A 1.06- \mu W Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring
Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sen...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 54; no. 8; pp. 2316 - 2326 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sensors present on wearable devices, we investigate the possibility of using ECG as the individually unique source for device authentication. In particular, we propose to use ECG features toward both cardiac monitoring and neural-network-based biometric authentication. For such complex functionalities to be seamlessly integrated in wearable devices, an accurate algorithm must be implemented with ultralow power and a small form factor. In this paper, a smart ECG processor is presented for ECG-based authentication as well as cardiac monitoring. Data-driven Lasso regression and low-precision techniques are developed to compress neural networks for feature extraction by 24.4<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. The 65-nm testchip consumes 1.06 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 0.55 V for real-time ECG authentication. For authentication, equal error rates of 1.70%/2.18%/2.48% (best/average/worst) are achieved on the in-house 645-subject database. For cardiac monitoring, 93.13% arrhythmia detection sensitivity and 89.78% specificity are achieved for 42 subjects in the MIT-BIH arrhythmia database. |
---|---|
AbstractList | Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac monitoring). Considering private medical data storage, secure access to such wearable devices becomes a crucial necessity. Exploiting the ECG sensors present on wearable devices, we investigate the possibility of using ECG as the individually unique source for device authentication. In particular, we propose to use ECG features toward both cardiac monitoring and neural-network-based biometric authentication. For such complex functionalities to be seamlessly integrated in wearable devices, an accurate algorithm must be implemented with ultralow power and a small form factor. In this paper, a smart ECG processor is presented for ECG-based authentication as well as cardiac monitoring. Data-driven Lasso regression and low-precision techniques are developed to compress neural networks for feature extraction by 24.4<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>. The 65-nm testchip consumes 1.06 <inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula> at 0.55 V for real-time ECG authentication. For authentication, equal error rates of 1.70%/2.18%/2.48% (best/average/worst) are achieved on the in-house 645-subject database. For cardiac monitoring, 93.13% arrhythmia detection sensitivity and 89.78% specificity are achieved for 42 subjects in the MIT-BIH arrhythmia database. |
Author | Seo, Jae-Sun Kim, Minkyu Kadetotad, Deepak Bae, Chisung Cao, Yu Liu, Yang Kim, Sang Joon Yin, Shihui |
Author_xml | – sequence: 1 givenname: Shihui orcidid: 0000-0001-7186-0946 surname: Yin fullname: Yin, Shihui email: jaesun.seo@asu.edu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 2 givenname: Minkyu orcidid: 0000-0001-7084-9163 surname: Kim fullname: Kim, Minkyu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 3 givenname: Deepak surname: Kadetotad fullname: Kadetotad, Deepak organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang organization: Samsung R&D Institute China-Beijing, Beijing, China – sequence: 5 givenname: Chisung surname: Bae fullname: Bae, Chisung organization: Samsung Advanced Institute of Technology, Suwon, South Korea – sequence: 6 givenname: Sang Joon surname: Kim fullname: Kim, Sang Joon organization: Samsung Advanced Institute of Technology, Suwon, South Korea – sequence: 7 givenname: Yu surname: Cao fullname: Cao, Yu organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA – sequence: 8 givenname: Jae-Sun surname: Seo fullname: Seo, Jae-Sun organization: School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA |
BookMark | eNp9kNFKwzAUhoMouE0fQLzJC3TmNO3SXs4yp7KxYSd6IZQkTTXSJpJkgm9v54YXXnh1OAe-__B_Q3RsrFEIXQAZA5D86r4si3FMIB_HOcSUJEdoAGmaRcDo8zEaEAJZlMeEnKKh9-_9miQZDNDnFMOYTCL80m3xEy477gKeFXO8dlYq763D2uBJGpkOF8tViZv-8qB4G210p_C1tp0KTks83YY3ZYKWPGhrMDc1XivnreEtLrirNZd4aY0O1mnzeoZOGt56dX6YI_R4M9sUt9FiNb8rpotIUgohkryJBckUo7VsGsonIs5YQnkaN5KxXHEQVAgQNYMcBKtJHotEprVIVNZkKqEjBPtc6az3TjXVh9N9x68KSLUTV-3EVTtx1UFcz7A_jNThp1VwXLf_kpd7Uiulfj9lDCjNE_oNR4F8xg |
CODEN | IJSCBC |
CitedBy_id | crossref_primary_10_1109_TBCAS_2022_3184971 crossref_primary_10_23919_ICS_2024_3496614 crossref_primary_10_1587_elex_18_20210104 crossref_primary_10_1109_JETCAS_2021_3128587 crossref_primary_10_1109_TCSI_2023_3253705 crossref_primary_10_1109_TED_2020_3015178 crossref_primary_10_1145_3465379 crossref_primary_10_1038_s41598_022_09712_w crossref_primary_10_1007_s11432_024_4196_0 crossref_primary_10_1049_el_2020_2224 crossref_primary_10_1109_LSSC_2020_3024622 crossref_primary_10_1109_TBCAS_2024_3360886 crossref_primary_10_1109_JSEN_2022_3183136 crossref_primary_10_1109_TBCAS_2022_3196059 crossref_primary_10_1109_TVLSI_2023_3329360 crossref_primary_10_1109_TBCAS_2023_3251310 crossref_primary_10_1109_JSSC_2020_3010705 crossref_primary_10_1109_TBCAS_2021_3100434 crossref_primary_10_1109_TCE_2022_3141342 crossref_primary_10_1109_TBCAS_2020_2974387 crossref_primary_10_56294_mw2023134 crossref_primary_10_1109_TBCAS_2022_3185720 crossref_primary_10_3233_JCS_220137 crossref_primary_10_1088_1361_6579_ada8f0 crossref_primary_10_1109_TCSII_2022_3169004 crossref_primary_10_1109_TBCAS_2019_2949778 crossref_primary_10_1109_TCAD_2020_3012169 crossref_primary_10_1109_TBCAS_2024_3389875 crossref_primary_10_1109_TBCAS_2024_3418085 crossref_primary_10_1016_j_bspc_2021_103033 crossref_primary_10_1109_TBCAS_2021_3113665 crossref_primary_10_3390_math12010077 crossref_primary_10_1007_s11432_021_3316_x crossref_primary_10_1016_j_bspc_2022_103649 crossref_primary_10_1186_s13635_025_00193_8 crossref_primary_10_1109_TCSI_2023_3294181 crossref_primary_10_1109_JBHI_2021_3090421 crossref_primary_10_1109_TBCAS_2021_3092729 |
Cites_doi | 10.1109/EUROCON.2017.8011082 10.1109/THS.2017.7943449 10.1109/LSP.2016.2531996 10.1109/JSSC.2013.2253226 10.1109/JSSC.2013.2297406 10.1109/WIFS.2010.5711466 10.1111/j.1540-8159.2005.50186.x 10.1109/51.932724 10.1109/78.134487 10.1109/IDAACS.2017.8095063 10.1126/science.1127647 10.1109/BioCAS.2015.7348372 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TIM.2007.909996 10.1109/JSSC.2014.2364036 10.1109/VLSIC.2010.5560253 10.1161/JAHA.112.002519 10.1007/978-3-319-39555-5_35 10.1161/01.CIR.101.23.e215 10.1007/978-3-540-25948-0_65 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/JSSC.2019.2912304 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-173X |
EndPage | 2326 |
ExternalDocumentID | 10_1109_JSSC_2019_2912304 8713394 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1652866 funderid: 10.13039/100000001 – fundername: Samsung funderid: 10.13039/100004358 |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 41~ 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PZZ RIA RIE RNS TAE TN5 UKR VH1 AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c331t-caf2b08e73dcff3a6b28743a52fc779ea1b3bb1bd7191b7d092b4c5db4e8f8e43 |
IEDL.DBID | RIE |
ISSN | 0018-9200 |
IngestDate | Tue Jul 01 01:33:35 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Wed Aug 27 02:54:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-caf2b08e73dcff3a6b28743a52fc779ea1b3bb1bd7191b7d092b4c5db4e8f8e43 |
ORCID | 0000-0001-7186-0946 0000-0001-7084-9163 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_JSSC_2019_2912304 ieee_primary_8713394 crossref_citationtrail_10_1109_JSSC_2019_2912304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Aug. 2019-8-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-Aug. |
PublicationDecade | 2010 |
PublicationTitle | IEEE journal of solid-state circuits |
PublicationTitleAbbrev | JSSC |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref31 ref30 albrecht (ref34) 1983 ref33 ref11 ref32 (ref7) 2018 (ref29) 2018 labati (ref17) 0 choi (ref23) 2012 ref16 liu (ref22) 2017 (ref2) 2018 (ref9) 2018 ref24 ref26 ref25 ref21 (ref1) 2018 (ref10) 2018 ref28 (ref19) 1990 ref27 yin (ref18) 2017 lugovaya (ref20) 2005 ref4 ref3 ref6 ref5 (ref8) 2018 |
References_xml | – ident: ref31 doi: 10.1109/EUROCON.2017.8011082 – ident: ref30 doi: 10.1109/THS.2017.7943449 – ident: ref16 doi: 10.1109/LSP.2016.2531996 – year: 2017 ident: ref22 article-title: Electrocardiogram (ECG) authentication method and apparatus – year: 2018 ident: ref10 publication-title: The Ring – year: 2018 ident: ref7 publication-title: Zio XT Patch – ident: ref3 doi: 10.1109/JSSC.2013.2253226 – ident: ref6 doi: 10.1109/JSSC.2013.2297406 – ident: ref14 doi: 10.1109/WIFS.2010.5711466 – ident: ref32 doi: 10.1111/j.1540-8159.2005.50186.x – year: 2018 ident: ref9 publication-title: Simband – year: 1983 ident: ref34 article-title: ST segment characterization for long term automated ecg analysis – ident: ref21 doi: 10.1109/51.932724 – ident: ref26 doi: 10.1109/78.134487 – year: 2018 ident: ref2 publication-title: Gear S3 – ident: ref24 doi: 10.1109/IDAACS.2017.8095063 – ident: ref25 doi: 10.1126/science.1127647 – ident: ref15 doi: 10.1109/BioCAS.2015.7348372 – year: 0 ident: ref17 article-title: Deep-ECG: Convolutional neural networks for ECG biometric recognition publication-title: Pattern Recognit Lett – ident: ref27 doi: 10.1111/j.2517-6161.1996.tb02080.x – year: 2018 ident: ref8 publication-title: KardiaBand – year: 2005 ident: ref20 article-title: Biometric human identification based on electrocardiogram – ident: ref13 doi: 10.1109/TIM.2007.909996 – year: 1990 ident: ref19 publication-title: The MIT-BIH Normal Sinus Rhythm Database – start-page: 102c year: 2017 ident: ref18 article-title: A $1.06~\mu\text{W}$ smart ecg processor in 65 nm CMOS for real-time biometric authentication and personal cardiac monitoring publication-title: Proc IEEE Symp VLSI Circuits – ident: ref5 doi: 10.1109/JSSC.2014.2364036 – ident: ref4 doi: 10.1109/VLSIC.2010.5560253 – ident: ref33 doi: 10.1161/JAHA.112.002519 – year: 2018 ident: ref1 publication-title: Watch Series 3 – ident: ref12 doi: 10.1007/978-3-319-39555-5_35 – year: 2018 ident: ref29 publication-title: ADS1292R – start-page: 5638 year: 2012 ident: ref23 article-title: A PD control-based QRS detection algorithm for wearable ECG applications publication-title: Proc Annu Int Conf IEEE Eng Med Biol Soc – ident: ref28 doi: 10.1161/01.CIR.101.23.e215 – ident: ref11 doi: 10.1007/978-3-540-25948-0_65 |
SSID | ssj0014481 |
Score | 2.520984 |
Snippet | Many wearable devices employ the sensors for physiological signals (e.g., electrocardiogram or ECG) to continuously monitor personal health (e.g., cardiac... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2316 |
SubjectTerms | Arrhythmia detection Authentication Biomedical monitoring biometric authentication cardiac monitoring ECG Electrocardiography Feature extraction Finite impulse response filters Lasso regression Monitoring sparse neural network (NN) weight compression |
Title | A 1.06- \mu W Smart ECG Processor in 65-nm CMOS for Real-Time Biometric Authentication and Personal Cardiac Monitoring |
URI | https://ieeexplore.ieee.org/document/8713394 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELWAExwoFBDbUjSHnlAd7NiJ4-MSQRHSAmKL4IAU-SsSajdbod0e-uvxJNkVVAj1FkW2YumN43njNzOEfDWhUEIXlhaaMSoDr6nJmKGZ8IzVnnHXqipHl_n5rby4z-5XyLdlLkwIoRWfhQQf27t8P3VzDJUdF8iotFwlq5G4dblayxuDSDO67ng8buAIfX-DyZk-vhiPSxRx6STVHIOgr86gF01V2jPl7AMZLVbTSUl-JvOZTdzffwo1_u9yt8hm71zCsLOGbbISmo9k40XJwR3yZwg8ifQeHiZzuIPxJJoOnJbfoc8YmD7BYwN5RpsJlKOrMUSnFm6iN0kxWQROMFsfi_oDxtZQadSF_MA0Hq57xx7K1uwcdD8M_PAuuT07_VGe0773AnVC8Bl1pk4tK4IS3tW1MLnFwvjCZGntlNLBcCus5darSPis8kynVrrMWxmKughS7JG1ZtqEfQLaS5U6kTsejKwj3dGKSRGUyV3QVqUDwhZoVK4vTI79MX5VLUFhukIAKwSw6gEckKPllN9dVY73Bu8gNsuBPSyf3n79mazj5E7jd0DWZk_z8CX6HTN72BrcM6pI0lQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvEpFec6BE8KpHTtxfCxRy1K6BbGt6AEp8isSoputql0O_Ho8SboqCCFuUWQnlr5JZr55AryysdLSVI5VhnOmomiZLbhlhQyct4EL32dVTo_Lyak6PCvONuDNuhYmxtgnn8WMLvtYflj4FbnKditiVEbdgJtJ7xdiqNZaxwwS0Rjm44n0CSfwxxim4Gb3cDarKY3LZLkR5Ab9TQtdG6vSa5WDezC9Os-QTPI9Wy1d5n_-0arxfw98H-6O5iXuDfLwADZi9xDuXGs6uAU_9lBkieDj1_kKv-BsnoQH9-t3ONYMLC7xW4dlwbo51tOPM0xmLX5O9iSjchF8S_X61NYfybtGuUaD0w9tF_DTaNpj3Quex-GXQS9-BKcH-yf1hI3TF5iXUiyZt23ueBW1DL5tpS0dtcaXtshbr7WJVjjpnHBBJ8rndOAmd8oXwalYtVVUchs2u0UXHwOaoHTuZelFtKpNhMdormTUtvTROJ3vAL9Co_Fja3KakHHe9BSFm4YAbAjAZgRwB16vt1wMfTn-tXiLsFkvHGF58vfbL-HW5GR61By9P_7wFG7Tg4aMv2ewubxcxefJClm6F73w_QLPbtWd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+1.06-+%5Cmu+W+Smart+ECG+Processor+in+65-nm+CMOS+for+Real-Time+Biometric+Authentication+and+Personal+Cardiac+Monitoring&rft.jtitle=IEEE+journal+of+solid-state+circuits&rft.au=Yin%2C+Shihui&rft.au=Kim%2C+Minkyu&rft.au=Kadetotad%2C+Deepak&rft.au=Liu%2C+Yang&rft.date=2019-08-01&rft.pub=IEEE&rft.issn=0018-9200&rft.volume=54&rft.issue=8&rft.spage=2316&rft.epage=2326&rft_id=info:doi/10.1109%2FJSSC.2019.2912304&rft.externalDocID=8713394 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9200&client=summon |