Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation
This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machine...
Saved in:
Published in | Journal of biomedical materials research. Part B, Applied biomaterials Vol. 113; no. 3; p. e35554 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-4973 1552-4981 1552-4981 |
DOI | 10.1002/jbm.b.35554 |
Cover
Loading…
Abstract | This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied ( p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H 3 PO 4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD ( p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD ( p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl , Ibsp , and Bglap ( p < 0.001), and AD‐WT showing higher Runx2 ( p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT ( p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential. |
---|---|
AbstractList | This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD‐WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential. This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD‐WT), Additive‐manufactured Discs (AD), and Additive‐manufactured Discs with Treatment (AD‐WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3‐E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm‐Sidak tests were applied ( p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD‐WT and AD‐WT showed patterns from chemical treatment (H 3 PO 4 + NaOH). EDS identified additional ions in MD‐WT and AD‐WT. XRD patterns indicated crystal lattice orientation differences. MD‐WT and AD‐WT displayed higher surface free energy than MD and AD ( p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD ( p < 0.001), higher ALP activity in MD, and lower in AD‐WT. Gene expression varied, with MD showing higher Alpl , Ibsp , and Bglap ( p < 0.001), and AD‐WT showing higher Runx2 ( p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD‐WT ( p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential. This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential.This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H3PO4 + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential. This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic) on the physicochemical properties of Ti6Al4V alloy and their correlation with osteoblast cellular behavior. The evaluated groups were Machined Discs (MD), Machined Discs with Treatment (MD-WT), Additive-manufactured Discs (AD), and Additive-manufactured Discs with Treatment (AD-WT). Surface analyses included SEM, AFM, surface roughness, EDS, XRD, surface free energy, and zeta potential. MC3T3-E1 cells were cultured for biological assessments, including cell morphology, viability, gene expression, alkaline phosphatase activity, and mineralization. ANOVA and Holm-Sidak tests were applied (p < 0.05). MD exhibited grooved topography, AD had partially fused spherical particles, while MD-WT and AD-WT showed patterns from chemical treatment (H PO + NaOH). EDS identified additional ions in MD-WT and AD-WT. XRD patterns indicated crystal lattice orientation differences. MD-WT and AD-WT displayed higher surface free energy than MD and AD (p < 0.05). AD had greater roughness (Sa 6.98 μm, p < 0.05). Biological analyses revealed higher cell viability for MD and AD (p < 0.001), higher ALP activity in MD, and lower in AD-WT. Gene expression varied, with MD showing higher Alpl, Ibsp, and Bglap (p < 0.001), and AD-WT showing higher Runx2 (p < 0.001). Mineralized matrix behavior was similar for MD, AD, and MD-WT (p > 0.05). MD and AD surfaces demonstrated superior osteogenic differentiation potential, while AD exhibited greater roughness, lower surface free energy, higher cell viability, and osteoblastic differentiation potential. |
Author | Fernandes, Roger Rodrigo da Costa Valente, Mariana Lima Beloti, Marcio Mateus dos Reis, Andréa Cândido Bolfarini, Claudemiro Lisboa Batalha, Rodolfo Trevisan, Rayana Longo Bighetti Uehara, Lívia Maiumi |
Author_xml | – sequence: 1 givenname: Mariana Lima surname: da Costa Valente fullname: da Costa Valente, Mariana Lima organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil – sequence: 2 givenname: Lívia Maiumi surname: Uehara fullname: Uehara, Lívia Maiumi organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil – sequence: 3 givenname: Rodolfo orcidid: 0000-0002-0957-9595 surname: Lisboa Batalha fullname: Lisboa Batalha, Rodolfo organization: Department of Research, Development and Innovation, Instituto de Soldadura e Qualidade Portugal – sequence: 4 givenname: Claudemiro surname: Bolfarini fullname: Bolfarini, Claudemiro organization: Materials Engineering Department Federal University of São Carlos São Carlos Brazil – sequence: 5 givenname: Rayana Longo Bighetti surname: Trevisan fullname: Trevisan, Rayana Longo Bighetti organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil – sequence: 6 givenname: Roger Rodrigo surname: Fernandes fullname: Fernandes, Roger Rodrigo organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil – sequence: 7 givenname: Marcio Mateus orcidid: 0000-0003-0149-7189 surname: Beloti fullname: Beloti, Marcio Mateus organization: Bone Research Lab, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil – sequence: 8 givenname: Andréa Cândido orcidid: 0000-0002-2307-1720 surname: dos Reis fullname: dos Reis, Andréa Cândido organization: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry University of São Paulo (USP) Ribeirão Preto Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40062797$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0UtLAzEUBeAgin3oyr0E3AjSmsdkHstarAr1Adb1kGSSmtJJxmQi9N87tbULV7nhfoRDzgAcW2cVABcYjTFC5HYl6rEYU8ZYcgT6mDEySoocHx_mjPbAIIRVh1PE6CnoJQilJCuyPqim0XtlW_imfGiUbM23CtBZOKkqs73AZ26j5rKN3tgl5LaCC9Nya2IN36PvNgq-cOta17il583nBhoL77qIcOZ8zVvj7Bk40Xwd1Pn-HIKP2f1i-jiavz48TSfzkaQUtyOZ8IJwQiqSYZEjLHglZIJSLpnOEWFMcyxlRbQgVGuMsWBFznWhaaFTWWA6BNe7dxvvvqIKbVmbINV6za1yMZQUZyzNGcu39OofXbnobZduqzKKGWJJpy73KopaVWXjTc39pvz7vw7c7ID0LgSv9IFgVG7bKbt2SlH-tkN_ACYRgq8 |
Cites_doi | 10.1111/clr.12855 10.1016/j.biomaterials.2007.08.032 10.1016/j.actbio.2014.02.040 10.2147/IJN.S197099 10.5301/ijao.5000154 10.1155/2012/381535 10.1016/j.prosdent.2020.02.001 10.3390/bioengineering9100514 10.1111/clr.13575 10.1016/j.tiv.2019.04.015 10.3389/fbioe.2020.591084 10.1016/j.msec.2016.04.099 10.1016/j.jallcom.2018.08.154 10.1016/B978-0-12-815341-3.00001-8 10.1016/j.matdes.2016.02.110 10.3390/nano12142478 10.3389/fbioe.2019.00103 10.1016/j.msec.2020.111505 10.1016/j.dental.2017.07.013 10.1111/clr.12454 10.1111/j.1600-0501.2011.02184.x 10.1111/j.1600-0501.2012.02429.x 10.3390/ma14071590 10.1016/j.heliyon.2022.e12505 10.1016/j.colsurfb.2019.110513 10.1111/j.1708-8208.2008.00089.x 10.3390/molecules25245879 10.1016/j.cden.2019.02.010 10.1563/aaid-joi-D-14-00318 10.1088/1758-5090/8/4/045014 10.1016/j.prosdent.2015.09.016 10.1021/acsbiomaterials.2c00298 10.1155/2016/8590971 10.1186/1746-160X-5-13 10.1016/j.dental.2016.08.217 10.1002/jcb.24688 10.1016/j.apsusc.2020.146107 10.1111/clr.12213 10.1006/meth.2001.1262 10.3390/ma13020314 10.3390/ma14216507 10.1016/j.heliyon.2023.e17105 10.1002/jbm.a.10417 10.1021/acsbiomaterials.0c01210 10.1002/jcp.24614 10.1111/j.1600-0501.2009.01775.x 10.1016/j.dental.2017.09.007 10.1007/s10103-012-1134-z 10.1016/j.prosdent.2019.01.018 10.1016/j.prosdent.2019.09.010 10.1016/j.msec.2016.12.107 10.1142/S0219519421500044 10.1007/s40089-017-0221-3 10.1016/j.cis.2021.102551 10.1016/j.msec.2021.112548 10.1002/jbm.b.34710 10.3389/fbioe.2020.621601 10.1016/j.jallcom.2018.03.308 10.1016/j.biomaterials.2016.01.012 10.1002/cre2.130 10.1002/jcb.27060 10.1002/jbm.a.30955 10.1002/jcb.25469 10.1166/jbn.2018.2551 10.1016/j.biomaterials.2018.02.010 10.1002/jbm.a.36829 10.1016/j.tibtech.2009.12.003 10.1002/adma.201901994 10.2217/nnm.14.183 10.1016/j.dental.2021.08.008 10.1002/jbm.b.35194 10.1002/term.2239 10.1016/j.actbio.2019.05.045 |
ContentType | Journal Article |
Copyright | 2025 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2025 Wiley Periodicals LLC. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.b.35554 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4981 |
ExternalDocumentID | 40062797 10_1002_jbm_b_35554 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo |
GroupedDBID | -~X .GA .Y3 05W 0R~ 10A 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 702 7PT 8-1 8-4 8-5 8UM 930 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BRXPI BY8 CITATION CO8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM NF~ NNB O66 P2W P4D PQQKQ QB0 RNS ROL RX1 RYL SUPJJ UB1 V2E W99 WBKPD WFSAM WJL WOHZO WYISQ XG1 XV2 ZZTAW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c331t-c4a92a22d271b801badbc406ac5f80255fa1ccd2fb23ff111b598af9f39f6c913 |
ISSN | 1552-4973 1552-4981 |
IngestDate | Fri Jul 11 15:56:32 EDT 2025 Fri Jul 25 09:06:57 EDT 2025 Mon Jul 21 06:08:31 EDT 2025 Tue Jul 01 05:01:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | osteoblastic cell behavior titanium dental implants additive manufacturing physicochemical properties surface characterization implant topography |
Language | English |
License | 2025 Wiley Periodicals LLC. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c331t-c4a92a22d271b801badbc406ac5f80255fa1ccd2fb23ff111b598af9f39f6c913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0149-7189 0000-0002-2307-1720 0000-0002-0957-9595 |
PMID | 40062797 |
PQID | 3177315054 |
PQPubID | 2034571 |
ParticipantIDs | proquest_miscellaneous_3175685581 proquest_journals_3177315054 pubmed_primary_40062797 crossref_primary_10_1002_jbm_b_35554 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-00 2025-Mar 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part B, Applied biomaterials |
PublicationTitleAlternate | J Biomed Mater Res B Appl Biomater |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_10_1 e_1_2_9_35_1 Tardelli J. D. C. (e_1_2_9_53_1) 2023; 9 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Valente M. L. C. (e_1_2_9_57_1) 2021; 4 e_1_2_9_30_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Meirelles L. (e_1_2_9_39_1) 2008; 23 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – ident: e_1_2_9_69_1 doi: 10.1111/clr.12855 – ident: e_1_2_9_76_1 doi: 10.1016/j.biomaterials.2007.08.032 – ident: e_1_2_9_32_1 doi: 10.1016/j.actbio.2014.02.040 – ident: e_1_2_9_40_1 doi: 10.2147/IJN.S197099 – ident: e_1_2_9_38_1 doi: 10.5301/ijao.5000154 – ident: e_1_2_9_61_1 doi: 10.1155/2012/381535 – ident: e_1_2_9_54_1 doi: 10.1016/j.prosdent.2020.02.001 – ident: e_1_2_9_67_1 doi: 10.3390/bioengineering9100514 – ident: e_1_2_9_68_1 doi: 10.1111/clr.13575 – ident: e_1_2_9_58_1 doi: 10.1016/j.tiv.2019.04.015 – ident: e_1_2_9_66_1 doi: 10.3389/fbioe.2020.591084 – ident: e_1_2_9_12_1 doi: 10.1016/j.msec.2016.04.099 – ident: e_1_2_9_16_1 doi: 10.1016/j.jallcom.2018.08.154 – ident: e_1_2_9_60_1 doi: 10.1016/B978-0-12-815341-3.00001-8 – ident: e_1_2_9_14_1 doi: 10.1016/j.matdes.2016.02.110 – ident: e_1_2_9_63_1 doi: 10.3390/nano12142478 – ident: e_1_2_9_10_1 doi: 10.3389/fbioe.2019.00103 – ident: e_1_2_9_2_1 doi: 10.1016/j.msec.2020.111505 – ident: e_1_2_9_15_1 doi: 10.1016/j.dental.2017.07.013 – ident: e_1_2_9_20_1 doi: 10.1111/clr.12454 – ident: e_1_2_9_19_1 doi: 10.1111/j.1600-0501.2011.02184.x – ident: e_1_2_9_34_1 doi: 10.1111/j.1600-0501.2012.02429.x – ident: e_1_2_9_48_1 doi: 10.3390/ma14071590 – ident: e_1_2_9_49_1 doi: 10.1016/j.heliyon.2022.e12505 – ident: e_1_2_9_75_1 doi: 10.1016/j.colsurfb.2019.110513 – ident: e_1_2_9_24_1 doi: 10.1111/j.1708-8208.2008.00089.x – ident: e_1_2_9_43_1 doi: 10.3390/molecules25245879 – ident: e_1_2_9_77_1 doi: 10.1016/j.cden.2019.02.010 – ident: e_1_2_9_22_1 doi: 10.1563/aaid-joi-D-14-00318 – ident: e_1_2_9_52_1 doi: 10.1088/1758-5090/8/4/045014 – ident: e_1_2_9_21_1 doi: 10.1016/j.prosdent.2015.09.016 – ident: e_1_2_9_65_1 doi: 10.1021/acsbiomaterials.2c00298 – ident: e_1_2_9_4_1 doi: 10.1155/2016/8590971 – ident: e_1_2_9_62_1 doi: 10.1186/1746-160X-5-13 – ident: e_1_2_9_28_1 doi: 10.1016/j.dental.2016.08.217 – ident: e_1_2_9_72_1 doi: 10.1002/jcb.24688 – ident: e_1_2_9_56_1 doi: 10.1016/j.apsusc.2020.146107 – ident: e_1_2_9_33_1 doi: 10.1111/clr.12213 – ident: e_1_2_9_41_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_9_50_1 doi: 10.3390/ma13020314 – ident: e_1_2_9_11_1 doi: 10.3390/ma14216507 – volume: 4 start-page: 754 year: 2021 ident: e_1_2_9_57_1 article-title: Dental Mini‐Implant Designs to Support Overdentures: Development, Biomechanical Evaluation, and 3D Digital Image Correlation publication-title: Journal of Prosthetic Dentistry – ident: e_1_2_9_31_1 doi: 10.1016/j.heliyon.2023.e17105 – ident: e_1_2_9_23_1 doi: 10.1002/jbm.a.10417 – ident: e_1_2_9_44_1 doi: 10.1021/acsbiomaterials.0c01210 – ident: e_1_2_9_73_1 doi: 10.1002/jcp.24614 – volume: 9 issue: 3 year: 2023 ident: e_1_2_9_53_1 article-title: The Antibacterial and Osteoblastic Activity of Bioactive Polymeric Coatings on Titanium Surfaces for Dental Implants: Systematic Review publication-title: Heliyon – ident: e_1_2_9_27_1 doi: 10.1111/j.1600-0501.2009.01775.x – ident: e_1_2_9_29_1 doi: 10.1016/j.dental.2017.09.007 – ident: e_1_2_9_3_1 doi: 10.1007/s10103-012-1134-z – ident: e_1_2_9_30_1 doi: 10.1016/j.prosdent.2019.01.018 – ident: e_1_2_9_25_1 doi: 10.1016/j.prosdent.2019.09.010 – ident: e_1_2_9_64_1 doi: 10.1016/j.msec.2016.12.107 – ident: e_1_2_9_51_1 doi: 10.1142/S0219519421500044 – ident: e_1_2_9_59_1 doi: 10.1007/s40089-017-0221-3 – volume: 23 start-page: 641 issue: 4 year: 2008 ident: e_1_2_9_39_1 article-title: The Effect of Chemical and Nanotopographical Modifications on the Early Stages of Osseointegration publication-title: International Journal of Oral & Maxillofacial Implants – ident: e_1_2_9_47_1 doi: 10.1016/j.cis.2021.102551 – ident: e_1_2_9_70_1 doi: 10.1016/j.msec.2021.112548 – ident: e_1_2_9_6_1 doi: 10.1002/jbm.b.34710 – ident: e_1_2_9_7_1 doi: 10.3389/fbioe.2020.621601 – ident: e_1_2_9_18_1 doi: 10.1016/j.jallcom.2018.03.308 – ident: e_1_2_9_5_1 doi: 10.1016/j.biomaterials.2016.01.012 – ident: e_1_2_9_35_1 doi: 10.1002/cre2.130 – ident: e_1_2_9_37_1 doi: 10.1002/jcb.27060 – ident: e_1_2_9_71_1 doi: 10.1002/jbm.a.30955 – ident: e_1_2_9_74_1 doi: 10.1002/jcb.25469 – ident: e_1_2_9_9_1 doi: 10.1166/jbn.2018.2551 – ident: e_1_2_9_45_1 doi: 10.1016/j.biomaterials.2018.02.010 – ident: e_1_2_9_26_1 doi: 10.1002/jbm.a.36829 – ident: e_1_2_9_36_1 doi: 10.1016/j.tibtech.2009.12.003 – ident: e_1_2_9_42_1 doi: 10.1002/adma.201901994 – ident: e_1_2_9_17_1 doi: 10.2217/nnm.14.183 – ident: e_1_2_9_46_1 doi: 10.1016/j.dental.2021.08.008 – ident: e_1_2_9_55_1 doi: 10.1002/jbm.b.35194 – ident: e_1_2_9_8_1 doi: 10.1002/term.2239 – ident: e_1_2_9_13_1 doi: 10.1016/j.actbio.2019.05.045 |
SSID | ssj0026053 |
Score | 2.4244182 |
Snippet | This study aimed to assess the impact of manufacturing methods (conventional and additive manufacturing) and surface treatments (polished and nanotopographic)... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e35554 |
SubjectTerms | Additive manufacturing Alkaline phosphatase Alloys - chemistry Animals Atomic force microscopy Biological analysis Bone growth Cbfa-1 protein Cell differentiation Cell Line Cell morphology Cell viability Chemical treatment Crystal lattices Differentiation (biology) Free energy Gene expression Manufacturing Materials Testing Mice Mineralization Osteoblastogenesis Osteoblasts Osteoblasts - cytology Osteoblasts - metabolism Osteogenesis Osteogenesis - drug effects Physicochemical properties Production methods Sodium hydroxide Surface Properties Surface roughness Surface treatment Titanium - chemistry Titanium - pharmacology Variance analysis Zeta potential |
Title | Current Perspectives on Additive Manufacturing and Titanium Surface Nanotopography in Bone Formation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40062797 https://www.proquest.com/docview/3177315054 https://www.proquest.com/docview/3175685581 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXKeIEHxDeFgYy0typFceLUeVwZ04Q0hKYW7S2ynVh0WpOpJDzwF_lT3GvHboo6afAStXG-mnt6fe61zzUhRxCSYD-eRSIVJkqTqoxUJXSklDAGOiCZGUzon3_Jzpbp50t-ORr9Hsxa6lo11b_26kr-x6qwD-yKKtl_sGy4KOyAz2Bf2IKFYXsnG_viSl-3ikmb_T8uSzcl6FzWHUoXtlrExQrY4Kpbg8fYQEuF7rVpm5u-cjWmP-YNEM9TL2q8hb062b61MBznfuykrxz0fQrEdNNO5tbxeJoLJ_gDvZVLCf4I6Onkm8TOr-rFQ4BYicqr0GMsKywrbVMIdmD_5OdK4uyQbr0KE4ogWG3kZI7ZKDeGdQEB97VpQr4BvkgcrrKp4WvZoSxg0wyzHoxvp315R80Zro7nnGM13OeWgAne3Uldexgne3sNV4X2Sq2nagr8y1W13q3N_VefGWYyuqrPrICTC1XYk--R-wxiFlxH5OQi1DLDuNGqPfyD92JRaPkwuPMuPbol5rHcZ_GYPOrNTo8dAp-QUVU_JQ8HpSyfkbLHIh1ikTY19VikO1ikgEXqsUh7LNJdLNJVTRGLNGDxOVmeflp8PIv6FTwinSRxG-lU5kwyVrJZrIALKVkqDRRSam4ERrNGxlqXzCiWgGuIY8VzIU1uktxkOo-TF-Sghhu9IpQJjGWEhmukKVxSylk-U2nGK86EVumYHPkXV9y4Qi3FHuOMyaF_qUX_T_5RAIeeJRAZYfP70Ax-FgfPZF01nT2GZ4JzEY_JS2eMcJ8UlcjwOK_v9gxvyIMtpA_JQbvpqrdAbVv1zkLmD97Cqow |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+Perspectives+on+Additive+Manufacturing+and+Titanium+Surface+Nanotopography+in+Bone+Formation&rft.jtitle=Journal+of+biomedical+materials+research.+Part+B%2C+Applied+biomaterials&rft.au=da+Costa+Valente%2C+Mariana+Lima&rft.au=Uehara%2C+L%C3%ADvia+Maiumi&rft.au=Lisboa+Batalha%2C+Rodolfo&rft.au=Bolfarini%2C+Claudemiro&rft.date=2025-03-01&rft.issn=1552-4973&rft.eissn=1552-4981&rft.volume=113&rft.issue=3&rft_id=info:doi/10.1002%2Fjbm.b.35554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jbm_b_35554 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4973&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4973&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4973&client=summon |