VarKFaceNet: An Efficient Variable Depthwise Convolution Kernels Neural Network for Lightweight Face Recognition
We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convol...
Saved in:
Published in | IEEE access Vol. 12; pp. 117472 - 117482 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convolution in the case of depthwise separable convolution when the network width is large, and enriches the model's receptive field. The VarKNet module adopts a multi-branch structure during training and is re-parameterized and fused into a single-path structure during inference to maintain the strong expressive ability of the model and improve the inference speed. In order to further enhance the information exchange between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5% accuracy on the LFW dataset with 0.7M parameters and 0.24 GFLOPS. At the same time, the measured speed on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet, and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable for embedded devices with limited resources. |
---|---|
AbstractList | We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convolution in the case of depthwise separable convolution when the network width is large, and enriches the model's receptive field. The VarKNet module adopts a multi-branch structure during training and is re-parameterized and fused into a single-path structure during inference to maintain the strong expressive ability of the model and improve the inference speed. In order to further enhance the information exchange between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5% accuracy on the LFW dataset with 0.7M parameters and 0.24 GFLOPS. At the same time, the measured speed on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet, and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable for embedded devices with limited resources. |
Author | Ma, Qinghua Zhang, Peng Cui, Min |
Author_xml | – sequence: 1 givenname: Qinghua orcidid: 0009-0002-1023-7266 surname: Ma fullname: Ma, Qinghua organization: School of Instrument and Electronics, North University of China, Taiyuan, China – sequence: 2 givenname: Peng orcidid: 0000-0002-7593-1534 surname: Zhang fullname: Zhang, Peng email: zhangpeng6@nuc.edu.cn organization: School of Instrument and Electronics, North University of China, Taiyuan, China – sequence: 3 givenname: Min orcidid: 0009-0004-2554-2815 surname: Cui fullname: Cui, Min organization: School of Instrument and Electronics, North University of China, Taiyuan, China |
BookMark | eNpNkctOwzAQRS1UJJ5fAAv_QItfcRx2VWgBUYHEa2s5zrgYQlw5KRV_j0MR6iw81h2ds7lHaNSGFhA6o2RCKSkupmU5e3qaMMLEhAuRE6r20CGjshjzjMvRzv8AnXbdO0mjUpTlh2j1auLd3Fi4h_4ST1s8c85bD22P08WbqgF8Bav-beM7wGVov0Kz7n1o8R3EFpoO38M6miatfhPiB3Yh4oVfvvUbGF48uPEj2LBs_cCdoH1nmg5O__YxepnPnsub8eLh-racLsaWc9qPa8alcs4QcIYxk1nlhCE15ESqStTGmSwFeVUUNKugqGhdAbPEUeaEc4rxY3S79dbBvOtV9J8mfutgvP4NQlxqE3tvG9BQgFBWJr9VgshcESsLmUmXi9xCbpOLb102hq6L4P59lOihA73tQA8d6L8OEnW-pTwA7BBS8ITwH-w8hsw |
CODEN | IAECCG |
Cites_doi | 10.1109/ICCV.2019.00140 10.1109/CVPR.2018.00474 10.1109/CVPR52729.2023.01157 10.1007/978-3-030-01264-9_8 10.1109/ICCV48922.2021.00986 10.1109/ICCVW.2019.00333 10.1109/ICASSP.2013.6638949 10.1109/CVPR52688.2022.01553 10.1109/CVPR.2018.00716 10.1109/CVPR52688.2022.01166 10.1016/j.bspc.2023.104572 10.3390/app13042350 10.1016/j.engappai.2023.106513 10.1109/BTAS46853.2019.9185981 10.48550/arXiv.1503.02531 10.1109/TASLP.2022.3161155 10.1609/aaai.v29i1.9797 10.48550/ARXIV.1602.07360 10.1109/CVPR46437.2021.01352 10.1109/TBIOM.2023.3242085 10.1002/jemt.20370 10.1007/978-3-319-97909-0_46 10.1109/CVPR42600.2020.00835 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2024.3447018 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 117482 |
ExternalDocumentID | oai_doaj_org_article_e9e48c64a0c8406780c69656f747ce7c 10_1109_ACCESS_2024_3447018 10643109 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Defence Fund grantid: 2023-JJ-0353 funderid: 10.13039/501100001809 – fundername: National Natural Foundation of China grantid: 62373247 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-d2368ffa0efa22a5c8f4a0de7068b4dafa5f4a7b9915be9b1dbe2c0f12f4ff823 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:18:49 EDT 2025 Tue Jul 01 03:02:47 EDT 2025 Wed Aug 27 02:03:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-d2368ffa0efa22a5c8f4a0de7068b4dafa5f4a7b9915be9b1dbe2c0f12f4ff823 |
ORCID | 0000-0002-7593-1534 0009-0002-1023-7266 0009-0004-2554-2815 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10643109 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2024_3447018 ieee_primary_10643109 doaj_primary_oai_doaj_org_article_e9e48c64a0c8406780c69656f747ce7c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 Cohen (ref24) Zhang (ref15) 2019 ref14 ref31 ref30 ref11 ref2 ref1 Han (ref3); 28 ref17 ref16 ref18 Tang (ref19); 35 Iandola (ref12) 2014 Zhao (ref32) 2024; 45 ref23 Chen (ref4) ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref7 ref9 ref6 Howard (ref8) 2017 Dosovitskiy (ref10) 2020 ref5 |
References_xml | – ident: ref17 doi: 10.1109/ICCV.2019.00140 – start-page: 2990 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref24 article-title: Group equivariant convolutional networks – ident: ref16 doi: 10.1109/CVPR.2018.00474 – ident: ref20 doi: 10.1109/CVPR52729.2023.01157 – volume: 45 start-page: 130 issue: 16 year: 2024 ident: ref32 article-title: Research on lightweight face recognition algorithm based on GhostNet publication-title: Electron. Meas. Technol. – start-page: 2285 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref4 article-title: Compressing neural networks with the hashing trick – year: 2019 ident: ref15 article-title: VarGNet: Variable group convolutional neural network for efficient embedded computing publication-title: arXiv:1907.05653 – ident: ref18 doi: 10.1007/978-3-030-01264-9_8 – ident: ref13 doi: 10.1109/ICCV48922.2021.00986 – ident: ref22 doi: 10.1109/ICCVW.2019.00333 – ident: ref2 doi: 10.1109/ICASSP.2013.6638949 – year: 2014 ident: ref12 article-title: DenseNet: Implementing efficient ConvNet descriptor pyramids publication-title: arXiv:1404.1869 – ident: ref1 doi: 10.1109/CVPR52688.2022.01553 – ident: ref9 doi: 10.1109/CVPR.2018.00716 – ident: ref11 doi: 10.1109/CVPR52688.2022.01166 – ident: ref25 doi: 10.1016/j.bspc.2023.104572 – ident: ref31 doi: 10.3390/app13042350 – ident: ref6 doi: 10.1016/j.engappai.2023.106513 – ident: ref23 doi: 10.1109/BTAS46853.2019.9185981 – ident: ref5 doi: 10.48550/arXiv.1503.02531 – ident: ref26 doi: 10.1109/TASLP.2022.3161155 – ident: ref28 doi: 10.1609/aaai.v29i1.9797 – year: 2020 ident: ref10 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv:2010.11929 – volume: 28 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref3 article-title: Learning both weights and connections for efficient neural network – ident: ref7 doi: 10.48550/ARXIV.1602.07360 – ident: ref14 doi: 10.1109/CVPR46437.2021.01352 – volume: 35 start-page: 9969 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref19 article-title: GhostNetv2: Enhance cheap operation with long-range attention – ident: ref27 doi: 10.1109/TBIOM.2023.3242085 – ident: ref29 doi: 10.1002/jemt.20370 – ident: ref21 doi: 10.1007/978-3-319-97909-0_46 – ident: ref30 doi: 10.1109/CVPR42600.2020.00835 – year: 2017 ident: ref8 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 |
SSID | ssj0000816957 |
Score | 2.2993891 |
Snippet | We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 117472 |
SubjectTerms | Convolution Convolutional neural networks Face recognition Feature extraction Guidelines Kernel lightweight network local features multi-scale Periodic structures |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCU38isNWSquKQgdEUbfIds4SS1qVAn-fcxJQmFhYncSP7yzfd9blO0IupXUKMuMjKwSPgqZUZJPMRyCR8HvuMCAL95CPMzWZi_uFXLRKfYWcsFoeuAauDxkI7ZQwscNYBI_WGL9HEuKRBztIXTh90ee1gqnqDNaJymTayAwlcdYfDIe4IgwImbgOKndxKPPRckWVYv-vEiuVhxnvkd2GGtJBPaV9sgXlAdlpCQYektWLWU_HxsEMNjd0UNJRpQCBjoPik9fwGxS9g1UokP4GdLgsP5qdRaewLtEN0iDGgYPM6uxvipSVPoT4_LO6IqWhb_r0nVS0LLtkPh49DydRUzMhcpwnm6hgXGnvTQzeMGak0x6hKyCNlbaiMN5IbEgt0kJpIbNJYYG52CfMC-8140ekUy5LOCaUJcoJq5njWgrOpQZeZEqAL5zwSap65OobvnxVS2PkVUgRZ3mNdh7Qzhu0e-Q2QPzzatC1rhrQ2nlj7fwva_dINxioNR4yKhzw5D86PyXbYcL1BcsZ6WzW73COlGNjL6rd9QViE9Ie priority: 102 providerName: Directory of Open Access Journals |
Title | VarKFaceNet: An Efficient Variable Depthwise Convolution Kernels Neural Network for Lightweight Face Recognition |
URI | https://ieeexplore.ieee.org/document/10643109 https://doaj.org/article/e9e48c64a0c8406780c69656f747ce7c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4VTuVASwki0KI99IiDvQ8_uKUpUUTaHBBB3Kzd9ayEkJwoOEXqr2dm7aCAVKk3a71arz2zmvnGM98w9l1bl0JhfGSVkhFxSkU2KXwEGh1-Lx0CMopD_p6lk7m6vtf3XbF6qIUBgJB8BgO6DP_yq4VbU6gMTzjaz4TK9XYQubXFWq8BFeogUeisYxbCWRfD0QhfAjGgUAMitoups8eW9Qkk_W-6qgSjMv7EZpvttLkkj4N1Ywfu7zumxv_e72e237mXfNjqwwH7APUXtrdFOnjIlndmNR0bBzNoLvmw5leBRQJX4njngUqp-E9YUpP1J-CjRf2n004-hVWNppQToQc-ZNZmkHN0e_kvwvjPIczKaW1-s0lMWtQ9Nh9f3Y4mUdd3IXJSJk1UCZnm3psYvBHCaJd7ZeIKsjjNraqMNxoHMouupbZQ2KSyIFzsE-GV97mQR2y3XtRwzLhIUqdsLpzMtZJS5yCrIlXgK6d8kqV9dr6RR7ls6TXKAEviomzFV5L4yk58ffaDZPY6lbixwwB-9rI7aiUUoHKX4pYdolc0xjFqHLqtHpGTg8z1WY9EtfW8Vkon_xg_ZR9pD23c5SvbbVZr-IaeSGPPAoI_C3r4AmnC3X0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcm9jD2MDZgWsdgfuBxKYk_8rG3rqPq1pKHCRBvke2cpWlSWnXpJvHXc-ekqCAh8RY5ln3JnXUfvvsdY6fauhQK4yOrlIwIUyqySeEj0Gjwe-nQIaM45EWZTq_Uzxt90xerh1oYAAjJZzCkx3CXXy_cmkJleMJRfyZUrvcSFb8WXbnWfUiFekgUOuuxhXDe2Wg8xs9AL1CoIUHbxdTbY0v_BJj-B31VglqZ7LFyQ1CXTfJnuG7t0N0-wmp8NsVv2ZvewOSjTiLesRfQ7LPXW7CDB2x5bVaziXFQQvuVjxp-HnAkcCWOb35TMRX_Dktqs_4X-HjR_Ovlk89g1aAy5QTpgZuUXQ45R8OXz8nL_x8CrZzW5r82qUmL5pBdTc4vx9Oo77wQOSmTNqqFTHPvTQzeCGG0y70ycQ1ZnOZW1cYbjQOZReNSWyhsUlsQLvaJ8Mr7XMj3bKdZNPCBcZGkTtlcOJlrJaXOQdZFqsDXTvkkSwfsy4Yf1bID2KiCYxIXVce-ithX9ewbsG_Es_uphI4dBvC3V_1hq6AAlbsUSXbov6I6jlHm0HD16Ds5yNyAHRKrtvbruPTxifHP7NX08mJezX-UsyO2S_R0UZhPbKddreEY7ZLWngRpvAPleN_S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VarKFaceNet%3A+An+Efficient+Variable+Depthwise+Convolution+Kernels+Neural+Network+for+Lightweight+Face+Recognition&rft.jtitle=IEEE+access&rft.au=Ma%2C+Qinghua&rft.au=Zhang%2C+Peng&rft.au=Cui%2C+Min&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=117472&rft.epage=117482&rft_id=info:doi/10.1109%2FACCESS.2024.3447018&rft.externalDocID=10643109 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |