A 1.06- \mu W Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring

Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sen...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 54; no. 8; pp. 2316 - 2326
Main Authors Yin, Shihui, Kim, Minkyu, Kadetotad, Deepak, Liu, Yang, Bae, Chisung, Kim, Sang Joon, Cao, Yu, Seo, Jae-Sun
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sensors present on wearable devices, we investigate the possibility of using ECG as the individually unique source for device authentication. In particular, we propose to use ECG features toward both cardiac monitoring and neural-network-based biometric authentication. For such complex functionalities to be seamlessly integrated in wearable devices, an accurate algorithm must be implemented with ultralow power and a small form factor. In this paper, a smart ECG processor is presented for ECG-based authentication as well as cardiac monitoring. Data-driven Lasso regression and low-precision techniques are developed to compress neural networks for feature extraction by 24.4<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. The 65-nm testchip consumes 1.06 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 0.55 V for real-time ECG authentication. For authentication, equal error rates of 1.70%/2.18%/2.48% (best/average/worst) are achieved on the in-house 645-subject database. For cardiac monitoring, 93.13% arrhythmia detection sensitivity and 89.78% specificity are achieved for 42 subjects in the MIT-BIH arrhythmia database.
AbstractList Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sensors present on wearable devices, we investigate the possibility of using ECG as the individually unique source for device authentication. In particular, we propose to use ECG features toward both cardiac monitoring and neural-network-based biometric authentication. For such complex functionalities to be seamlessly integrated in wearable devices, an accurate algorithm must be implemented with ultralow power and a small form factor. In this paper, a smart ECG processor is presented for ECG-based authentication as well as cardiac monitoring. Data-driven Lasso regression and low-precision techniques are developed to compress neural networks for feature extraction by 24.4<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. The 65-nm testchip consumes 1.06 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 0.55 V for real-time ECG authentication. For authentication, equal error rates of 1.70%/2.18%/2.48% (best/average/worst) are achieved on the in-house 645-subject database. For cardiac monitoring, 93.13% arrhythmia detection sensitivity and 89.78% specificity are achieved for 42 subjects in the MIT-BIH arrhythmia database.
Author Seo, Jae-Sun
Kim, Minkyu
Kadetotad, Deepak
Bae, Chisung
Cao, Yu
Liu, Yang
Kim, Sang Joon
Yin, Shihui
Author_xml – sequence: 1
  givenname: Shihui
  orcidid: 0000-0001-7186-0946
  surname: Yin
  fullname: Yin, Shihui
  email: jaesun.seo@asu.edu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 2
  givenname: Minkyu
  orcidid: 0000-0001-7084-9163
  surname: Kim
  fullname: Kim, Minkyu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 3
  givenname: Deepak
  surname: Kadetotad
  fullname: Kadetotad, Deepak
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Samsung R&D Institute China-Beijing, Beijing, China
– sequence: 5
  givenname: Chisung
  surname: Bae
  fullname: Bae, Chisung
  organization: Samsung Advanced Institute of Technology, Suwon, South Korea
– sequence: 6
  givenname: Sang Joon
  surname: Kim
  fullname: Kim, Sang Joon
  organization: Samsung Advanced Institute of Technology, Suwon, South Korea
– sequence: 7
  givenname: Yu
  surname: Cao
  fullname: Cao, Yu
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
– sequence: 8
  givenname: Jae-Sun
  surname: Seo
  fullname: Seo, Jae-Sun
  organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA
BookMark eNp9kNFKwzAUhoMouE0fQLzJC3TmNO3SXs4yp7KxYSd6IZQkTTXSJpJkgm9v54YXXnh1OAe-__B_Q3RsrFEIXQAZA5D86r4si3FMIB_HOcSUJEdoAGmaRcDo8zEaEAJZlMeEnKKh9-_9miQZDNDnFMOYTCL80m3xEy477gKeFXO8dlYq763D2uBJGpkOF8tViZv-8qB4G210p_C1tp0KTks83YY3ZYKWPGhrMDc1XivnreEtLrirNZd4aY0O1mnzeoZOGt56dX6YI_R4M9sUt9FiNb8rpotIUgohkryJBckUo7VsGsonIs5YQnkaN5KxXHEQVAgQNYMcBKtJHotEprVIVNZkKqEjBPtc6az3TjXVh9N9x68KSLUTV-3EVTtx1UFcz7A_jNThp1VwXLf_kpd7Uiulfj9lDCjNE_oNR4F8xg
CODEN IJSCBC
CitedBy_id crossref_primary_10_1109_TBCAS_2022_3184971
crossref_primary_10_23919_ICS_2024_3496614
crossref_primary_10_1587_elex_18_20210104
crossref_primary_10_1109_JETCAS_2021_3128587
crossref_primary_10_1109_TCSI_2023_3253705
crossref_primary_10_1109_TED_2020_3015178
crossref_primary_10_1145_3465379
crossref_primary_10_1038_s41598_022_09712_w
crossref_primary_10_1007_s11432_024_4196_0
crossref_primary_10_1049_el_2020_2224
crossref_primary_10_1109_LSSC_2020_3024622
crossref_primary_10_1109_TBCAS_2024_3360886
crossref_primary_10_1109_JSEN_2022_3183136
crossref_primary_10_1109_TBCAS_2022_3196059
crossref_primary_10_1109_TVLSI_2023_3329360
crossref_primary_10_1109_TBCAS_2023_3251310
crossref_primary_10_1109_JSSC_2020_3010705
crossref_primary_10_1109_TBCAS_2021_3100434
crossref_primary_10_1109_TCE_2022_3141342
crossref_primary_10_1109_TBCAS_2020_2974387
crossref_primary_10_56294_mw2023134
crossref_primary_10_1109_TBCAS_2022_3185720
crossref_primary_10_3233_JCS_220137
crossref_primary_10_1088_1361_6579_ada8f0
crossref_primary_10_1109_TCSII_2022_3169004
crossref_primary_10_1109_TBCAS_2019_2949778
crossref_primary_10_1109_TCAD_2020_3012169
crossref_primary_10_1109_TBCAS_2024_3389875
crossref_primary_10_1109_TBCAS_2024_3418085
crossref_primary_10_1016_j_bspc_2021_103033
crossref_primary_10_1109_TBCAS_2021_3113665
crossref_primary_10_3390_math12010077
crossref_primary_10_1007_s11432_021_3316_x
crossref_primary_10_1016_j_bspc_2022_103649
crossref_primary_10_1186_s13635_025_00193_8
crossref_primary_10_1109_TCSI_2023_3294181
crossref_primary_10_1109_JBHI_2021_3090421
crossref_primary_10_1109_TBCAS_2021_3092729
Cites_doi 10.1109/EUROCON.2017.8011082
10.1109/THS.2017.7943449
10.1109/LSP.2016.2531996
10.1109/JSSC.2013.2253226
10.1109/JSSC.2013.2297406
10.1109/WIFS.2010.5711466
10.1111/j.1540-8159.2005.50186.x
10.1109/51.932724
10.1109/78.134487
10.1109/IDAACS.2017.8095063
10.1126/science.1127647
10.1109/BioCAS.2015.7348372
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TIM.2007.909996
10.1109/JSSC.2014.2364036
10.1109/VLSIC.2010.5560253
10.1161/JAHA.112.002519
10.1007/978-3-319-39555-5_35
10.1161/01.CIR.101.23.e215
10.1007/978-3-540-25948-0_65
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSSC.2019.2912304
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-173X
EndPage 2326
ExternalDocumentID 10_1109_JSSC_2019_2912304
8713394
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1652866
  funderid: 10.13039/100000001
– fundername: Samsung
  funderid: 10.13039/100004358
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TAE
TN5
UKR
VH1
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c331t-caf2b08e73dcff3a6b28743a52fc779ea1b3bb1bd7191b7d092b4c5db4e8f8e43
IEDL.DBID RIE
ISSN 0018-9200
IngestDate Tue Jul 01 01:33:35 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Wed Aug 27 02:54:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-caf2b08e73dcff3a6b28743a52fc779ea1b3bb1bd7191b7d092b4c5db4e8f8e43
ORCID 0000-0001-7186-0946
0000-0001-7084-9163
PageCount 11
ParticipantIDs crossref_primary_10_1109_JSSC_2019_2912304
ieee_primary_8713394
crossref_citationtrail_10_1109_JSSC_2019_2912304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Aug.
2019-8-00
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-Aug.
PublicationDecade 2010
PublicationTitle IEEE journal of solid-state circuits
PublicationTitleAbbrev JSSC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
albrecht (ref34) 1983
ref33
ref11
ref32
(ref7) 2018
(ref29) 2018
labati (ref17) 0
choi (ref23) 2012
ref16
liu (ref22) 2017
(ref2) 2018
(ref9) 2018
ref24
ref26
ref25
ref21
(ref1) 2018
(ref10) 2018
ref28
(ref19) 1990
ref27
yin (ref18) 2017
lugovaya (ref20) 2005
ref4
ref3
ref6
ref5
(ref8) 2018
References_xml – ident: ref31
  doi: 10.1109/EUROCON.2017.8011082
– ident: ref30
  doi: 10.1109/THS.2017.7943449
– ident: ref16
  doi: 10.1109/LSP.2016.2531996
– year: 2017
  ident: ref22
  article-title: Electrocardiogram (ECG) authentication method and apparatus
– year: 2018
  ident: ref10
  publication-title: The Ring
– year: 2018
  ident: ref7
  publication-title: Zio XT Patch
– ident: ref3
  doi: 10.1109/JSSC.2013.2253226
– ident: ref6
  doi: 10.1109/JSSC.2013.2297406
– ident: ref14
  doi: 10.1109/WIFS.2010.5711466
– ident: ref32
  doi: 10.1111/j.1540-8159.2005.50186.x
– year: 2018
  ident: ref9
  publication-title: Simband
– year: 1983
  ident: ref34
  article-title: ST segment characterization for long term automated ecg analysis
– ident: ref21
  doi: 10.1109/51.932724
– ident: ref26
  doi: 10.1109/78.134487
– year: 2018
  ident: ref2
  publication-title: Gear S3
– ident: ref24
  doi: 10.1109/IDAACS.2017.8095063
– ident: ref25
  doi: 10.1126/science.1127647
– ident: ref15
  doi: 10.1109/BioCAS.2015.7348372
– year: 0
  ident: ref17
  article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition
  publication-title: Pattern Recognit Lett
– ident: ref27
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2018
  ident: ref8
  publication-title: KardiaBand
– year: 2005
  ident: ref20
  article-title: Biometric human identification based on electrocardiogram
– ident: ref13
  doi: 10.1109/TIM.2007.909996
– year: 1990
  ident: ref19
  publication-title: The MIT-BIH Normal Sinus Rhythm Database
– start-page: 102c
  year: 2017
  ident: ref18
  article-title: A $1.06~\mu\text{W}$ smart ecg processor in 65 nm CMOS for real-time biometric authentication and personal cardiac monitoring
  publication-title: Proc IEEE Symp VLSI Circuits
– ident: ref5
  doi: 10.1109/JSSC.2014.2364036
– ident: ref4
  doi: 10.1109/VLSIC.2010.5560253
– ident: ref33
  doi: 10.1161/JAHA.112.002519
– year: 2018
  ident: ref1
  publication-title: Watch Series 3
– ident: ref12
  doi: 10.1007/978-3-319-39555-5_35
– year: 2018
  ident: ref29
  publication-title: ADS1292R
– start-page: 5638
  year: 2012
  ident: ref23
  article-title: A PD control-based QRS detection algorithm for wearable ECG applications
  publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc
– ident: ref28
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref11
  doi: 10.1007/978-3-540-25948-0_65
SSID ssj0014481
Score 2.520984
Snippet Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2316
SubjectTerms Arrhythmia detection
Authentication
Biomedical monitoring
biometric authentication
cardiac monitoring
ECG
Electrocardiography
Feature extraction
Finite impulse response filters
Lasso regression
Monitoring
sparse neural network (NN)
weight compression
Title A 1.06- \mu W Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring
URI https://ieeexplore.ieee.org/document/8713394
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELWAExwoFBDbUjSHnlAd7NiJ4-MSQRHSAmKL4IAU-SsSajdbod0e-uvxJNkVVAj1FkW2YumN43njNzOEfDWhUEIXlhaaMSoDr6nJmKGZ8IzVnnHXqipHl_n5rby4z-5XyLdlLkwIoRWfhQQf27t8P3VzDJUdF8iotFwlq5G4dblayxuDSDO67ng8buAIfX-DyZk-vhiPSxRx6STVHIOgr86gF01V2jPl7AMZLVbTSUl-JvOZTdzffwo1_u9yt8hm71zCsLOGbbISmo9k40XJwR3yZwg8ifQeHiZzuIPxJJoOnJbfoc8YmD7BYwN5RpsJlKOrMUSnFm6iN0kxWQROMFsfi_oDxtZQadSF_MA0Hq57xx7K1uwcdD8M_PAuuT07_VGe0773AnVC8Bl1pk4tK4IS3tW1MLnFwvjCZGntlNLBcCus5darSPis8kynVrrMWxmKughS7JG1ZtqEfQLaS5U6kTsejKwj3dGKSRGUyV3QVqUDwhZoVK4vTI79MX5VLUFhukIAKwSw6gEckKPllN9dVY73Bu8gNsuBPSyf3n79mazj5E7jd0DWZk_z8CX6HTN72BrcM6pI0lQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvEpFec6BE8KpHTtxfCxRy1K6BbGt6AEp8isSoputql0O_Ho8SboqCCFuUWQnlr5JZr55AryysdLSVI5VhnOmomiZLbhlhQyct4EL32dVTo_Lyak6PCvONuDNuhYmxtgnn8WMLvtYflj4FbnKditiVEbdgJtJ7xdiqNZaxwwS0Rjm44n0CSfwxxim4Gb3cDarKY3LZLkR5Ab9TQtdG6vSa5WDezC9Os-QTPI9Wy1d5n_-0arxfw98H-6O5iXuDfLwADZi9xDuXGs6uAU_9lBkieDj1_kKv-BsnoQH9-t3ONYMLC7xW4dlwbo51tOPM0xmLX5O9iSjchF8S_X61NYfybtGuUaD0w9tF_DTaNpj3Quex-GXQS9-BKcH-yf1hI3TF5iXUiyZt23ueBW1DL5tpS0dtcaXtshbr7WJVjjpnHBBJ8rndOAmd8oXwalYtVVUchs2u0UXHwOaoHTuZelFtKpNhMdormTUtvTROJ3vAL9Co_Fja3KakHHe9BSFm4YAbAjAZgRwB16vt1wMfTn-tXiLsFkvHGF58vfbL-HW5GR61By9P_7wFG7Tg4aMv2ewubxcxefJClm6F73w_QLPbtWd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+1.06-+%5Cmu+W+Smart+ECG+Processor+in+65-nm+CMOS+for+Real-Time+Biometric+Authentication+and+Personal+Cardiac+Monitoring&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Yin%2C+Shihui&rft.au=Kim%2C+Minkyu&rft.au=Kadetotad%2C+Deepak&rft.au=Liu%2C+Yang&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9200&rft.volume=54&rft.issue=8&rft.spage=2316&rft.epage=2326&rft_id=info:doi/10.1109%2FJSSC.2019.2912304&rft.externalDocID=8713394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon