021.107975_b0035
  article-title: Wind field reconstruction using dimension-reduction of cfd data with experimental validation
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.141
– ident: 10.1016/j.ymssp.2021.107975_b0105
– volume: 22
  start-page: 1119
  issue: 8
  year: 2015
  ident: 10.1016/j.ymssp.2021.107975_b0170
  article-title: Data compression of very large-scale structural seismic and typhoon responses by low-rank representation with matrix reshape
  publication-title: Struct. Control Health Monit.
  doi: 10.1002/stc.1737
– volume: 74
  start-page: 165
  year: 2016
  ident: 10.1016/j.ymssp.2021.107975_b0175
  article-title: Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.11.009
– ident: 10.1016/j.ymssp.2021.107975_b0185
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.ymssp.2021.107975_b0180
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: SIAM J. Optim.
  doi: 10.1137/080738970
SSID ssj0009406
Score 2.4229045
Snippet •A compressive sampling approach for wind data reconstruction and extrapolation.•L1-norm minimization is used in conjunction with an adaptive basis...
A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107975
SubjectTerms Compressive sampling
Computing costs
Design optimization
Domains
Environment models
Extrapolation
Low-rank matrix
Methodology
Missing data
Power spectral density
Reconstruction
Sampling
Sparse representations
Stochastic field
Time measurement
Wavelengths
Wind data
Wind turbines
Title Wind data extrapolation and stochastic field statistics estimation via compressive sampling and low rank matrix recovery methods
URI https://dx.doi.org/10.1016/j.ymssp.2021.107975
https://www.proquest.com/docview/2584581350
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLYQLDAgTnEU5IGR0MTx0YwIgQoIFkCwWbbjQBG0FSlHF8RP5z0n4RJiYLUcK_K7k-99j5CtJHUdVwgWMW5ExKGEiDKRiyhPpIH47ZQIjDcnp7J7wY-uxNUE2Wt6YRBWWfv-yqcHb12vtOvbbA97vfYZ2Aeoo8KiJU5VaPjlXKGW77x-wjwyHuZr4uYIdzfMQwHjNb4vSyStZAmsqAzBhr9Hpx9-OgSfgzkyW2eNdLd6sXky4fsLZOYLl-AiebuE6poi4JOCv30ww0GFcqMGliHDczcGKZlpgKxR7COqKJop0mxU_Yv0qWcoYswDNvbJ09Ig3rx_Hc64GzxTnPBO75HV_4ViKQ12MKbVEOpyiVwc7J_vdaN6vELk0jQZRXmGXpJJo6BqUszFCv_Ig3gSsJyCK1vkXBTKOgk5W9Lx0vok95llcZ5Ky2W6TCb7g75fIbTIhRXWmtgyz6WTNvYKckXPjYyx83WVsOZatau5x3EExp1uQGa3OshCoyx0JYtVsv3x0LCi3vh7u2zkpb9pkIbg8PeDrUa6ujbgUjNIzEQnSUW89t9z18k0w16J8L2mRSZHD49-AzKYkd0MKrpJpnYPj7un71jd8fI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLZQGYABcYobD4xETRwf7YgQqFxdAMFm2Y4DRaWtSLk2fjrvOQmXEAOrZVuWn9-VfO97hOwkqWu5XLCIcSMiDilE1BaZiLJEGvDfTonAeHPWlZ1LfnwtrifIfl0Lg7DKyvaXNj1Y62qkWd1mc9TrNc9BP-A5Kkxa4lRhwe8kslOJBpncOzrpdD-5d3losYnzI1xQkw8FmNfrfVEgbyVLYES1EW_4u4P6YaqD_zmcI7NV4Ej3yrPNkwk_WCAzX-gEF8nbFSTYFDGfFEzugxkNS6AbNTAMQZ67NcjKTANqjWIpUcnSTJFpoyxhpE89QxFmHuCxT54WBiHng5uwR3_4TLHJO71HYv8Xitk0qMIrLftQF0vk8vDgYr8TVR0WIpemyTjK2mgomTQKEifFXKzwpzxIKAHlybmyecZFrqyTELYlLS-tTzLftizOUmm5TJdJYzAc-BVC80xYYa2JLfNcOmljryBc9NzIGItfVwmrr1W7in4cu2D0dY0zu9NBFhploUtZrJLdj0Wjkn3j7-mylpf-9og0-Ie_F27U0tWVDheaQWwmWkkq4rX_7rtNpjoXZ6f69Kh7sk6mGZZOhM83G6Qxfnj0mxDQjO1W9WDfAZ6C9KM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+data+extrapolation+and+stochastic+field+statistics+estimation+via+compressive+sampling+and+low+rank+matrix+recovery+methods&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Pasparakis%2C+George+D&rft.au=dos+Santos%2C+Ketson+RM&rft.au=Kougioumtzoglou%2C+Ioannis+A&rft.au=Beer%2C+Michael&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=162&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ymssp.2021.107975&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon