Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation

This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machine...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomedical materials research. Part B, Applied biomaterials Vol. 113; no. 3; p. e35554
Main Authors da Costa Valente, Mariana Lima, Uehara, Lívia Maiumi, Lisboa Batalha, Rodolfo, Bolfarini, Claudemiro, Trevisan, Rayana Longo Bighetti, Fernandes, Roger Rodrigo, Beloti, Marcio Mateus, dos Reis, Andréa Cândido
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text
ISSN1552-4973
1552-4981
1552-4981
DOI10.1002/jbm.b.35554

Cover

Loading…
Abstract This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied ( p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H 3 PO 4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD ( p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD ( p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl , Ibsp , and Bglap ( p < 0.001), and AD‐WT showing higher Runx2 ( p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT ( p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
AbstractList This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD‐WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied ( p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H 3 PO 4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD ( p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD ( p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl , Ibsp , and Bglap ( p < 0.001), and AD‐WT showing higher Runx2 ( p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT ( p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H PO  + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.
Author Fernandes, Roger Rodrigo
da Costa Valente, Mariana Lima
Beloti, Marcio Mateus
dos Reis, Andréa Cândido
Bolfarini, Claudemiro
Lisboa Batalha, Rodolfo
Trevisan, Rayana Longo Bighetti
Uehara, Lívia Maiumi
Author_xml – sequence: 1
  givenname: Mariana Lima
  surname: da Costa Valente
  fullname: da Costa Valente, Mariana Lima
  organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
– sequence: 2
  givenname: Lívia Maiumi
  surname: Uehara
  fullname: Uehara, Lívia Maiumi
  organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
– sequence: 3
  givenname: Rodolfo
  orcidid: 0000-0002-0957-9595
  surname: Lisboa Batalha
  fullname: Lisboa Batalha, Rodolfo
  organization: Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade Portugal
– sequence: 4
  givenname: Claudemiro
  surname: Bolfarini
  fullname: Bolfarini, Claudemiro
  organization: Materials Engineering Department Federal University of São Carlos São Carlos Brazil
– sequence: 5
  givenname: Rayana Longo Bighetti
  surname: Trevisan
  fullname: Trevisan, Rayana Longo Bighetti
  organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
– sequence: 6
  givenname: Roger Rodrigo
  surname: Fernandes
  fullname: Fernandes, Roger Rodrigo
  organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
– sequence: 7
  givenname: Marcio Mateus
  orcidid: 0000-0003-0149-7189
  surname: Beloti
  fullname: Beloti, Marcio Mateus
  organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
– sequence: 8
  givenname: Andréa Cândido
  orcidid: 0000-0002-2307-1720
  surname: dos Reis
  fullname: dos Reis, Andréa Cândido
  organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40062797$$D View this record in MEDLINE/PubMed
BookMark eNpd0UtLAzEUBeAgin3oyr0E3AjSmsdkHstarAr1Adb1kGSSmtJJxmQi9N87tbULV7nhfoRDzgAcW2cVABcYjTFC5HYl6rEYU8ZYcgT6mDEySoocHx_mjPbAIIRVh1PE6CnoJQilJCuyPqim0XtlW_imfGiUbM23CtBZOKkqs73AZ26j5rKN3tgl5LaCC9Nya2IN36PvNgq-cOta17il583nBhoL77qIcOZ8zVvj7Bk40Xwd1Pn-HIKP2f1i-jiavz48TSfzkaQUtyOZ8IJwQiqSYZEjLHglZIJSLpnOEWFMcyxlRbQgVGuMsWBFznWhaaFTWWA6BNe7dxvvvqIKbVmbINV6za1yMZQUZyzNGcu39OofXbnobZduqzKKGWJJpy73KopaVWXjTc39pvz7vw7c7ID0LgSv9IFgVG7bKbt2SlH-tkN_ACYRgq8
Cites_doi 10.1111/clr.12855
10.1016/j.biomaterials.2007.08.032
10.1016/j.actbio.2014.02.040
10.2147/IJN.S197099
10.5301/ijao.5000154
10.1155/2012/381535
10.1016/j.prosdent.2020.02.001
10.3390/bioengineering9100514
10.1111/clr.13575
10.1016/j.tiv.2019.04.015
10.3389/fbioe.2020.591084
10.1016/j.msec.2016.04.099
10.1016/j.jallcom.2018.08.154
10.1016/B978-0-12-815341-3.00001-8
10.1016/j.matdes.2016.02.110
10.3390/nano12142478
10.3389/fbioe.2019.00103
10.1016/j.msec.2020.111505
10.1016/j.dental.2017.07.013
10.1111/clr.12454
10.1111/j.1600-0501.2011.02184.x
10.1111/j.1600-0501.2012.02429.x
10.3390/ma14071590
10.1016/j.heliyon.2022.e12505
10.1016/j.colsurfb.2019.110513
10.1111/j.1708-8208.2008.00089.x
10.3390/molecules25245879
10.1016/j.cden.2019.02.010
10.1563/aaid-joi-D-14-00318
10.1088/1758-5090/8/4/045014
10.1016/j.prosdent.2015.09.016
10.1021/acsbiomaterials.2c00298
10.1155/2016/8590971
10.1186/1746-160X-5-13
10.1016/j.dental.2016.08.217
10.1002/jcb.24688
10.1016/j.apsusc.2020.146107
10.1111/clr.12213
10.1006/meth.2001.1262
10.3390/ma13020314
10.3390/ma14216507
10.1016/j.heliyon.2023.e17105
10.1002/jbm.a.10417
10.1021/acsbiomaterials.0c01210
10.1002/jcp.24614
10.1111/j.1600-0501.2009.01775.x
10.1016/j.dental.2017.09.007
10.1007/s10103-012-1134-z
10.1016/j.prosdent.2019.01.018
10.1016/j.prosdent.2019.09.010
10.1016/j.msec.2016.12.107
10.1142/S0219519421500044
10.1007/s40089-017-0221-3
10.1016/j.cis.2021.102551
10.1016/j.msec.2021.112548
10.1002/jbm.b.34710
10.3389/fbioe.2020.621601
10.1016/j.jallcom.2018.03.308
10.1016/j.biomaterials.2016.01.012
10.1002/cre2.130
10.1002/jcb.27060
10.1002/jbm.a.30955
10.1002/jcb.25469
10.1166/jbn.2018.2551
10.1016/j.biomaterials.2018.02.010
10.1002/jbm.a.36829
10.1016/j.tibtech.2009.12.003
10.1002/adma.201901994
10.2217/nnm.14.183
10.1016/j.dental.2021.08.008
10.1002/jbm.b.35194
10.1002/term.2239
10.1016/j.actbio.2019.05.045
ContentType Journal Article
Copyright 2025 Wiley Periodicals LLC.
Copyright_xml – notice: 2025 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/jbm.b.35554
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1552-4981
ExternalDocumentID 40062797
10_1002_jbm_b_35554
Genre Journal Article
GrantInformation_xml – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
GroupedDBID -~X
.GA
.Y3
05W
0R~
10A
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
702
7PT
8-1
8-4
8-5
8UM
930
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BRXPI
BY8
CITATION
CO8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NF~
NNB
O66
P2W
P4D
PQQKQ
QB0
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W99
WBKPD
WFSAM
WJL
WOHZO
WYISQ
XG1
XV2
ZZTAW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c331t-c4a92a22d271b801badbc406ac5f80255fa1ccd2fb23ff111b598af9f39f6c913
ISSN 1552-4973
1552-4981
IngestDate Fri Jul 11 15:56:32 EDT 2025
Fri Jul 25 09:06:57 EDT 2025
Mon Jul 21 06:08:31 EDT 2025
Tue Jul 01 05:01:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords osteoblastic cell behavior
titanium dental implants
additive manufacturing
physicochemical properties
surface characterization
implant topography
Language English
License 2025 Wiley Periodicals LLC.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-c4a92a22d271b801badbc406ac5f80255fa1ccd2fb23ff111b598af9f39f6c913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0149-7189
0000-0002-2307-1720
0000-0002-0957-9595
PMID 40062797
PQID 3177315054
PQPubID 2034571
ParticipantIDs proquest_miscellaneous_3175685581
proquest_journals_3177315054
pubmed_primary_40062797
crossref_primary_10_1002_jbm_b_35554
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-00
2025-Mar
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Mount Laurel
PublicationTitle Journal of biomedical materials research. Part B, Applied biomaterials
PublicationTitleAlternate J Biomed Mater Res B Appl Biomater
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
Tardelli J. D. C. (e_1_2_9_53_1) 2023; 9
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Valente M. L. C. (e_1_2_9_57_1) 2021; 4
e_1_2_9_30_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Meirelles L. (e_1_2_9_39_1) 2008; 23
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_69_1
  doi: 10.1111/clr.12855
– ident: e_1_2_9_76_1
  doi: 10.1016/j.biomaterials.2007.08.032
– ident: e_1_2_9_32_1
  doi: 10.1016/j.actbio.2014.02.040
– ident: e_1_2_9_40_1
  doi: 10.2147/IJN.S197099
– ident: e_1_2_9_38_1
  doi: 10.5301/ijao.5000154
– ident: e_1_2_9_61_1
  doi: 10.1155/2012/381535
– ident: e_1_2_9_54_1
  doi: 10.1016/j.prosdent.2020.02.001
– ident: e_1_2_9_67_1
  doi: 10.3390/bioengineering9100514
– ident: e_1_2_9_68_1
  doi: 10.1111/clr.13575
– ident: e_1_2_9_58_1
  doi: 10.1016/j.tiv.2019.04.015
– ident: e_1_2_9_66_1
  doi: 10.3389/fbioe.2020.591084
– ident: e_1_2_9_12_1
  doi: 10.1016/j.msec.2016.04.099
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jallcom.2018.08.154
– ident: e_1_2_9_60_1
  doi: 10.1016/B978-0-12-815341-3.00001-8
– ident: e_1_2_9_14_1
  doi: 10.1016/j.matdes.2016.02.110
– ident: e_1_2_9_63_1
  doi: 10.3390/nano12142478
– ident: e_1_2_9_10_1
  doi: 10.3389/fbioe.2019.00103
– ident: e_1_2_9_2_1
  doi: 10.1016/j.msec.2020.111505
– ident: e_1_2_9_15_1
  doi: 10.1016/j.dental.2017.07.013
– ident: e_1_2_9_20_1
  doi: 10.1111/clr.12454
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1600-0501.2011.02184.x
– ident: e_1_2_9_34_1
  doi: 10.1111/j.1600-0501.2012.02429.x
– ident: e_1_2_9_48_1
  doi: 10.3390/ma14071590
– ident: e_1_2_9_49_1
  doi: 10.1016/j.heliyon.2022.e12505
– ident: e_1_2_9_75_1
  doi: 10.1016/j.colsurfb.2019.110513
– ident: e_1_2_9_24_1
  doi: 10.1111/j.1708-8208.2008.00089.x
– ident: e_1_2_9_43_1
  doi: 10.3390/molecules25245879
– ident: e_1_2_9_77_1
  doi: 10.1016/j.cden.2019.02.010
– ident: e_1_2_9_22_1
  doi: 10.1563/aaid-joi-D-14-00318
– ident: e_1_2_9_52_1
  doi: 10.1088/1758-5090/8/4/045014
– ident: e_1_2_9_21_1
  doi: 10.1016/j.prosdent.2015.09.016
– ident: e_1_2_9_65_1
  doi: 10.1021/acsbiomaterials.2c00298
– ident: e_1_2_9_4_1
  doi: 10.1155/2016/8590971
– ident: e_1_2_9_62_1
  doi: 10.1186/1746-160X-5-13
– ident: e_1_2_9_28_1
  doi: 10.1016/j.dental.2016.08.217
– ident: e_1_2_9_72_1
  doi: 10.1002/jcb.24688
– ident: e_1_2_9_56_1
  doi: 10.1016/j.apsusc.2020.146107
– ident: e_1_2_9_33_1
  doi: 10.1111/clr.12213
– ident: e_1_2_9_41_1
  doi: 10.1006/meth.2001.1262
– ident: e_1_2_9_50_1
  doi: 10.3390/ma13020314
– ident: e_1_2_9_11_1
  doi: 10.3390/ma14216507
– volume: 4
  start-page: 754
  year: 2021
  ident: e_1_2_9_57_1
  article-title: Dental Mini‐Implant Designs to Support Overdentures: Development, Biomechanical Evaluation, and 3D Digital Image Correlation
  publication-title: Journal of Prosthetic Dentistry
– ident: e_1_2_9_31_1
  doi: 10.1016/j.heliyon.2023.e17105
– ident: e_1_2_9_23_1
  doi: 10.1002/jbm.a.10417
– ident: e_1_2_9_44_1
  doi: 10.1021/acsbiomaterials.0c01210
– ident: e_1_2_9_73_1
  doi: 10.1002/jcp.24614
– volume: 9
  issue: 3
  year: 2023
  ident: e_1_2_9_53_1
  article-title: The Antibacterial and Osteoblastic Activity of Bioactive Polymeric Coatings on Titanium Surfaces for Dental Implants: Systematic Review
  publication-title: Heliyon
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1600-0501.2009.01775.x
– ident: e_1_2_9_29_1
  doi: 10.1016/j.dental.2017.09.007
– ident: e_1_2_9_3_1
  doi: 10.1007/s10103-012-1134-z
– ident: e_1_2_9_30_1
  doi: 10.1016/j.prosdent.2019.01.018
– ident: e_1_2_9_25_1
  doi: 10.1016/j.prosdent.2019.09.010
– ident: e_1_2_9_64_1
  doi: 10.1016/j.msec.2016.12.107
– ident: e_1_2_9_51_1
  doi: 10.1142/S0219519421500044
– ident: e_1_2_9_59_1
  doi: 10.1007/s40089-017-0221-3
– volume: 23
  start-page: 641
  issue: 4
  year: 2008
  ident: e_1_2_9_39_1
  article-title: The Effect of Chemical and Nanotopographical Modifications on the Early Stages of Osseointegration
  publication-title: International Journal of Oral & Maxillofacial Implants
– ident: e_1_2_9_47_1
  doi: 10.1016/j.cis.2021.102551
– ident: e_1_2_9_70_1
  doi: 10.1016/j.msec.2021.112548
– ident: e_1_2_9_6_1
  doi: 10.1002/jbm.b.34710
– ident: e_1_2_9_7_1
  doi: 10.3389/fbioe.2020.621601
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jallcom.2018.03.308
– ident: e_1_2_9_5_1
  doi: 10.1016/j.biomaterials.2016.01.012
– ident: e_1_2_9_35_1
  doi: 10.1002/cre2.130
– ident: e_1_2_9_37_1
  doi: 10.1002/jcb.27060
– ident: e_1_2_9_71_1
  doi: 10.1002/jbm.a.30955
– ident: e_1_2_9_74_1
  doi: 10.1002/jcb.25469
– ident: e_1_2_9_9_1
  doi: 10.1166/jbn.2018.2551
– ident: e_1_2_9_45_1
  doi: 10.1016/j.biomaterials.2018.02.010
– ident: e_1_2_9_26_1
  doi: 10.1002/jbm.a.36829
– ident: e_1_2_9_36_1
  doi: 10.1016/j.tibtech.2009.12.003
– ident: e_1_2_9_42_1
  doi: 10.1002/adma.201901994
– ident: e_1_2_9_17_1
  doi: 10.2217/nnm.14.183
– ident: e_1_2_9_46_1
  doi: 10.1016/j.dental.2021.08.008
– ident: e_1_2_9_55_1
  doi: 10.1002/jbm.b.35194
– ident: e_1_2_9_8_1
  doi: 10.1002/term.2239
– ident: e_1_2_9_13_1
  doi: 10.1016/j.actbio.2019.05.045
SSID ssj0026053
Score 2.4244182
Snippet This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic)...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e35554
SubjectTerms Additive manufacturing
Alkaline phosphatase
Alloys - chemistry
Animals
Atomic force microscopy
Biological analysis
Bone growth
Cbfa-1 protein
Cell differentiation
Cell Line
Cell morphology
Cell viability
Chemical treatment
Crystal lattices
Differentiation (biology)
Free energy
Gene expression
Manufacturing
Materials Testing
Mice
Mineralization
Osteoblastogenesis
Osteoblasts
Osteoblasts - cytology
Osteoblasts - metabolism
Osteogenesis
Osteogenesis - drug effects
Physicochemical properties
Production methods
Sodium hydroxide
Surface Properties
Surface roughness
Surface treatment
Titanium - chemistry
Titanium - pharmacology
Variance analysis
Zeta potential
Title Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation
URI https://www.ncbi.nlm.nih.gov/pubmed/40062797
https://www.proquest.com/docview/3177315054
https://www.proquest.com/docview/3175685581
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeIEHxDeFgYy0typFceLUeVwZ04Q0hKYW7S2ynVh0WpOpJDzwF_lT3GvHboo6afAStXG-mnt6fe61zzUhRxCSYD-eRSIVJkqTqoxUJXSklDAGOiCZGUzon3_Jzpbp50t-ORr9Hsxa6lo11b_26kr-x6qwD-yKKtl_sGy4KOyAz2Bf2IKFYXsnG_viSl-3ikmb_T8uSzcl6FzWHUoXtlrExQrY4Kpbg8fYQEuF7rVpm5u-cjWmP-YNEM9TL2q8hb062b61MBznfuykrxz0fQrEdNNO5tbxeJoLJ_gDvZVLCf4I6Onkm8TOr-rFQ4BYicqr0GMsKywrbVMIdmD_5OdK4uyQbr0KE4ogWG3kZI7ZKDeGdQEB97VpQr4BvkgcrrKp4WvZoSxg0wyzHoxvp315R80Zro7nnGM13OeWgAne3Uldexgne3sNV4X2Sq2nagr8y1W13q3N_VefGWYyuqrPrICTC1XYk--R-wxiFlxH5OQi1DLDuNGqPfyD92JRaPkwuPMuPbol5rHcZ_GYPOrNTo8dAp-QUVU_JQ8HpSyfkbLHIh1ikTY19VikO1ikgEXqsUh7LNJdLNJVTRGLNGDxOVmeflp8PIv6FTwinSRxG-lU5kwyVrJZrIALKVkqDRRSam4ERrNGxlqXzCiWgGuIY8VzIU1uktxkOo-TF-Sghhu9IpQJjGWEhmukKVxSylk-U2nGK86EVumYHPkXV9y4Qi3FHuOMyaF_qUX_T_5RAIeeJRAZYfP70Ax-FgfPZF01nT2GZ4JzEY_JS2eMcJ8UlcjwOK_v9gxvyIMtpA_JQbvpqrdAbVv1zkLmD97Cqow
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Perspectives+on+Additive+Manufacturing+and+Titanium+Surface+Nanotopography+in+Bone+Formation&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=da+Costa+Valente%2C+Mariana+Lima&rft.au=Uehara%2C+L%C3%ADvia+Maiumi&rft.au=Lisboa+Batalha%2C+Rodolfo&rft.au=Bolfarini%2C+Claudemiro&rft.date=2025-03-01&rft.issn=1552-4973&rft.eissn=1552-4981&rft.volume=113&rft.issue=3&rft_id=info:doi/10.1002%2Fjbm.b.35554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jbm_b_35554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon