VarKFaceNet: An Efficient Variable Depthwise Convolution Kernels Neural Network for Lightweight Face Recognition

We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convol...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 117472 - 117482
Main Authors Ma, Qinghua, Zhang, Peng, Cui, Min
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convolution in the case of depthwise separable convolution when the network width is large, and enriches the model's receptive field. The VarKNet module adopts a multi-branch structure during training and is re-parameterized and fused into a single-path structure during inference to maintain the strong expressive ability of the model and improve the inference speed. In order to further enhance the information exchange between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5% accuracy on the LFW dataset with 0.7M parameters and 0.24 GFLOPS. At the same time, the measured speed on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet, and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable for embedded devices with limited resources.
AbstractList We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convolution in the case of depthwise separable convolution when the network width is large, and enriches the model's receptive field. The VarKNet module adopts a multi-branch structure during training and is re-parameterized and fused into a single-path structure during inference to maintain the strong expressive ability of the model and improve the inference speed. In order to further enhance the information exchange between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5% accuracy on the LFW dataset with 0.7M parameters and 0.24 GFLOPS. At the same time, the measured speed on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet, and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable for embedded devices with limited resources.
Author Ma, Qinghua
Zhang, Peng
Cui, Min
Author_xml – sequence: 1
  givenname: Qinghua
  orcidid: 0009-0002-1023-7266
  surname: Ma
  fullname: Ma, Qinghua
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
– sequence: 2
  givenname: Peng
  orcidid: 0000-0002-7593-1534
  surname: Zhang
  fullname: Zhang, Peng
  email: zhangpeng6@nuc.edu.cn
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
– sequence: 3
  givenname: Min
  orcidid: 0009-0004-2554-2815
  surname: Cui
  fullname: Cui, Min
  organization: School of Instrument and Electronics, North University of China, Taiyuan, China
BookMark eNpNkctOwzAQRS1UJJ5fAAv_QItfcRx2VWgBUYHEa2s5zrgYQlw5KRV_j0MR6iw81h2ds7lHaNSGFhA6o2RCKSkupmU5e3qaMMLEhAuRE6r20CGjshjzjMvRzv8AnXbdO0mjUpTlh2j1auLd3Fi4h_4ST1s8c85bD22P08WbqgF8Bav-beM7wGVov0Kz7n1o8R3EFpoO38M6miatfhPiB3Yh4oVfvvUbGF48uPEj2LBs_cCdoH1nmg5O__YxepnPnsub8eLh-racLsaWc9qPa8alcs4QcIYxk1nlhCE15ESqStTGmSwFeVUUNKugqGhdAbPEUeaEc4rxY3S79dbBvOtV9J8mfutgvP4NQlxqE3tvG9BQgFBWJr9VgshcESsLmUmXi9xCbpOLb102hq6L4P59lOihA73tQA8d6L8OEnW-pTwA7BBS8ITwH-w8hsw
CODEN IAECCG
Cites_doi 10.1109/ICCV.2019.00140
10.1109/CVPR.2018.00474
10.1109/CVPR52729.2023.01157
10.1007/978-3-030-01264-9_8
10.1109/ICCV48922.2021.00986
10.1109/ICCVW.2019.00333
10.1109/ICASSP.2013.6638949
10.1109/CVPR52688.2022.01553
10.1109/CVPR.2018.00716
10.1109/CVPR52688.2022.01166
10.1016/j.bspc.2023.104572
10.3390/app13042350
10.1016/j.engappai.2023.106513
10.1109/BTAS46853.2019.9185981
10.48550/arXiv.1503.02531
10.1109/TASLP.2022.3161155
10.1609/aaai.v29i1.9797
10.48550/ARXIV.1602.07360
10.1109/CVPR46437.2021.01352
10.1109/TBIOM.2023.3242085
10.1002/jemt.20370
10.1007/978-3-319-97909-0_46
10.1109/CVPR42600.2020.00835
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3447018
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 117482
ExternalDocumentID oai_doaj_org_article_e9e48c64a0c8406780c69656f747ce7c
10_1109_ACCESS_2024_3447018
10643109
Genre orig-research
GrantInformation_xml – fundername: National Defence Fund
  grantid: 2023-JJ-0353
  funderid: 10.13039/501100001809
– fundername: National Natural Foundation of China
  grantid: 62373247
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-d2368ffa0efa22a5c8f4a0de7068b4dafa5f4a7b9915be9b1dbe2c0f12f4ff823
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:18:49 EDT 2025
Tue Jul 01 03:02:47 EDT 2025
Wed Aug 27 02:03:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-d2368ffa0efa22a5c8f4a0de7068b4dafa5f4a7b9915be9b1dbe2c0f12f4ff823
ORCID 0000-0002-7593-1534
0009-0002-1023-7266
0009-0004-2554-2815
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10643109
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2024_3447018
ieee_primary_10643109
doaj_primary_oai_doaj_org_article_e9e48c64a0c8406780c69656f747ce7c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Cohen (ref24)
Zhang (ref15) 2019
ref14
ref31
ref30
ref11
ref2
ref1
Han (ref3); 28
ref17
ref16
ref18
Tang (ref19); 35
Iandola (ref12) 2014
Zhao (ref32) 2024; 45
ref23
Chen (ref4)
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref7
ref9
ref6
Howard (ref8) 2017
Dosovitskiy (ref10) 2020
ref5
References_xml – ident: ref17
  doi: 10.1109/ICCV.2019.00140
– start-page: 2990
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref24
  article-title: Group equivariant convolutional networks
– ident: ref16
  doi: 10.1109/CVPR.2018.00474
– ident: ref20
  doi: 10.1109/CVPR52729.2023.01157
– volume: 45
  start-page: 130
  issue: 16
  year: 2024
  ident: ref32
  article-title: Research on lightweight face recognition algorithm based on GhostNet
  publication-title: Electron. Meas. Technol.
– start-page: 2285
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref4
  article-title: Compressing neural networks with the hashing trick
– year: 2019
  ident: ref15
  article-title: VarGNet: Variable group convolutional neural network for efficient embedded computing
  publication-title: arXiv:1907.05653
– ident: ref18
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref13
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref22
  doi: 10.1109/ICCVW.2019.00333
– ident: ref2
  doi: 10.1109/ICASSP.2013.6638949
– year: 2014
  ident: ref12
  article-title: DenseNet: Implementing efficient ConvNet descriptor pyramids
  publication-title: arXiv:1404.1869
– ident: ref1
  doi: 10.1109/CVPR52688.2022.01553
– ident: ref9
  doi: 10.1109/CVPR.2018.00716
– ident: ref11
  doi: 10.1109/CVPR52688.2022.01166
– ident: ref25
  doi: 10.1016/j.bspc.2023.104572
– ident: ref31
  doi: 10.3390/app13042350
– ident: ref6
  doi: 10.1016/j.engappai.2023.106513
– ident: ref23
  doi: 10.1109/BTAS46853.2019.9185981
– ident: ref5
  doi: 10.48550/arXiv.1503.02531
– ident: ref26
  doi: 10.1109/TASLP.2022.3161155
– ident: ref28
  doi: 10.1609/aaai.v29i1.9797
– year: 2020
  ident: ref10
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv:2010.11929
– volume: 28
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref3
  article-title: Learning both weights and connections for efficient neural network
– ident: ref7
  doi: 10.48550/ARXIV.1602.07360
– ident: ref14
  doi: 10.1109/CVPR46437.2021.01352
– volume: 35
  start-page: 9969
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: GhostNetv2: Enhance cheap operation with long-range attention
– ident: ref27
  doi: 10.1109/TBIOM.2023.3242085
– ident: ref29
  doi: 10.1002/jemt.20370
– ident: ref21
  doi: 10.1007/978-3-319-97909-0_46
– ident: ref30
  doi: 10.1109/CVPR42600.2020.00835
– year: 2017
  ident: ref8
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
SSID ssj0000816957
Score 2.2993891
Snippet We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 117472
SubjectTerms Convolution
Convolutional neural networks
Face recognition
Feature extraction
Guidelines
Kernel
lightweight network
local features
multi-scale
Periodic structures
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCU38isNWSquKQgdEUbfIds4SS1qVAn-fcxJQmFhYncSP7yzfd9blO0IupXUKMuMjKwSPgqZUZJPMRyCR8HvuMCAL95CPMzWZi_uFXLRKfYWcsFoeuAauDxkI7ZQwscNYBI_WGL9HEuKRBztIXTh90ee1gqnqDNaJymTayAwlcdYfDIe4IgwImbgOKndxKPPRckWVYv-vEiuVhxnvkd2GGtJBPaV9sgXlAdlpCQYektWLWU_HxsEMNjd0UNJRpQCBjoPik9fwGxS9g1UokP4GdLgsP5qdRaewLtEN0iDGgYPM6uxvipSVPoT4_LO6IqWhb_r0nVS0LLtkPh49DydRUzMhcpwnm6hgXGnvTQzeMGak0x6hKyCNlbaiMN5IbEgt0kJpIbNJYYG52CfMC-8140ekUy5LOCaUJcoJq5njWgrOpQZeZEqAL5zwSap65OobvnxVS2PkVUgRZ3mNdh7Qzhu0e-Q2QPzzatC1rhrQ2nlj7fwva_dINxioNR4yKhzw5D86PyXbYcL1BcsZ6WzW73COlGNjL6rd9QViE9Ie
  priority: 102
  providerName: Directory of Open Access Journals
Title VarKFaceNet: An Efficient Variable Depthwise Convolution Kernels Neural Network for Lightweight Face Recognition
URI https://ieeexplore.ieee.org/document/10643109
https://doaj.org/article/e9e48c64a0c8406780c69656f747ce7c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEF4VTuVASwki0KI99IiDvQ8_uKUpUUTaHBBB3Kzd9ayEkJwoOEXqr2dm7aCAVKk3a71arz2zmvnGM98w9l1bl0JhfGSVkhFxSkU2KXwEGh1-Lx0CMopD_p6lk7m6vtf3XbF6qIUBgJB8BgO6DP_yq4VbU6gMTzjaz4TK9XYQubXFWq8BFeogUeisYxbCWRfD0QhfAjGgUAMitoups8eW9Qkk_W-6qgSjMv7EZpvttLkkj4N1Ywfu7zumxv_e72e237mXfNjqwwH7APUXtrdFOnjIlndmNR0bBzNoLvmw5leBRQJX4njngUqp-E9YUpP1J-CjRf2n004-hVWNppQToQc-ZNZmkHN0e_kvwvjPIczKaW1-s0lMWtQ9Nh9f3Y4mUdd3IXJSJk1UCZnm3psYvBHCaJd7ZeIKsjjNraqMNxoHMouupbZQ2KSyIFzsE-GV97mQR2y3XtRwzLhIUqdsLpzMtZJS5yCrIlXgK6d8kqV9dr6RR7ls6TXKAEviomzFV5L4yk58ffaDZPY6lbixwwB-9rI7aiUUoHKX4pYdolc0xjFqHLqtHpGTg8z1WY9EtfW8Vkon_xg_ZR9pD23c5SvbbVZr-IaeSGPPAoI_C3r4AmnC3X0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcm9jD2MDZgWsdgfuBxKYk_8rG3rqPq1pKHCRBvke2cpWlSWnXpJvHXc-ekqCAh8RY5ln3JnXUfvvsdY6fauhQK4yOrlIwIUyqySeEj0Gjwe-nQIaM45EWZTq_Uzxt90xerh1oYAAjJZzCkx3CXXy_cmkJleMJRfyZUrvcSFb8WXbnWfUiFekgUOuuxhXDe2Wg8xs9AL1CoIUHbxdTbY0v_BJj-B31VglqZ7LFyQ1CXTfJnuG7t0N0-wmp8NsVv2ZvewOSjTiLesRfQ7LPXW7CDB2x5bVaziXFQQvuVjxp-HnAkcCWOb35TMRX_Dktqs_4X-HjR_Ovlk89g1aAy5QTpgZuUXQ45R8OXz8nL_x8CrZzW5r82qUmL5pBdTc4vx9Oo77wQOSmTNqqFTHPvTQzeCGG0y70ycQ1ZnOZW1cYbjQOZReNSWyhsUlsQLvaJ8Mr7XMj3bKdZNPCBcZGkTtlcOJlrJaXOQdZFqsDXTvkkSwfsy4Yf1bID2KiCYxIXVce-ithX9ewbsG_Es_uphI4dBvC3V_1hq6AAlbsUSXbov6I6jlHm0HD16Ds5yNyAHRKrtvbruPTxifHP7NX08mJezX-UsyO2S_R0UZhPbKddreEY7ZLWngRpvAPleN_S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VarKFaceNet%3A+An+Efficient+Variable+Depthwise+Convolution+Kernels+Neural+Network+for+Lightweight+Face+Recognition&rft.jtitle=IEEE+access&rft.au=Ma%2C+Qinghua&rft.au=Zhang%2C+Peng&rft.au=Cui%2C+Min&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=117472&rft.epage=117482&rft_id=info:doi/10.1109%2FACCESS.2024.3447018&rft.externalDocID=10643109
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon