Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions
•The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic fr...
Saved in:
Published in | Mechanical systems and signal processing Vol. 172; p. 109017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin
Elsevier Ltd
01.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0888-3270 1096-1216 |
DOI | 10.1016/j.ymssp.2022.109017 |
Cover
Abstract | •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection.•The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions.
It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods. |
---|---|
AbstractList | •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection.•The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions.
It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods. |
ArticleNumber | 109017 |
Author | Ni, Qing Wang, Xinglong Pan, Haiyang Zheng, Jinde Zhang, Jun |
Author_xml | – sequence: 1 givenname: Xinglong surname: Wang fullname: Wang, Xinglong organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China – sequence: 2 givenname: Jinde surname: Zheng fullname: Zheng, Jinde email: jdzheng@ahut.edu.cn organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China – sequence: 3 givenname: Qing surname: Ni fullname: Ni, Qing organization: School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia – sequence: 4 givenname: Haiyang surname: Pan fullname: Pan, Haiyang organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China – sequence: 5 givenname: Jun surname: Zhang fullname: Zhang, Jun organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China |
BookMark | eNqFUU2P0zAQtdAi0V34BVwscYFDij_axEHisFotsNJKXMrZcuxx11Vil3FSbX8XfxCn4cQBTjMevzdPb941uYopAiFvOVtzxuuPh_V5yPm4FkyIMmkZb16QVWnqigteX5EVU0pVUjTsFbnO-cAYazesXpFfOzQnwGx6GqKDZwrxyUQLrtqjGej73cP93Hz4RG9pTCfoaTqOYShwB0NyU2_GkCL1CD8niPZMOxMdzdCDvXwMMD4lR31CiqnvQ9zTDgzO1ZupH6kLZh9TDplORR-LSKzyeNlq8FzUAMujwG2KLszj_Jq89KbP8OZPvSE_vtzv7r5Vj9-_PtzdPlZWSj5WtvHFZsehbthms5WN2oi6FVIxw7YttMp3jbTO18pIL7hvRQ1OcslMJzqQSt6Qd8veI6biLo_6kCaMRVKLeiu3ShRKQckFZTHljOD1EcuB8Kw503M6-qAv6eg5Hb2kU1jtXywbFtcjmtD_h_t54UIxfwqAOtsAc2gBy9m1S-Gf_N-SZ7KL |
CitedBy_id | crossref_primary_10_1177_14759217221122308 crossref_primary_10_1109_TIM_2024_3413138 crossref_primary_10_1016_j_aei_2025_103174 crossref_primary_10_1016_j_isatra_2023_02_017 crossref_primary_10_1016_j_knosys_2023_110259 crossref_primary_10_1016_j_measurement_2023_113614 crossref_primary_10_1088_1361_6501_ad1c49 crossref_primary_10_1016_j_isatra_2024_01_009 crossref_primary_10_1088_1361_6501_adb86f crossref_primary_10_1016_j_ymssp_2024_111417 crossref_primary_10_1177_14759217251318217 crossref_primary_10_3390_machines12110779 crossref_primary_10_1016_j_ymssp_2023_110800 crossref_primary_10_1063_5_0172091 crossref_primary_10_1177_14759217241309311 crossref_primary_10_1016_j_ymssp_2024_111213 crossref_primary_10_3390_agriculture13071440 crossref_primary_10_1088_1361_6501_ad3e1f crossref_primary_10_1016_j_aei_2024_103002 crossref_primary_10_1177_10775463221130821 crossref_primary_10_1088_1361_6501_ad0f67 crossref_primary_10_1109_JSEN_2022_3177144 crossref_primary_10_1088_1361_6501_ad0d74 crossref_primary_10_1088_1361_6501_ad69b4 crossref_primary_10_1007_s12206_022_1107_5 crossref_primary_10_1177_14759217231178653 crossref_primary_10_3390_machines11010047 crossref_primary_10_3390_pr12030433 crossref_primary_10_1016_j_ymssp_2024_111884 crossref_primary_10_1016_j_ymssp_2025_112476 crossref_primary_10_3390_electronics13050829 crossref_primary_10_1016_j_measurement_2023_113395 crossref_primary_10_1109_JSEN_2023_3310672 crossref_primary_10_1016_j_ymssp_2023_111083 crossref_primary_10_1016_j_isatra_2022_07_019 crossref_primary_10_1016_j_apacoust_2024_110423 crossref_primary_10_1088_1361_6501_ad8178 crossref_primary_10_1177_14759217231197806 crossref_primary_10_1088_1361_6501_ace46d crossref_primary_10_1016_j_ymssp_2022_110069 crossref_primary_10_1016_j_engfailanal_2023_107815 crossref_primary_10_1016_j_ymssp_2023_110461 crossref_primary_10_1109_TIM_2024_3497152 crossref_primary_10_1002_msd2_12076 crossref_primary_10_1016_j_knosys_2024_112265 crossref_primary_10_1007_s40430_024_05331_w crossref_primary_10_1002_acs_3754 crossref_primary_10_1016_j_apacoust_2023_109225 crossref_primary_10_1109_TR_2023_3311769 crossref_primary_10_1109_JSEN_2023_3326112 crossref_primary_10_1109_TIM_2024_3390161 crossref_primary_10_1007_s40430_023_04184_z crossref_primary_10_1177_10775463241283663 crossref_primary_10_1177_10775463241286013 crossref_primary_10_1016_j_ymssp_2023_110911 crossref_primary_10_1088_1361_6501_ad8f57 crossref_primary_10_1088_1361_6501_acd26c crossref_primary_10_1016_j_prime_2025_100916 crossref_primary_10_1016_j_apacoust_2024_109962 |
Cites_doi | 10.1109/TSP.2013.2265222 10.1016/j.ymssp.2016.12.033 10.1016/j.ymssp.2015.04.034 10.1109/TIM.2019.2905022 10.1016/j.ymssp.2012.10.003 10.1016/j.ymssp.2010.05.018 10.1016/j.ymssp.2017.12.009 10.3390/app9061157 10.21595/jve.2018.19924 10.1016/j.ymssp.2010.12.011 10.1016/j.measurement.2008.09.011 10.1016/j.ymssp.2015.08.014 10.1016/j.ymssp.2004.09.001 10.1016/j.ymssp.2017.09.007 10.1088/1361-6501/ab2177 10.1016/j.ymssp.2019.05.003 10.3390/e22070739 10.1016/j.apacoust.2016.11.008 10.1098/rspa.2003.1199 10.3390/e21020135 10.1016/j.ymssp.2005.12.002 10.1016/j.measurement.2020.108575 10.1016/j.ymssp.2020.106891 10.1016/j.ymssp.2019.106303 10.1016/j.ymssp.2020.106618 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 1, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 1, 2022 |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.ymssp.2022.109017 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1096-1216 |
ExternalDocumentID | 10_1016_j_ymssp_2022_109017 S0888327022001959 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c331t-c7f000b1e67044537842692380a059e98fb73cdf68a3f21f926ed3130ab2be383 |
IEDL.DBID | AIKHN |
ISSN | 0888-3270 |
IngestDate | Fri Jul 25 06:02:15 EDT 2025 Tue Jul 01 04:30:13 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Fri Feb 23 02:41:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Enhanced envelope spectrum Optimal demodulation frequency band Index fusion Variable speed Rolling bearing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c331t-c7f000b1e67044537842692380a059e98fb73cdf68a3f21f926ed3130ab2be383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2653582926 |
PQPubID | 2045429 |
ParticipantIDs | proquest_journals_2653582926 crossref_primary_10_1016_j_ymssp_2022_109017 crossref_citationtrail_10_1016_j_ymssp_2022_109017 elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 2022-06-00 20220601 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin |
PublicationPlace_xml | – name: Berlin |
PublicationTitle | Mechanical systems and signal processing |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dwyer (b0030) 2003 Wyłomańska, Żak, Kruczek, Zimroz (b0070) 2017; 128 Smith, Borghesani, Ni, Wang, Peng (b0090) 2019; 134 Li, Liang, Lin, Chen, Liu (b0005) 2018; 101 Antoni (b0035) 2007; 21 Borghesani, Shahriar (b0115) 2016; 70 Gilles (b0125) 2013; 61 Tomasz, Adam (b0050) 2011; 25 Olhede, Walden (b0110) 2005; 461 Hu, Bao, Tu, Li, Li (b0120) 2020; 69 Olhede, Walden (b0105) 2004; 460 Gang, Li, Zhang (b0065) 2013; 41 Antoni (b0075) 2016; 74 Feng, Ma, Wang, Wu, Zhou (b0015) 2019; 21 Wang, Zheng, Pan, Liu, Wang (b0020) 2021; 174 Pan, Zhang, Zheng, Zhu, Pan (b0130) 2019; 30 Yang, He, Cheng, Yu (b0100) 2009; 42 Wang, Tse, Tsui (b0060) 2013; 35 Mauricio, Smith, Randall, Antoni, Gryllias (b0085) 2020; 144 Ali, Alessandro (b0080) 2018; 105 Buzzoni, D’Elia, Cocconcelli (b0140) 2020; 139 Zhu, Zhang, Zhu (b0095) 2018; 20 Ren, Li, Zhang, Zhu, Jiang (b0010) 2019; 9 Borghesani, Antoni (b0045) 2017; 90 Lei, Lin, He, Zi (b0055) 2011; 25 Antoni (b0040) 2006; 20 Zhang, Wang, Deng (b0025) 2020; 22 Xu, Zhang, Ma, Cui, Tian (b0135) 2019; 130 Ren (10.1016/j.ymssp.2022.109017_b0010) 2019; 9 Borghesani (10.1016/j.ymssp.2022.109017_b0045) 2017; 90 Ali (10.1016/j.ymssp.2022.109017_b0080) 2018; 105 Wang (10.1016/j.ymssp.2022.109017_b0020) 2021; 174 Gang (10.1016/j.ymssp.2022.109017_b0065) 2013; 41 Borghesani (10.1016/j.ymssp.2022.109017_b0115) 2016; 70 Feng (10.1016/j.ymssp.2022.109017_b0015) 2019; 21 Smith (10.1016/j.ymssp.2022.109017_b0090) 2019; 134 Buzzoni (10.1016/j.ymssp.2022.109017_b0140) 2020; 139 Antoni (10.1016/j.ymssp.2022.109017_b0075) 2016; 74 Hu (10.1016/j.ymssp.2022.109017_b0120) 2020; 69 Tomasz (10.1016/j.ymssp.2022.109017_b0050) 2011; 25 Pan (10.1016/j.ymssp.2022.109017_b0130) 2019; 30 Gilles (10.1016/j.ymssp.2022.109017_b0125) 2013; 61 Xu (10.1016/j.ymssp.2022.109017_b0135) 2019; 130 Olhede (10.1016/j.ymssp.2022.109017_b0110) 2005; 461 Olhede (10.1016/j.ymssp.2022.109017_b0105) 2004; 460 Yang (10.1016/j.ymssp.2022.109017_b0100) 2009; 42 Li (10.1016/j.ymssp.2022.109017_b0005) 2018; 101 Zhu (10.1016/j.ymssp.2022.109017_b0095) 2018; 20 Dwyer (10.1016/j.ymssp.2022.109017_b0030) 2003 Zhang (10.1016/j.ymssp.2022.109017_b0025) 2020; 22 Wang (10.1016/j.ymssp.2022.109017_b0060) 2013; 35 Antoni (10.1016/j.ymssp.2022.109017_b0040) 2006; 20 Wyłomańska (10.1016/j.ymssp.2022.109017_b0070) 2017; 128 Mauricio (10.1016/j.ymssp.2022.109017_b0085) 2020; 144 Antoni (10.1016/j.ymssp.2022.109017_b0035) 2007; 21 Lei (10.1016/j.ymssp.2022.109017_b0055) 2011; 25 |
References_xml | – volume: 61 start-page: 3999 year: 2013 end-page: 4010 ident: b0125 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 20 start-page: 282 year: 2006 end-page: 307 ident: b0040 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Sig. Process. – volume: 20 start-page: 2892 year: 2018 end-page: 2907 ident: b0095 article-title: Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator publication-title: J. Vibroengineering – volume: 70 start-page: 51 year: 2016 end-page: 72 ident: b0115 article-title: Cyclostationary analysis with logarithmic variance stabilization publication-title: Mech. Syst. Sig. Process. – volume: 461 start-page: 2159 year: 2005 end-page: 2179 ident: b0110 article-title: A generalized demodulation approach to time-frequency projections for multicomponent signals publication-title: Proc. Math. Phys. Eng. Sci. – volume: 69 start-page: 739 year: 2020 end-page: 750 ident: b0120 article-title: An Adaptive Spectral Kurtosis Method and Its Application to Fault Detection of Rolling Element Bearings publication-title: IEEE Trans. Instrum. Meas. – volume: 25 start-page: 431 year: 2011 end-page: 451 ident: b0050 article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram publication-title: Mech. Syst. Sig. Process. – volume: 134 start-page: 106303 year: 2019 ident: b0090 article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools publication-title: Mech. Syst. Sig. Process. – volume: 41 start-page: 155 year: 2013 end-page: 175 ident: b0065 article-title: A new statistical modeling and detection method for rolling element bearing faults based on alpha–stable distribution publication-title: Mech. Syst. Sig. Process. – volume: 21 start-page: 135 year: 2019 ident: b0015 article-title: An optimal resonant frequency band feature extraction method based on empirical wavelet transform publication-title: Entropy – volume: 35 start-page: 176 year: 2013 end-page: 199 ident: b0060 article-title: An enhanced kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 9 start-page: 1157 year: 2019 ident: b0010 article-title: Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions publication-title: Appl. Sci. – volume: 105 start-page: 294 year: 2018 end-page: 318 ident: b0080 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 30 start-page: 125904 year: 2019 ident: b0130 article-title: Agent discriminate model based optimization weighted method and its application in fault diagnosis of rolling bearings publication-title: Meas. Sci. Technol. – volume: 139 year: 2020 ident: b0140 article-title: A tool for validating and benchmarking signal processing techniques applied to machine diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 174 year: 2021 ident: b0020 article-title: Maximum envelope-based Autogram and symplectic geometry mode decomposition based gear fault diagnosis method publication-title: Measurement – volume: 22 start-page: 739 year: 2020 ident: b0025 article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation publication-title: Entropy – volume: 128 start-page: 14 year: 2017 end-page: 22 ident: b0070 article-title: Application of tempered stable distribution for selection of optimal frequency band in gearbox local damage detection publication-title: Appl. Acoust. – volume: 90 start-page: 378 year: 2017 end-page: 398 ident: b0045 article-title: CS2 analysis in presence of non-Gaussian background noise–Effect on traditional estimators and resilience of log-envelope indicators publication-title: Mech. Syst. Sig. Process. – volume: 25 start-page: 1738 year: 2011 end-page: 1749 ident: b0055 article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 130 start-page: 87 year: 2019 end-page: 107 ident: b0135 article-title: Adaptive kurtogram and its applications in rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. – volume: 74 start-page: 73 year: 2016 end-page: 94 ident: b0075 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Sig. Process. – volume: 42 start-page: 542 year: 2009 end-page: 551 ident: b0100 article-title: A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach publication-title: Measurement – volume: 101 start-page: 435 year: 2018 end-page: 448 ident: b0005 article-title: Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter publication-title: Mech. Syst. Sig. Process. – volume: 460 start-page: 955 year: 2004 end-page: 975 ident: b0105 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. Math. Phys. Eng. Sci. – volume: 21 start-page: 108 year: 2007 end-page: 124 ident: b0035 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Sig. Process. – volume: 144 start-page: 106891 year: 2020 ident: b0085 article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): A novel tool for rolling element bearing diagnostics under non-stationary operating conditions publication-title: Mech. Syst. Sig. Process. – year: 2003 ident: b0030 article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation. // ICASSP '83. IEEE international conference on acoustics, speech, and signal processing publication-title: IEEE – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 10.1016/j.ymssp.2022.109017_b0125 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2265222 – volume: 90 start-page: 378 year: 2017 ident: 10.1016/j.ymssp.2022.109017_b0045 article-title: CS2 analysis in presence of non-Gaussian background noise–Effect on traditional estimators and resilience of log-envelope indicators publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2016.12.033 – volume: 74 start-page: 73 issue: 1 year: 2016 ident: 10.1016/j.ymssp.2022.109017_b0075 article-title: The infogram: Entropic evidence of the signature of repetitive transients publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.04.034 – volume: 69 start-page: 739 issue: 3 year: 2020 ident: 10.1016/j.ymssp.2022.109017_b0120 article-title: An Adaptive Spectral Kurtosis Method and Its Application to Fault Detection of Rolling Element Bearings publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2905022 – year: 2003 ident: 10.1016/j.ymssp.2022.109017_b0030 article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation. // ICASSP '83. IEEE international conference on acoustics, speech, and signal processing publication-title: IEEE – volume: 35 start-page: 176 issue: 1–2 year: 2013 ident: 10.1016/j.ymssp.2022.109017_b0060 article-title: An enhanced kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2012.10.003 – volume: 25 start-page: 431 issue: 1 year: 2011 ident: 10.1016/j.ymssp.2022.109017_b0050 article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2010.05.018 – volume: 105 start-page: 294 year: 2018 ident: 10.1016/j.ymssp.2022.109017_b0080 article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.12.009 – volume: 9 start-page: 1157 issue: 6 year: 2019 ident: 10.1016/j.ymssp.2022.109017_b0010 article-title: Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions publication-title: Appl. Sci. doi: 10.3390/app9061157 – volume: 20 start-page: 2892 issue: 8 year: 2018 ident: 10.1016/j.ymssp.2022.109017_b0095 article-title: Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator publication-title: J. Vibroengineering doi: 10.21595/jve.2018.19924 – volume: 25 start-page: 1738 issue: 5 year: 2011 ident: 10.1016/j.ymssp.2022.109017_b0055 article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2010.12.011 – volume: 42 start-page: 542 issue: 4 year: 2009 ident: 10.1016/j.ymssp.2022.109017_b0100 article-title: A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach publication-title: Measurement doi: 10.1016/j.measurement.2008.09.011 – volume: 70 start-page: 51 year: 2016 ident: 10.1016/j.ymssp.2022.109017_b0115 article-title: Cyclostationary analysis with logarithmic variance stabilization publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2015.08.014 – volume: 20 start-page: 282 issue: 2 year: 2006 ident: 10.1016/j.ymssp.2022.109017_b0040 article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2004.09.001 – volume: 41 start-page: 155 issue: 1–2 year: 2013 ident: 10.1016/j.ymssp.2022.109017_b0065 article-title: A new statistical modeling and detection method for rolling element bearing faults based on alpha–stable distribution publication-title: Mech. Syst. Sig. Process. – volume: 101 start-page: 435 year: 2018 ident: 10.1016/j.ymssp.2022.109017_b0005 article-title: Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.09.007 – volume: 30 start-page: 125904 issue: 12 year: 2019 ident: 10.1016/j.ymssp.2022.109017_b0130 article-title: Agent discriminate model based optimization weighted method and its application in fault diagnosis of rolling bearings publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab2177 – volume: 130 start-page: 87 year: 2019 ident: 10.1016/j.ymssp.2022.109017_b0135 article-title: Adaptive kurtogram and its applications in rolling bearing fault diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.05.003 – volume: 22 start-page: 739 issue: 7 year: 2020 ident: 10.1016/j.ymssp.2022.109017_b0025 article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation publication-title: Entropy doi: 10.3390/e22070739 – volume: 128 start-page: 14 year: 2017 ident: 10.1016/j.ymssp.2022.109017_b0070 article-title: Application of tempered stable distribution for selection of optimal frequency band in gearbox local damage detection publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2016.11.008 – volume: 460 start-page: 955 issue: 2044 year: 2004 ident: 10.1016/j.ymssp.2022.109017_b0105 article-title: The Hilbert spectrum via wavelet projections publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.2003.1199 – volume: 461 start-page: 2159 issue: 2059 year: 2005 ident: 10.1016/j.ymssp.2022.109017_b0110 article-title: A generalized demodulation approach to time-frequency projections for multicomponent signals publication-title: Proc. Math. Phys. Eng. Sci. – volume: 21 start-page: 135 issue: 2 year: 2019 ident: 10.1016/j.ymssp.2022.109017_b0015 article-title: An optimal resonant frequency band feature extraction method based on empirical wavelet transform publication-title: Entropy doi: 10.3390/e21020135 – volume: 21 start-page: 108 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2022.109017_b0035 article-title: Fast computation of the kurtogram for the detection of transient faults publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2005.12.002 – volume: 174 year: 2021 ident: 10.1016/j.ymssp.2022.109017_b0020 article-title: Maximum envelope-based Autogram and symplectic geometry mode decomposition based gear fault diagnosis method publication-title: Measurement doi: 10.1016/j.measurement.2020.108575 – volume: 144 start-page: 106891 year: 2020 ident: 10.1016/j.ymssp.2022.109017_b0085 article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): A novel tool for rolling element bearing diagnostics under non-stationary operating conditions publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.106891 – volume: 134 start-page: 106303 year: 2019 ident: 10.1016/j.ymssp.2022.109017_b0090 article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2019.106303 – volume: 139 year: 2020 ident: 10.1016/j.ymssp.2022.109017_b0140 article-title: A tool for validating and benchmarking signal processing techniques applied to machine diagnosis publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2020.106618 |
SSID | ssj0009406 |
Score | 2.5857725 |
Snippet | •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the... It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109017 |
SubjectTerms | Correlation coefficients Demodulation Enhanced envelope spectrum Fault diagnosis Filter banks Fourier transforms Frequencies Index fusion Information retrieval Kurtosis Optimal demodulation frequency band Roller bearings Rolling bearing Segmentation Trees Variable speed Vibration |
Title | Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions |
URI | https://dx.doi.org/10.1016/j.ymssp.2022.109017 https://www.proquest.com/docview/2653582926 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB616QUOiKcolMoHDiBhEnvf3KKqVQqiF1KpN8uObRGUbKrdFCkX_hR_kBnby0uoB055jeNkx54Za7_5PoCXmBErXTc1z6SVPDe14LV2Hs88hMEoMCsENOHHi3J2mb-_Kq724GTohSFYZYr9MaaHaJ3eGaerOb5eLsefcH_gcqyoVZS63pp9OJBZUxYjOJief5hd_OLezYPEJtlzGjCQDwWY127d98RbKSUxK02CcNk_E9RfoTrkn7P7cC8Vjmwaf9sD2HPtQ7j7G53gI_g-Jy2hrkezQILIXPs53ODnBMFir-bnp_Tk9Ts2Ze3mq1uxDQaMNZpbt97YJOTFfBfh1TtmdGtZH5Ry6IOoNs2wzGVd5PJmBjcKPXp9s9oyG3F7y55Ra1qHk7S8j_f6dbfD2YjBmczxEG4jVuwxXJ6dzk9mPIky8EWWiS1fVB4vqRGurCZ5XmRVTc2wmPgnGis119TeVNnC-rLWmZfCN7J0NsNMqY00Ds_DT2CEs7unwGyhhRWm8BqLMq2FcRNhck-KWaaqjTgEOXhCLRJjOQlnrNQATfuigvsUuU9F9x3Cm5-DriNhx-3m5eBi9ce6U5hSbh94NCwIlbZ9r2RZUOcx_udn__u9z-EOvYpotCMYbbsb9wLrnq05hv2338RxWt0_ABqHBQI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HIAD4lHEs_WhB5Bqdu28uSEEWlrgwiJxs-y1rW61m0XJgrQX_hR_kBk7aSmqOPS00WYSJ57xzFj55htCvkJEzFRe5CwSRrBY55zlyjrY8yAGI4Go4NGE1zdp7y7-fp_cz5GzthYGYZWN7w8-3Xvr5p9OM5udh-GwcwvrA8wxw1JRrHor5slinMD9waiPn__gPIrYN9hEaYbiLfWQB3nNxnWNrJVCIK9S17ct-2d4eueoffS5WCOrTdpIT8OTrZM5W26QlTdkgpvkpY-dhKoaxDwFIrXlT_95nyEAix72L8_x4OiEntJy8mRHdALuYgzixo4npmnjRV0VwNUzqlVpaO375OCJ0GuaQpJLq8DkTTUsE_x16nE0pSag9oY1xcK0CgYpWR2-9KtqBqMhfzOKwxbcBKTYJ3J3cd4_67GmJQMbRBGfskHmYEo1t2nWjXG2cyyFhbDfVZCn2SJ3OosGxqW5ipzgrhCpNRHESaWFtrAb3iILMLrdJtQkihuuE6cgJVOKa9vlOnbYL0tnueY7RLSakIOGrxzbZoxkC0z7Jb36JKpPBvXtkG-_L3oIdB0fi6etiuVfVichoHx84X5rELJZ9LUUaYJ1x_DOu_973y9kqde_vpJXlzc_9sgyngm4tH2yMK0e7QFkQFP92Vv4K1kiBc0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traversal+index+enhanced-gram+%28TIEgram%29%3A+A+novel+optimal+demodulation+frequency+band+selection+method+for+rolling+bearing+fault+diagnosis+under+non-stationary+operating+conditions&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Wang%2C+Xinglong&rft.au=Zheng%2C+Jinde&rft.au=Ni%2C+Qing&rft.au=Pan%2C+Haiyang&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109017&rft.externalDocID=S0888327022001959 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |