Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions

•The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic fr...

Full description

Saved in:
Bibliographic Details
Published inMechanical systems and signal processing Vol. 172; p. 109017
Main Authors Wang, Xinglong, Zheng, Jinde, Ni, Qing, Pan, Haiyang, Zhang, Jun
Format Journal Article
LanguageEnglish
Published Berlin Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0888-3270
1096-1216
DOI10.1016/j.ymssp.2022.109017

Cover

Abstract •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection.•The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.
AbstractList •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the different fault characteristics of rolling bearing.•An enhanced envelope spectrum is proposed to improve the accuracy of fault characteristic frequency detection.•The effectiveness and superiority of TIEgram is verified by simulated and measured data under different work conditions. It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.
It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information extraction and diagnosis. Fast kurtogram (FK) is an effective and most commonly used ODFB selection approach for bearing fault diagnosis, which generally is founded on the filter bank structure and short-time Fourier transform. Though the FK method can effectively detect the shock characteristics of frequency band signals, other useful characteristics related with failure of vibration signal will be ignored. In this paper, a novel ODFB selection method called traversal index enhanced-gram (TIEgram) is proposed for rolling bearing vibration signals. In the proposed TIEgram method, first of all, the traversal segmentation model is utilized to transfer the original signal into frequency domain for enhancing overall segmentation performance of traditional binary trees and 1/3 binary trees structure segmentation models. Then, a new weighted fusion indicator based on the kurtosis, correlation coefficient and spectral negative entropy is designed to select ODFB from the segmented results of traversal segmentation model, which can effectively solve the problem that different vibration signal characteristics cannot be fully detected by a single indicator. After that, an enhanced adaptive multi-scale weighted morphological filtering-based envelope spectrum is employed to demodulate the obtained frequency band for a much more accurate diagnosis effect of rolling bearing. Finally, the simulated and measured signals of rolling bearing under stationary and non-stationary operating conditions are respectively used to verify the feasibility and effectiveness of the proposed method with comparison of the existing FK, Autogram and infogram methods. The comparison analysis results show that TIEgram method can accurately identify the most useful fault information and shows better performance than existing methods.
ArticleNumber 109017
Author Ni, Qing
Wang, Xinglong
Pan, Haiyang
Zheng, Jinde
Zhang, Jun
Author_xml – sequence: 1
  givenname: Xinglong
  surname: Wang
  fullname: Wang, Xinglong
  organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China
– sequence: 2
  givenname: Jinde
  surname: Zheng
  fullname: Zheng, Jinde
  email: jdzheng@ahut.edu.cn
  organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China
– sequence: 3
  givenname: Qing
  surname: Ni
  fullname: Ni, Qing
  organization: School of Mechanical and Mechatronic Engineering, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
– sequence: 4
  givenname: Haiyang
  surname: Pan
  fullname: Pan, Haiyang
  organization: School of Mechanical Engineering, Anhui University of Technology, Maanshan 243032, China
– sequence: 5
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
BookMark eNqFUU2P0zAQtdAi0V34BVwscYFDij_axEHisFotsNJKXMrZcuxx11Vil3FSbX8XfxCn4cQBTjMevzdPb941uYopAiFvOVtzxuuPh_V5yPm4FkyIMmkZb16QVWnqigteX5EVU0pVUjTsFbnO-cAYazesXpFfOzQnwGx6GqKDZwrxyUQLrtqjGej73cP93Hz4RG9pTCfoaTqOYShwB0NyU2_GkCL1CD8niPZMOxMdzdCDvXwMMD4lR31CiqnvQ9zTDgzO1ZupH6kLZh9TDplORR-LSKzyeNlq8FzUAMujwG2KLszj_Jq89KbP8OZPvSE_vtzv7r5Vj9-_PtzdPlZWSj5WtvHFZsehbthms5WN2oi6FVIxw7YttMp3jbTO18pIL7hvRQ1OcslMJzqQSt6Qd8veI6biLo_6kCaMRVKLeiu3ShRKQckFZTHljOD1EcuB8Kw503M6-qAv6eg5Hb2kU1jtXywbFtcjmtD_h_t54UIxfwqAOtsAc2gBy9m1S-Gf_N-SZ7KL
CitedBy_id crossref_primary_10_1177_14759217221122308
crossref_primary_10_1109_TIM_2024_3413138
crossref_primary_10_1016_j_aei_2025_103174
crossref_primary_10_1016_j_isatra_2023_02_017
crossref_primary_10_1016_j_knosys_2023_110259
crossref_primary_10_1016_j_measurement_2023_113614
crossref_primary_10_1088_1361_6501_ad1c49
crossref_primary_10_1016_j_isatra_2024_01_009
crossref_primary_10_1088_1361_6501_adb86f
crossref_primary_10_1016_j_ymssp_2024_111417
crossref_primary_10_1177_14759217251318217
crossref_primary_10_3390_machines12110779
crossref_primary_10_1016_j_ymssp_2023_110800
crossref_primary_10_1063_5_0172091
crossref_primary_10_1177_14759217241309311
crossref_primary_10_1016_j_ymssp_2024_111213
crossref_primary_10_3390_agriculture13071440
crossref_primary_10_1088_1361_6501_ad3e1f
crossref_primary_10_1016_j_aei_2024_103002
crossref_primary_10_1177_10775463221130821
crossref_primary_10_1088_1361_6501_ad0f67
crossref_primary_10_1109_JSEN_2022_3177144
crossref_primary_10_1088_1361_6501_ad0d74
crossref_primary_10_1088_1361_6501_ad69b4
crossref_primary_10_1007_s12206_022_1107_5
crossref_primary_10_1177_14759217231178653
crossref_primary_10_3390_machines11010047
crossref_primary_10_3390_pr12030433
crossref_primary_10_1016_j_ymssp_2024_111884
crossref_primary_10_1016_j_ymssp_2025_112476
crossref_primary_10_3390_electronics13050829
crossref_primary_10_1016_j_measurement_2023_113395
crossref_primary_10_1109_JSEN_2023_3310672
crossref_primary_10_1016_j_ymssp_2023_111083
crossref_primary_10_1016_j_isatra_2022_07_019
crossref_primary_10_1016_j_apacoust_2024_110423
crossref_primary_10_1088_1361_6501_ad8178
crossref_primary_10_1177_14759217231197806
crossref_primary_10_1088_1361_6501_ace46d
crossref_primary_10_1016_j_ymssp_2022_110069
crossref_primary_10_1016_j_engfailanal_2023_107815
crossref_primary_10_1016_j_ymssp_2023_110461
crossref_primary_10_1109_TIM_2024_3497152
crossref_primary_10_1002_msd2_12076
crossref_primary_10_1016_j_knosys_2024_112265
crossref_primary_10_1007_s40430_024_05331_w
crossref_primary_10_1002_acs_3754
crossref_primary_10_1016_j_apacoust_2023_109225
crossref_primary_10_1109_TR_2023_3311769
crossref_primary_10_1109_JSEN_2023_3326112
crossref_primary_10_1109_TIM_2024_3390161
crossref_primary_10_1007_s40430_023_04184_z
crossref_primary_10_1177_10775463241283663
crossref_primary_10_1177_10775463241286013
crossref_primary_10_1016_j_ymssp_2023_110911
crossref_primary_10_1088_1361_6501_ad8f57
crossref_primary_10_1088_1361_6501_acd26c
crossref_primary_10_1016_j_prime_2025_100916
crossref_primary_10_1016_j_apacoust_2024_109962
Cites_doi 10.1109/TSP.2013.2265222
10.1016/j.ymssp.2016.12.033
10.1016/j.ymssp.2015.04.034
10.1109/TIM.2019.2905022
10.1016/j.ymssp.2012.10.003
10.1016/j.ymssp.2010.05.018
10.1016/j.ymssp.2017.12.009
10.3390/app9061157
10.21595/jve.2018.19924
10.1016/j.ymssp.2010.12.011
10.1016/j.measurement.2008.09.011
10.1016/j.ymssp.2015.08.014
10.1016/j.ymssp.2004.09.001
10.1016/j.ymssp.2017.09.007
10.1088/1361-6501/ab2177
10.1016/j.ymssp.2019.05.003
10.3390/e22070739
10.1016/j.apacoust.2016.11.008
10.1098/rspa.2003.1199
10.3390/e21020135
10.1016/j.ymssp.2005.12.002
10.1016/j.measurement.2020.108575
10.1016/j.ymssp.2020.106891
10.1016/j.ymssp.2019.106303
10.1016/j.ymssp.2020.106618
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 1, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 1, 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2022.109017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2022_109017
S0888327022001959
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-c7f000b1e67044537842692380a059e98fb73cdf68a3f21f926ed3130ab2be383
IEDL.DBID AIKHN
ISSN 0888-3270
IngestDate Fri Jul 25 06:02:15 EDT 2025
Tue Jul 01 04:30:13 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Fri Feb 23 02:41:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Enhanced envelope spectrum
Optimal demodulation frequency band
Index fusion
Variable speed
Rolling bearing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-c7f000b1e67044537842692380a059e98fb73cdf68a3f21f926ed3130ab2be383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2653582926
PQPubID 2045429
ParticipantIDs proquest_journals_2653582926
crossref_primary_10_1016_j_ymssp_2022_109017
crossref_citationtrail_10_1016_j_ymssp_2022_109017
elsevier_sciencedirect_doi_10_1016_j_ymssp_2022_109017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dwyer (b0030) 2003
Wyłomańska, Żak, Kruczek, Zimroz (b0070) 2017; 128
Smith, Borghesani, Ni, Wang, Peng (b0090) 2019; 134
Li, Liang, Lin, Chen, Liu (b0005) 2018; 101
Antoni (b0035) 2007; 21
Borghesani, Shahriar (b0115) 2016; 70
Gilles (b0125) 2013; 61
Tomasz, Adam (b0050) 2011; 25
Olhede, Walden (b0110) 2005; 461
Hu, Bao, Tu, Li, Li (b0120) 2020; 69
Olhede, Walden (b0105) 2004; 460
Gang, Li, Zhang (b0065) 2013; 41
Antoni (b0075) 2016; 74
Feng, Ma, Wang, Wu, Zhou (b0015) 2019; 21
Wang, Zheng, Pan, Liu, Wang (b0020) 2021; 174
Pan, Zhang, Zheng, Zhu, Pan (b0130) 2019; 30
Yang, He, Cheng, Yu (b0100) 2009; 42
Wang, Tse, Tsui (b0060) 2013; 35
Mauricio, Smith, Randall, Antoni, Gryllias (b0085) 2020; 144
Ali, Alessandro (b0080) 2018; 105
Buzzoni, D’Elia, Cocconcelli (b0140) 2020; 139
Zhu, Zhang, Zhu (b0095) 2018; 20
Ren, Li, Zhang, Zhu, Jiang (b0010) 2019; 9
Borghesani, Antoni (b0045) 2017; 90
Lei, Lin, He, Zi (b0055) 2011; 25
Antoni (b0040) 2006; 20
Zhang, Wang, Deng (b0025) 2020; 22
Xu, Zhang, Ma, Cui, Tian (b0135) 2019; 130
Ren (10.1016/j.ymssp.2022.109017_b0010) 2019; 9
Borghesani (10.1016/j.ymssp.2022.109017_b0045) 2017; 90
Ali (10.1016/j.ymssp.2022.109017_b0080) 2018; 105
Wang (10.1016/j.ymssp.2022.109017_b0020) 2021; 174
Gang (10.1016/j.ymssp.2022.109017_b0065) 2013; 41
Borghesani (10.1016/j.ymssp.2022.109017_b0115) 2016; 70
Feng (10.1016/j.ymssp.2022.109017_b0015) 2019; 21
Smith (10.1016/j.ymssp.2022.109017_b0090) 2019; 134
Buzzoni (10.1016/j.ymssp.2022.109017_b0140) 2020; 139
Antoni (10.1016/j.ymssp.2022.109017_b0075) 2016; 74
Hu (10.1016/j.ymssp.2022.109017_b0120) 2020; 69
Tomasz (10.1016/j.ymssp.2022.109017_b0050) 2011; 25
Pan (10.1016/j.ymssp.2022.109017_b0130) 2019; 30
Gilles (10.1016/j.ymssp.2022.109017_b0125) 2013; 61
Xu (10.1016/j.ymssp.2022.109017_b0135) 2019; 130
Olhede (10.1016/j.ymssp.2022.109017_b0110) 2005; 461
Olhede (10.1016/j.ymssp.2022.109017_b0105) 2004; 460
Yang (10.1016/j.ymssp.2022.109017_b0100) 2009; 42
Li (10.1016/j.ymssp.2022.109017_b0005) 2018; 101
Zhu (10.1016/j.ymssp.2022.109017_b0095) 2018; 20
Dwyer (10.1016/j.ymssp.2022.109017_b0030) 2003
Zhang (10.1016/j.ymssp.2022.109017_b0025) 2020; 22
Wang (10.1016/j.ymssp.2022.109017_b0060) 2013; 35
Antoni (10.1016/j.ymssp.2022.109017_b0040) 2006; 20
Wyłomańska (10.1016/j.ymssp.2022.109017_b0070) 2017; 128
Mauricio (10.1016/j.ymssp.2022.109017_b0085) 2020; 144
Antoni (10.1016/j.ymssp.2022.109017_b0035) 2007; 21
Lei (10.1016/j.ymssp.2022.109017_b0055) 2011; 25
References_xml – volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: b0125
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 20
  start-page: 282
  year: 2006
  end-page: 307
  ident: b0040
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
– volume: 20
  start-page: 2892
  year: 2018
  end-page: 2907
  ident: b0095
  article-title: Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator
  publication-title: J. Vibroengineering
– volume: 70
  start-page: 51
  year: 2016
  end-page: 72
  ident: b0115
  article-title: Cyclostationary analysis with logarithmic variance stabilization
  publication-title: Mech. Syst. Sig. Process.
– volume: 461
  start-page: 2159
  year: 2005
  end-page: 2179
  ident: b0110
  article-title: A generalized demodulation approach to time-frequency projections for multicomponent signals
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 69
  start-page: 739
  year: 2020
  end-page: 750
  ident: b0120
  article-title: An Adaptive Spectral Kurtosis Method and Its Application to Fault Detection of Rolling Element Bearings
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 25
  start-page: 431
  year: 2011
  end-page: 451
  ident: b0050
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mech. Syst. Sig. Process.
– volume: 134
  start-page: 106303
  year: 2019
  ident: b0090
  article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools
  publication-title: Mech. Syst. Sig. Process.
– volume: 41
  start-page: 155
  year: 2013
  end-page: 175
  ident: b0065
  article-title: A new statistical modeling and detection method for rolling element bearing faults based on alpha–stable distribution
  publication-title: Mech. Syst. Sig. Process.
– volume: 21
  start-page: 135
  year: 2019
  ident: b0015
  article-title: An optimal resonant frequency band feature extraction method based on empirical wavelet transform
  publication-title: Entropy
– volume: 35
  start-page: 176
  year: 2013
  end-page: 199
  ident: b0060
  article-title: An enhanced kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 9
  start-page: 1157
  year: 2019
  ident: b0010
  article-title: Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions
  publication-title: Appl. Sci.
– volume: 105
  start-page: 294
  year: 2018
  end-page: 318
  ident: b0080
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 30
  start-page: 125904
  year: 2019
  ident: b0130
  article-title: Agent discriminate model based optimization weighted method and its application in fault diagnosis of rolling bearings
  publication-title: Meas. Sci. Technol.
– volume: 139
  year: 2020
  ident: b0140
  article-title: A tool for validating and benchmarking signal processing techniques applied to machine diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 174
  year: 2021
  ident: b0020
  article-title: Maximum envelope-based Autogram and symplectic geometry mode decomposition based gear fault diagnosis method
  publication-title: Measurement
– volume: 22
  start-page: 739
  year: 2020
  ident: b0025
  article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation
  publication-title: Entropy
– volume: 128
  start-page: 14
  year: 2017
  end-page: 22
  ident: b0070
  article-title: Application of tempered stable distribution for selection of optimal frequency band in gearbox local damage detection
  publication-title: Appl. Acoust.
– volume: 90
  start-page: 378
  year: 2017
  end-page: 398
  ident: b0045
  article-title: CS2 analysis in presence of non-Gaussian background noise–Effect on traditional estimators and resilience of log-envelope indicators
  publication-title: Mech. Syst. Sig. Process.
– volume: 25
  start-page: 1738
  year: 2011
  end-page: 1749
  ident: b0055
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 130
  start-page: 87
  year: 2019
  end-page: 107
  ident: b0135
  article-title: Adaptive kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
– volume: 74
  start-page: 73
  year: 2016
  end-page: 94
  ident: b0075
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Sig. Process.
– volume: 42
  start-page: 542
  year: 2009
  end-page: 551
  ident: b0100
  article-title: A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach
  publication-title: Measurement
– volume: 101
  start-page: 435
  year: 2018
  end-page: 448
  ident: b0005
  article-title: Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter
  publication-title: Mech. Syst. Sig. Process.
– volume: 460
  start-page: 955
  year: 2004
  end-page: 975
  ident: b0105
  article-title: The Hilbert spectrum via wavelet projections
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 21
  start-page: 108
  year: 2007
  end-page: 124
  ident: b0035
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Sig. Process.
– volume: 144
  start-page: 106891
  year: 2020
  ident: b0085
  article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): A novel tool for rolling element bearing diagnostics under non-stationary operating conditions
  publication-title: Mech. Syst. Sig. Process.
– year: 2003
  ident: b0030
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation. // ICASSP '83. IEEE international conference on acoustics, speech, and signal processing
  publication-title: IEEE
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 10.1016/j.ymssp.2022.109017_b0125
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
– volume: 90
  start-page: 378
  year: 2017
  ident: 10.1016/j.ymssp.2022.109017_b0045
  article-title: CS2 analysis in presence of non-Gaussian background noise–Effect on traditional estimators and resilience of log-envelope indicators
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2016.12.033
– volume: 74
  start-page: 73
  issue: 1
  year: 2016
  ident: 10.1016/j.ymssp.2022.109017_b0075
  article-title: The infogram: Entropic evidence of the signature of repetitive transients
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.04.034
– volume: 69
  start-page: 739
  issue: 3
  year: 2020
  ident: 10.1016/j.ymssp.2022.109017_b0120
  article-title: An Adaptive Spectral Kurtosis Method and Its Application to Fault Detection of Rolling Element Bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2905022
– year: 2003
  ident: 10.1016/j.ymssp.2022.109017_b0030
  article-title: Detection of non-Gaussian signals by frequency domain kurtosis estimation. // ICASSP '83. IEEE international conference on acoustics, speech, and signal processing
  publication-title: IEEE
– volume: 35
  start-page: 176
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2022.109017_b0060
  article-title: An enhanced kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.10.003
– volume: 25
  start-page: 431
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2022.109017_b0050
  article-title: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.05.018
– volume: 105
  start-page: 294
  year: 2018
  ident: 10.1016/j.ymssp.2022.109017_b0080
  article-title: The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.12.009
– volume: 9
  start-page: 1157
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2022.109017_b0010
  article-title: Fault diagnosis of rolling bearings based on improved kurtogram in varying speed conditions
  publication-title: Appl. Sci.
  doi: 10.3390/app9061157
– volume: 20
  start-page: 2892
  issue: 8
  year: 2018
  ident: 10.1016/j.ymssp.2022.109017_b0095
  article-title: Fault feature extraction for rolling element bearings based on multi-scale morphological filter and frequency-weighted energy operator
  publication-title: J. Vibroengineering
  doi: 10.21595/jve.2018.19924
– volume: 25
  start-page: 1738
  issue: 5
  year: 2011
  ident: 10.1016/j.ymssp.2022.109017_b0055
  article-title: Application of an improved kurtogram method for fault diagnosis of rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2010.12.011
– volume: 42
  start-page: 542
  issue: 4
  year: 2009
  ident: 10.1016/j.ymssp.2022.109017_b0100
  article-title: A gear fault diagnosis using Hilbert spectrum based on MODWPT and a comparison with EMD approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2008.09.011
– volume: 70
  start-page: 51
  year: 2016
  ident: 10.1016/j.ymssp.2022.109017_b0115
  article-title: Cyclostationary analysis with logarithmic variance stabilization
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2015.08.014
– volume: 20
  start-page: 282
  issue: 2
  year: 2006
  ident: 10.1016/j.ymssp.2022.109017_b0040
  article-title: The spectral kurtosis: a useful tool for characterising non-stationary signals
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2004.09.001
– volume: 41
  start-page: 155
  issue: 1–2
  year: 2013
  ident: 10.1016/j.ymssp.2022.109017_b0065
  article-title: A new statistical modeling and detection method for rolling element bearing faults based on alpha–stable distribution
  publication-title: Mech. Syst. Sig. Process.
– volume: 101
  start-page: 435
  year: 2018
  ident: 10.1016/j.ymssp.2022.109017_b0005
  article-title: Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.09.007
– volume: 30
  start-page: 125904
  issue: 12
  year: 2019
  ident: 10.1016/j.ymssp.2022.109017_b0130
  article-title: Agent discriminate model based optimization weighted method and its application in fault diagnosis of rolling bearings
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab2177
– volume: 130
  start-page: 87
  year: 2019
  ident: 10.1016/j.ymssp.2022.109017_b0135
  article-title: Adaptive kurtogram and its applications in rolling bearing fault diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.05.003
– volume: 22
  start-page: 739
  issue: 7
  year: 2020
  ident: 10.1016/j.ymssp.2022.109017_b0025
  article-title: Fault diagnosis for rolling bearings using optimized variational mode decomposition and resonance demodulation
  publication-title: Entropy
  doi: 10.3390/e22070739
– volume: 128
  start-page: 14
  year: 2017
  ident: 10.1016/j.ymssp.2022.109017_b0070
  article-title: Application of tempered stable distribution for selection of optimal frequency band in gearbox local damage detection
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2016.11.008
– volume: 460
  start-page: 955
  issue: 2044
  year: 2004
  ident: 10.1016/j.ymssp.2022.109017_b0105
  article-title: The Hilbert spectrum via wavelet projections
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.2003.1199
– volume: 461
  start-page: 2159
  issue: 2059
  year: 2005
  ident: 10.1016/j.ymssp.2022.109017_b0110
  article-title: A generalized demodulation approach to time-frequency projections for multicomponent signals
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 21
  start-page: 135
  issue: 2
  year: 2019
  ident: 10.1016/j.ymssp.2022.109017_b0015
  article-title: An optimal resonant frequency band feature extraction method based on empirical wavelet transform
  publication-title: Entropy
  doi: 10.3390/e21020135
– volume: 21
  start-page: 108
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2022.109017_b0035
  article-title: Fast computation of the kurtogram for the detection of transient faults
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2005.12.002
– volume: 174
  year: 2021
  ident: 10.1016/j.ymssp.2022.109017_b0020
  article-title: Maximum envelope-based Autogram and symplectic geometry mode decomposition based gear fault diagnosis method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108575
– volume: 144
  start-page: 106891
  year: 2020
  ident: 10.1016/j.ymssp.2022.109017_b0085
  article-title: Improved envelope spectrum via feature optimisation-gram (IESFOgram): A novel tool for rolling element bearing diagnostics under non-stationary operating conditions
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.106891
– volume: 134
  start-page: 106303
  year: 2019
  ident: 10.1016/j.ymssp.2022.109017_b0090
  article-title: Optimal demodulation-band selection for envelope-based diagnostics: A comparative study of traditional and novel tools
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2019.106303
– volume: 139
  year: 2020
  ident: 10.1016/j.ymssp.2022.109017_b0140
  article-title: A tool for validating and benchmarking signal processing techniques applied to machine diagnosis
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2020.106618
SSID ssj0009406
Score 2.5857725
Snippet •The traversal index enhanced-gram (TIEgram) is proposed for rolling bearing fault diagnosis.•In TIEgram a new fusion indicator is developed to measure the...
It is very important to select the optimal demodulation frequency band (ODFB) of rolling bearing vibration signals for the most valuable fault information...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109017
SubjectTerms Correlation coefficients
Demodulation
Enhanced envelope spectrum
Fault diagnosis
Filter banks
Fourier transforms
Frequencies
Index fusion
Information retrieval
Kurtosis
Optimal demodulation frequency band
Roller bearings
Rolling bearing
Segmentation
Trees
Variable speed
Vibration
Title Traversal index enhanced-gram (TIEgram): A novel optimal demodulation frequency band selection method for rolling bearing fault diagnosis under non-stationary operating conditions
URI https://dx.doi.org/10.1016/j.ymssp.2022.109017
https://www.proquest.com/docview/2653582926
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB616QUOiKcolMoHDiBhEnvf3KKqVQqiF1KpN8uObRGUbKrdFCkX_hR_kBnby0uoB055jeNkx54Za7_5PoCXmBErXTc1z6SVPDe14LV2Hs88hMEoMCsENOHHi3J2mb-_Kq724GTohSFYZYr9MaaHaJ3eGaerOb5eLsefcH_gcqyoVZS63pp9OJBZUxYjOJief5hd_OLezYPEJtlzGjCQDwWY127d98RbKSUxK02CcNk_E9RfoTrkn7P7cC8Vjmwaf9sD2HPtQ7j7G53gI_g-Jy2hrkezQILIXPs53ODnBMFir-bnp_Tk9Ts2Ze3mq1uxDQaMNZpbt97YJOTFfBfh1TtmdGtZH5Ry6IOoNs2wzGVd5PJmBjcKPXp9s9oyG3F7y55Ra1qHk7S8j_f6dbfD2YjBmczxEG4jVuwxXJ6dzk9mPIky8EWWiS1fVB4vqRGurCZ5XmRVTc2wmPgnGis119TeVNnC-rLWmZfCN7J0NsNMqY00Ds_DT2CEs7unwGyhhRWm8BqLMq2FcRNhck-KWaaqjTgEOXhCLRJjOQlnrNQATfuigvsUuU9F9x3Cm5-DriNhx-3m5eBi9ce6U5hSbh94NCwIlbZ9r2RZUOcx_udn__u9z-EOvYpotCMYbbsb9wLrnq05hv2338RxWt0_ABqHBQI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HIAD4lHEs_WhB5Bqdu28uSEEWlrgwiJxs-y1rW61m0XJgrQX_hR_kBk7aSmqOPS00WYSJ57xzFj55htCvkJEzFRe5CwSRrBY55zlyjrY8yAGI4Go4NGE1zdp7y7-fp_cz5GzthYGYZWN7w8-3Xvr5p9OM5udh-GwcwvrA8wxw1JRrHor5slinMD9waiPn__gPIrYN9hEaYbiLfWQB3nNxnWNrJVCIK9S17ct-2d4eueoffS5WCOrTdpIT8OTrZM5W26QlTdkgpvkpY-dhKoaxDwFIrXlT_95nyEAix72L8_x4OiEntJy8mRHdALuYgzixo4npmnjRV0VwNUzqlVpaO375OCJ0GuaQpJLq8DkTTUsE_x16nE0pSag9oY1xcK0CgYpWR2-9KtqBqMhfzOKwxbcBKTYJ3J3cd4_67GmJQMbRBGfskHmYEo1t2nWjXG2cyyFhbDfVZCn2SJ3OosGxqW5ipzgrhCpNRHESaWFtrAb3iILMLrdJtQkihuuE6cgJVOKa9vlOnbYL0tnueY7RLSakIOGrxzbZoxkC0z7Jb36JKpPBvXtkG-_L3oIdB0fi6etiuVfVichoHx84X5rELJZ9LUUaYJ1x_DOu_973y9kqde_vpJXlzc_9sgyngm4tH2yMK0e7QFkQFP92Vv4K1kiBc0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traversal+index+enhanced-gram+%28TIEgram%29%3A+A+novel+optimal+demodulation+frequency+band+selection+method+for+rolling+bearing+fault+diagnosis+under+non-stationary+operating+conditions&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Wang%2C+Xinglong&rft.au=Zheng%2C+Jinde&rft.au=Ni%2C+Qing&rft.au=Pan%2C+Haiyang&rft.date=2022-06-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=172&rft_id=info:doi/10.1016%2Fj.ymssp.2022.109017&rft.externalDocID=S0888327022001959
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon